JPS58143817A - Filter apparatus for removing combustible fine particle - Google Patents

Filter apparatus for removing combustible fine particle

Info

Publication number
JPS58143817A
JPS58143817A JP57026540A JP2654082A JPS58143817A JP S58143817 A JPS58143817 A JP S58143817A JP 57026540 A JP57026540 A JP 57026540A JP 2654082 A JP2654082 A JP 2654082A JP S58143817 A JPS58143817 A JP S58143817A
Authority
JP
Japan
Prior art keywords
filter
wall
gas
combustible
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57026540A
Other languages
Japanese (ja)
Other versions
JPH0153083B2 (en
Inventor
Mitsuyoshi Kawamura
川村 光義
Sukehisa Makino
牧野 祐久
Shintaro Hirate
平手 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP57026540A priority Critical patent/JPS58143817A/en
Publication of JPS58143817A publication Critical patent/JPS58143817A/en
Publication of JPH0153083B2 publication Critical patent/JPH0153083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To remove filtered combustible particles efficiently by combustion, by a method wherein the wall structure of a filter is formed from a porous conductive ceramic and a voltage applying means is provided to the outer peripheral wall of the filter to heat the wall structure by passing a current therethrough. CONSTITUTION:In a filter apparatus for removing combustible fine particles in an exhaust gas, a wall structure is formed from porous conductive ceramic based on silicon carbide. A gas flowed in from the end surface 21 of a filter enters an inlet passage group 1 from each inflow port 3 and passed through a porous filter wall 7 to discharge only the gas through an outlet passage group 4. In this case, fine particles in the gas are collected by the filter wall 7 and only the gas is flowed out from each outflow port 4. At this time, when voltage is applied between both electrodes of the filter apparatus to pass a current, the filter wall generates heat to raise the temp. of combustible fine particles such as carbon particles and to remove the same by combustion.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス中に含まれる可燃14+微粒子、特に自動
車の排ガス中に含まれるカーボン等の可燃性微粒子を除
去でるためのフィルタ装置に関するものであり、更に詳
しくは〕rルタ自体に通電して発熱させることにより、
高濾過1’lを保持したまま、濾別した可燃性微粒子を
効率的に燃焼除去するフィルタ装置に関J゛るものであ
る。 従来、例えば公害対策として自動車エンジン殊にディー
げル[ンジンの排ガス中に含まれるカーボン微粒子を除
去ゴるIこめに、排気系まlこは排気)窮流系に、フィ
ルタを用いることが提案されているが、長期の使用では
カーボンが堆積して目詰りを起こし、圧力損失を生ずる
という欠点があった。 この欠点を解消するしのとしてフィルタの微粒子捕捉部
位にニクロlX線ヒータあるいは光熱金属層を組み合4
つせて通電加熱したり、 fili捉部位に燃料をII
J%躬し−C燃利の燃焼熱で加熱したり、高圧電極を設
けて火花放電により加熱したり、又、ノイル−2− 夕をカーボン繊軒
The present invention relates to a filter device for removing combustible 14+ particles contained in gas, particularly combustible particles such as carbon contained in exhaust gas from automobiles. By letting
The present invention relates to a filter device that efficiently burns and removes filtered combustible particulates while maintaining high filtration. Conventionally, it has been proposed to use a filter in the exhaust system of an automobile engine, especially in order to remove carbon particles contained in the exhaust gas of the engine, as a pollution control measure. However, when used for a long period of time, carbon builds up and causes clogging, resulting in pressure loss. In order to overcome this drawback, we combined a Nichrome X-ray heater or a photothermal metal layer in the particulate trapping part of the filter.
At the same time, heat the fili by applying electricity, or apply fuel to the fili capture site.
Heating can be done by heating with the combustion heat of J%-C fuel, by installing a high-voltage electrode and heating by spark discharge, or by heating with carbon fiber eaves.

