JPS58143885A - Purification of ferrous ion-contg. mine water - Google Patents

Purification of ferrous ion-contg. mine water

Info

Publication number
JPS58143885A
JPS58143885A JP2571682A JP2571682A JPS58143885A JP S58143885 A JPS58143885 A JP S58143885A JP 2571682 A JP2571682 A JP 2571682A JP 2571682 A JP2571682 A JP 2571682A JP S58143885 A JPS58143885 A JP S58143885A
Authority
JP
Japan
Prior art keywords
contg
liquid
precipitate
mine water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2571682A
Other languages
Japanese (ja)
Other versions
JPS6224158B2 (en
Inventor
Masakatsu Sano
佐野 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2571682A priority Critical patent/JPS58143885A/en
Publication of JPS58143885A publication Critical patent/JPS58143885A/en
Publication of JPS6224158B2 publication Critical patent/JPS6224158B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To form ferrite suited to a good use at an ordinary temperature, by oxidizing a part of Fe<2+>-contg. mine water at pH below a specified value, adsorbing Si dissolved in the remainder of the mine water with the obtained Fe(II)-contg. precipitate, and then properly oxidizing the residual liquid. CONSTITUTION:In the purification of Fe<2+>-contg. mine water in which Si coexists, a part of said mine water is oxidized at pH below 5 at first, and the formed Fe(II)-contg. precipitate is separated and recovered. In succession, the precipitate is added to the remainder of the mine water, and the mine water is adjusted to pH below 6 by the addition of alkali to adsorb a dissolved Si part with the precipitate and to separate it. Thereafter, the residual Fe<2+>-contg. liquid is divided into two parts at a ratio of 2:1. The 2/3 part of the Fe<2+>-contg. liquid is oxidized by blowing oxygen or air into it or agitating it at a high speed in an oxidizing atmosphere, to form a Fe(II-contg. liquid. In succession, the residual Fe<2+>-contg. liquid and alkali are added to the oxidized liquid and mixed together at pH above 7, to form black ferrite.

Description

【発明の詳細な説明】 本発明はシリコン(Si)が共存する第一鉄イオン含有
抗水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water containing ferrous ions in which silicon (Si) coexists.

従来第一鉄イオン含有抗水は第一鉄イオンを第二鉄イオ
ンに酸化抜、アルカリを加えて水酸化物を生成して除去
する方法が良く知られている。他方第一鉄を1=2の比
率で共存する液にアルカリを添加して混合し、フェライ
トを生成する方法が知られCいる。しかしながら該方法
では液中にSiが共存するとフェライトの生成が阻害さ
れ又は不可能になる。すなわち8 iozを3 o p
pm〜1100pp程度含有する第一鉄イオン含有抗水
からフェライトを生成することは難かしく、通常87が
共存する第一鉄イオン含有抗水は第一鉄イオンを第二鉄
に酸化稜、アルカリを添加して水酸化第二鉄を生成して
処理される。この方法によって抗水を処理して多量生成
される沈殿物は埋立て投棄されるが、將来にわたって多
量に発生する膨大な沈殿物蓋に対処しうる埋立て地の選
定には困難をきたしており、沈殿物の有効利用が早急に
望まれている。
Conventionally, a well-known method for removing water containing ferrous ions is to oxidize ferrous ions to ferric ions, add an alkali to generate hydroxides, and remove the ferrous ions. On the other hand, a method is known in which ferrite is produced by adding and mixing an alkali to a solution in which ferrous iron coexists in a ratio of 1=2. However, in this method, if Si coexists in the liquid, the production of ferrite is inhibited or becomes impossible. i.e. 8 ioz to 3 op
It is difficult to produce ferrite from ferrous ion-containing water containing about pm to 1,100 pp. Normally, ferrous ion-containing water containing 87 is a mixture of ferrous ions, ferric oxides, and alkali. It is processed by adding ferric hydroxide. With this method, the large amount of sediment generated by treating water is disposed of in a landfill, but it has been difficult to select a landfill site that can handle the huge amount of sediment generated over the years. Therefore, effective utilization of the sediment is urgently desired.

本発明の目的はこれら問題点を解決し、Siが共存する
第一鉄イオン含有抗水から有効第1]用可能なフェライ
トを常温で生成する方法を折供することにある。
The object of the present invention is to solve these problems and provide a method for producing ferrite which can be used effectively at room temperature from a ferrous ion-containing water retardant in which Si coexists.