【とし、そのカーボン繊組に通電ηる
ことにより加熱しく、カーボン微粒子を焼711し、[
1詰りを防ぐ方法がとられていた。 しかし、ニク1]ム線を使用する場合は発熱面積が少な
くてエネルー1゛効率が悪く、又、フィルタへの取り付
(′、lも手間のかかるものであり、発熱金属層を設(
プる場合は濾過の障害になら’Jいように細く小面積に
設けなくではならず、■はり]]ネルギ効率が悪く、取
っ付(プも手間がかかるものであり、排ガスにより昇温
がうま(ゆかない場合(よ−[ンジンを止めてから、フ
ィルりにたjjつだカーボン(峻粒子を燃焼させなけれ
ばならないことも生じlこ。 又、燃料11FI則および高ff放電方法は格別に視外
な装置を必要とし、エネルギを大小に消費し、燃料によ
る火災」−の問題、放電にJ、るフィルタの損傷を生じ
、又、カーボン繊組を使用したらのは繊維自体が燃焼に
より消失してし81:う欠点を有していた。 一方、同様な用途にセラミックのハニカム構造フィルタ
が知られており、このものは一般の〕r−3− ルタに比べ、目を細かくしてし圧力損失が少なくて1み
、しかも]ンバクトであるので自動車の排ガス中のカー
ホン除去用に好適なものであるが目詰りを生じた場合、
濾過面が広範囲にわたるので、フィルタを使用部イイl
より取りはずして全体を加熱処理し、カーボン微粒子を
燃焼消滅させなくてはならながった・・ 以上述べた1に来技術の欠点に鑑み、本発明者らは1−
ンジンを作II シフこままで、圧力損失を悪化させる
ことなく特に複穎な設fl+を要せずに、効率的に可燃
性微粒子を除去することを目的として、鋭意研究の結果
、セラミックのハニカム構造フィルタそのらのを通電発
熱体となし、現状の装置を大ぎく変更りること4Tり、
効率的に可燃11;微粒子を取り除くことができること
を児出し、本発明を完成したのである。 本発明の要旨と1Jるどころは、人口側から出口側へ延
びる複数の通路を形成り−る壁構造体をなづどともに該
通路は出[:)側が出[1閉鎖檗で閉鎖された入1]通
路群ど入1]側が入1]閉鎖壁で閉鎖された−  4 
− 出1]通路群り白うなり、しかしてイ゛f意の1′つの
入口1通路は少なくとも1つの出[1通路と壁を」ξ有
して可燃性徴わl了を捕捉づる濾過壁をなJフィルタに
おいて、少なくとら壁構造体を多孔質導電性し一シミツ
クで形成づるどともに該壁構造体を通電加熱するための
電圧印加手段を上記フィルタの外周壁部に段LJ Tな
る可燃1’J微粒子除去用フィルタ装置にある。 次に、図を参照しつつ説明Jる。 第1図は本発明の一実施例である円筒型フィルタ装置の
正面図を、第2図1.ilその断面図を、第33図はそ
の部分破断概略斜視図を表わしている。第1図において
1は入I」通路…Yであり、その流入[」3が円形の端
面21に市松模様に間口している。 この端面21の反対端部22にも同様に出口通路群2の
流出1」4が開口して、フィルタ装置はその筒状周面2
0とともに全体で円筒体を形成している。 次に第2図において説明するど、入口通路JIY1は、
ガスが流入する流入口3の反対側の通路端部−5− においで閉鎖v5にて閉鎖され、その側面は多孔質導電
性セラミック濾過壁7の4而J、りなり、全体として、
v1通していない断面11゛方形の穴を形成している。 出[1通路群2は、ガスが流出づる流出ITI /Iの
反対側の通路端部において閉鎖壁6にC閉鎖され、イの
側面は十記の入1]通路1と同様に多孔質導電性セラミ
ック濾過壁7の4面よりなり、全体として、山通してい
ない断面正方形の穴を形成している。 そして入]−1通路fiY 1の各通路と出口通路群2
の各通路は互いに1つ以上の濾過壁7を共有して隣接づ
るように配設され、通路1.2が断面正方形である場合
は、通路1つにつぎ最大4側面が入口通路と出口通路と
の間の共有濾過ヤということになり、全体の配置は、第
1図に示すごとく、各端部の正方形の流入「13あるい
は4は閉鎖壁5あるいは6と市松模様をなしている。 又、筒状側面壁20の外部表面には電圧印加用の金属質
電極8.9が端部21から22に至るま−6− で帯状に、豆いに一定間隔をおいて、被着形成されてい
る。各電極の人ぎさくま、筒中心線から見て60’″前