即ち本発明による方法は、Siが共存する第一鉄イオン
含有抗水の処理に際し、先ず該抗水の一部をPHs以下
で、酸素や空気を吹き込んだり、酸化性雰囲気下で高速
攪拌することによって生成した第二鉄含有沈殿物を回収
し、この第二鉄含有沈殿物を該抗水の残部に添加し、ア
ルカリ剤を加メてPH6以下に調整して該抗水中のSL
成分を該第二鉄含有沈殿物に吸着させて分離後、残った
第一鉄(,4ン含有液を2二1の比率に2分し、該第−
鉄イオン含有液の2/3に酸素や空気を吹き込んだり、
酸化性雰囲気中で高速攪拌して酸化し第二鉄含有液とし
た後、膣液に残りの173の第一鉄イオン含有液及びア
ルカリを加えてP H7以上で混合し、黒色の強磁性沈
殿物(フェライト)を生成することを特徴とする。
That is, in the method according to the present invention, when treating antiferrous water containing ferrous ions in which Si coexists, a part of the antihydric water is first kept at a pH below PHs by blowing oxygen or air into it, or by stirring at high speed in an oxidizing atmosphere. Collect the ferric-containing precipitate generated, add this ferric-containing precipitate to the remainder of the anti-water bottle, add an alkaline agent to adjust the pH to 6 or less, and remove the SL in the anti-hydrochloric acid.
After separating the components by adsorption to the ferric-containing precipitate, the remaining ferrous-containing liquid was divided into two parts in a ratio of 2 to 1, and the ferric-containing precipitate was separated.
By blowing oxygen or air into 2/3 of the iron ion-containing liquid,
After stirring at high speed in an oxidizing atmosphere and oxidizing to obtain a ferric-containing liquid, the remaining 173 ferrous ion-containing liquid and an alkali are added to the vaginal fluid and mixed at a pH of 7 or higher to form a black ferromagnetic precipitate. It is characterized by producing a substance (ferrite).

本発明の実施によって生成されるフェライトは電波吸収
材料、磁性流体川原オ・1などの微粒子磁性粉末として
の再利用が可能であり、廃棄物の有効第11用には誠に
この捷しいクローズドサイクルをもたらす。
The ferrite produced by carrying out the present invention can be reused as a radio wave absorbing material and fine particle magnetic powder such as magnetic fluid Kawahara O-1, and this delicate closed cycle is truly useful for effectively reusing waste. bring.

本発明の方法では1) I−45以下で第一鉄イオン含
有抗水を酸化して生成した第二鉄含有沈殿物をSiの吸
着剤として用いるが、P)15を越えた第二鉄含有沈殿
物は抗水中のSiを高濃度吸着しており、Si除去剤と
しての効果は小さい。
In the method of the present invention, 1) a ferric-containing precipitate produced by oxidizing a ferrous ion-containing antihydrogen at I-45 or less is used as an adsorbent for Si; The precipitate adsorbs a high concentration of Si in the anti-water solution, and has little effect as a Si remover.

才だ該第二鉄沈殿物による第一鉄イオン含有状水中のS
+の除去効果はPHが高い程太きいが、PHが高くなる
とフェライト反応に供されるFe2+濃度が小さくなっ
てし1うので、実用的にはPH6以下に調整するのが留
ましい。
S in water containing ferrous ions due to ferric precipitates
The higher the pH, the stronger the removal effect of + is, but as the pH increases, the Fe2+ concentration used for the ferrite reaction decreases, so in practice it is best to adjust the pH to 6 or below.

また本発明の方法に従って第一鉄と第二鉄の共存液から
フェライトを生成するためには、反応中のPHを7以上
にしなければならない。
Further, in order to produce ferrite from a coexisting solution of ferrous and ferric iron according to the method of the present invention, the pH during the reaction must be 7 or higher.

また本発明の方法では第一鉄と第二鉄の組成比がFe 
(III)/Fe(II)−1,5〜3.0の範囲でも
磁性体を生成することができるが、F e ([1)/
 F e (II) = 2のときに最も磁性のつよい
フェライトを得ることができる。
Furthermore, in the method of the present invention, the composition ratio of ferrous and ferric iron is Fe
(III)/Fe(II)-1.5 to 3.0 can also produce a magnetic material, but Fe ([1)/
When F e (II) = 2, ferrite with the strongest magnetic properties can be obtained.

また本発明の方法に従って第一鉄と第二鉄の共存液を混
合してフェライトを生成する迄に、抗水の性状によって
、長時間を要するときには、窒素やヘリウムなどの非酸
化性雰囲気中で混合するのが望ましい。
In addition, if it takes a long time to mix the ferrous and ferric iron coexisting solution to produce ferrite according to the method of the present invention, depending on the water resistance properties, it may take a long time in a non-oxidizing atmosphere such as nitrogen or helium. Preferably mixed.

以下実施例により本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例 全Fe 1,1100pp 、 kl 1100pp 
、 5iO145ppmを含有する抗水を本発明の方法
に従って以下のように処理した。すなわち抗水21KC
a−CO3を添加してPH4を保持しながら酸素を吹き
込んで溶存Fe を酸化し膣液を濾過して第二鉄の沈殿
を得た。次に該沈殿を抗水IA!に添加し、CaCO3
を加えてPH5,5に調整後濾過した。F液は全Fe 
1,050 ppm 、 A10.5 ppm 、 5
i027 ppmを含有していた。
Example total Fe 1,1100pp, kl 1100pp
, 5iO containing 145 ppm was treated according to the method of the present invention as follows. In other words, water resistance 21KC
a-CO3 was added to maintain pH4, oxygen was blown in to oxidize dissolved Fe, and the vaginal fluid was filtered to obtain ferric iron precipitate. Next, the precipitate was treated with anti-water IA! CaCO3
was added to adjust the pH to 5.5, followed by filtration. F liquid is all Fe
1,050 ppm, A10.5 ppm, 5
It contained i027 ppm.

なお本発明の効果を明らかにするため、本発明5− の方法によらない、該沈殿を添加しない場合についても
同様に処理した。すなわち抗水11にCa−CO3を加
えてP H5,5に調整後濾過した。P液中ノイ、t 
y濃度は全Fe 1,070 ppm + Ali p
pm +81023299mであった。
In order to clarify the effect of the present invention, a case in which the precipitate was not added, which was not based on the method of the present invention 5-, was treated in the same manner. That is, Ca-CO3 was added to anti-water 11 to adjust the pH to 5.5, and then filtration was performed. Neu in P liquid, t
y concentration is total Fe 1,070 ppm + Ali p
It was pm +81023299m.

次に各P液0.61をそれぞれ0.41及び0.21に
2分し、先ず炉液0.4’lに酸素を吹き込んで全2+ Fe  イオンを散化し茶色潤色溶液とした後、膣液に
残りのP液0.21及びCa(OH)zを添加してPH
8を保持しながら窒素雰囲気中で攪拌混合した。攪拌1
0時間後、本発明の方法に従って処理1〜だ沈殿物は黒
色の強磁性沈殿物であった。他方本発明の方法によらな
いで処理した沈殿物は暗緑色で磁性を水式なかった。
Next, 0.61 of each P solution was divided into 2 parts, 0.41 and 0.21, respectively, and oxygen was first blown into 0.4'l of the furnace solution to disperse all 2+ Fe ions to make a brown colored solution. Add the remaining P solution 0.21 and Ca(OH)z to the solution to adjust the pH.
8 was stirred and mixed in a nitrogen atmosphere. Stirring 1
After 0 hours of treatment according to the method of the present invention, the precipitate was a black ferromagnetic precipitate. On the other hand, the precipitate not treated according to the method of the present invention was dark green and had no magnetic properties.

なお本発明において用いるアルカリは実施例に示した炭
酸カルシ−ラム、水酸化カルシ−ラム以外に水酸化ナト
リウム、水酸化カリウム等を用いても本発明の効果は変
らない。
The effects of the present invention will not change even if sodium hydroxide, potassium hydroxide, etc. are used as the alkali used in the present invention in addition to the calcium carbonate and calcium hydroxide shown in the examples.

代理人 ブf・埋j・ 内 原   晋−6=Agent BU F. Uchihara Susumu -6=

Claims (1)

【特許請求の範囲】[Claims] シリコンが共存する第一鉄イオン含有抗水の処理に際し
、該抗水の一部をPH5以下で豪化して生成する第二鉄
含有沈殿物を分離回収してこれを該抗水の残部に添加し
た稜アルカリを加えてPl−16以下に調整して溶存シ
リコン成分を第二鉄含有沈殿物に吸着させて分離し、残
った第一鉄イオン誉有液を2:1の比率に2分し、該第
−鉄イオン含有液の2/3を酸化して第二鉄含有液とし
た後、該液に残りの173の第一鉄イオン含有液及びア
ルカリを加えてPH7以上で混合し、フェライトを生成
することを特徴とする第一鉄イオン含有抗水の処理方法
When treating water containing ferrous ions in which silicon coexists, a part of the water is heated to a pH of 5 or less, the ferric-containing precipitate produced is separated and collected, and this is added to the remainder of the water. The dissolved silicon component was adsorbed and separated by the ferric-containing precipitate, and the remaining ferrous ion-rich solution was divided into two at a ratio of 2:1. After oxidizing 2/3 of the ferrous ion-containing liquid to obtain a ferric iron-containing liquid, the remaining 173 ferrous ion-containing liquid and an alkali are added to the liquid and mixed at a pH of 7 or higher to form ferrite. A method for treating ferrous ion-containing anti-water, characterized by producing ferrous ion-containing anti-water.
JP2571682A 1982-02-19 1982-02-19 Purification of ferrous ion-contg. mine water Granted JPS58143885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2571682A JPS58143885A (en) 1982-02-19 1982-02-19 Purification of ferrous ion-contg. mine water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2571682A JPS58143885A (en) 1982-02-19 1982-02-19 Purification of ferrous ion-contg. mine water

Publications (2)

Publication Number Publication Date
JPS58143885A true JPS58143885A (en) 1983-08-26
JPS6224158B2 JPS6224158B2 (en) 1987-05-27

Family

ID=12173510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2571682A Granted JPS58143885A (en) 1982-02-19 1982-02-19 Purification of ferrous ion-contg. mine water

Country Status (1)

Country Link
JP (1) JPS58143885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032163A (en) * 1999-06-22 2001-02-06 Johnson Matthey Plc Non-woven fiber web
JP2005125316A (en) * 2003-09-29 2005-05-19 Ataka Construction & Engineering Co Ltd Heavy metal-containing wastewater treatment method and its system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032163A (en) * 1999-06-22 2001-02-06 Johnson Matthey Plc Non-woven fiber web
JP2005125316A (en) * 2003-09-29 2005-05-19 Ataka Construction & Engineering Co Ltd Heavy metal-containing wastewater treatment method and its system

Also Published As

Publication number Publication date
JPS6224158B2 (en) 1987-05-27

Similar Documents

Publication Publication Date Title
CN114452936A (en) Preparation method and application of fenton sludge-based magnetic adsorbent
US5221323A (en) Method of producing magnetic powders from heavy metal sludges
CN113003764A (en) Method for removing arsenic in contaminated acid by taking siderite as in-situ iron source
JPS58143885A (en) Purification of ferrous ion-contg. mine water
Ahmad et al. Fast removal of chromium from industrial effluents using a natural mineral mixture
CN113371783A (en) Method for treating nitrogen and phosphorus wastewater by using water-quenched slag-fly ash-based 4A zeolite
JPS5644098A (en) Treating method of hydrazine content waste water
JPS6097093A (en) Treatment of ferrous ion-containing waste water
KR101707769B1 (en) Water treatment agent manufacturing method and a water treatment agent is made by him
JP4145431B2 (en) Treatment of selenium-containing wastewater
JPS59186694A (en) Treatment of mine water containing ferrous ion
KR100328064B1 (en) Acid pickling wastewater purification method
JPS6227875B2 (en)
JPS58205580A (en) Treatment of mine water containing ferrous ion
JPS58216780A (en) Water treatment device
JPH0361516B2 (en)
JPS62183896A (en) Method for stabilizing coal ash
JPS6019092A (en) Treatment of waste liquid
JP2004000883A (en) Method for treating solution containing selenium
JPS6082189A (en) Treatment of waste water containing ferrous ion
JPS599237B2 (en) Method for treating wastewater containing poorly soluble solid-phase compounds
JPS59186693A (en) Process for treating waste water containing arsenic
JPS5763605A (en) Manufacture of metallic magnetic powder
JPS58133886A (en) Treatment of waste water containing ferrous ion
JPS58131190A (en) Treatment of ferrous ion-contg. mine water