後の幅、vlに50’へ一80’に設定りることがハニ
カム断面での均一発熱の点から々rましい。 口こで本実施例のガスの濾過作用を説明Jる1゜まず端
面21方向から流入しIこガスは端面21に聞[1して
いる各流入口3から入口通路flY 1に入り、次いで
第2図にて点線で示した矢印のごとく多孔質の濾過壁7
の孔の中を通り抜【−)、隣接Jる出口通路群2に浸出
する。ぞの際、ガス中の微粒子が濾過壁7に捕捉され、
ガスのみ出[I通路11Y2を通って各流出口4から流
出する。 そして、この時、フィルタ装置の両電極間に電圧印加し
通電しておGyJば、フィルタの濾過壁7が発熱し、カ
ーボン等の燃焼温度以」−に11ることに」:す、濾過
壁に捕捉されたカーボン等のi11燃竹黴粒子が燃焼し
消滅してしまうのである。 ここにおいて、濾過壁7.20および閉鎖%t 56は
多孔質導電性レラミックからなり、流入[)3− 7 
 = 上り入1−1通路1へ入ったガスを濾過して、出1]通
路27p +ら流出口4へ導く作用をし通常孔径2μ〜
30 //のちのであれば、カーボン等の可燃1’l微
粒子の捕捉に好適である。1.:だし、濾過壁20ある
いは閉鎖壁5.6はHiに多孔質である必要はイfいが
、同質月利である方が、)111熱14等のWみで損傷
したり−することがないので好ましい1、ここにおいて
、濾過壁7および閉鎖壁5.6に使用されるセラミック
DFi tlは、炭化]]索(化学式S i C)ある
いは−f1化しリブデン(化学式MO8iz)等を主成
分どづるi−)のが使用され、特に7珪化モリブデンを
:11成分としたしの番よ温瘍に対する電気抵抗の変化
が使用される全温度領域で11特性を示すので温曵調節
が1ノやすい。 上記実施例におい−C濾過壁のハニカム構造体を製造す
るには、例Aば次のようになされる。炭化工1索あるい
は二月化モリブデン等の1−成分の他に、アルミナ、シ
リカ等め原*)1微粉末、アルギン酸ソーダ、アル4゛
ン酸アン[ン、ポリビニールフ′ル]−ル等の有機バイ
ンダー、水、エチルアルコールE3− 等の溶剤を加えて混練して調合物を作り、これを用通孔
の断面形状が三角形、四角形、六角形等の多角形および
円形、楕円形等の所定の形状を構成するように多数のス
リットからなるダイスより押し出寸ことにJ:リ一体構
造の長尺物を得、該長尺物を必要な良さに切断づること
により生の濾過壁ハニカム構造体を得ることかできる。 次に該ハニカム構造体からフィルタ装置を製造でるには
、例えば、該構造体の入]=1通路1および出[1通路
2の入1]側端部に、全入口通路BY1のガス流入口3
の個所のみを打ち抜いた生のセラミックシートを、生の
セラミックをペースト状の組成にしたものを結合剤とし
て用いて貼り付り、閉鎖壁6とし、更に同様にして出口
側端部に、金山【1通路群2のガス流出口4の個所のみ
を打ち抜いた生のセラミックシートを貼り(=Iす、閉
鎖壁5どしたのち、焼成づる。 フィルタの外形は適用部(ひに適応させて、四角柱、円
筒体等の各種の形態を選択することが可能であり、通路
の形状も四角柱、六角6、三角奇1等−〇  − の各種の形態を選択りることか可能である。 次に、−1]記のごど(焼成された円筒状)rルタの筒
状側面壁20の外部表面に白金等の金属粉末ペース1“
−あるいはニッケル、=1バルト等と珪素との粉末ペー
ス1〜混合物を帯状に、間隔をおいて、焼き句りること
にJ:り金属質電極8.9を積層し、フィルタ装置を1
りることができる。 又、該フィルタ装置行の側面壁20に気密性を付与Jる
ためにガラス入りセラミック層を一部又は全面に焼成す
ることらでき、それにより側面壁20から漏出した高温
の111ガスが他の部品に悪影響を与えることを未然に
防止できる。 フィルタ装置の形状は円筒形状だ4−Jでなく例えば角
柱形状でもよい。第5図には、四角柱形状のフィルタ装
置を示す。 金属質N極23.2 /I 4;t 、フィルタ装置の
4つの側面の内、相対覆る2面に設()られている。 第4図は本発明の自動車排ガス濾過用フィルタ装置とし
ての適用例を示づ。 ここにおいて、16 +、;を本発明の可燃性微粒1除
−10− ム用ノイルタ装圓であり、セラミックの絶縁少持[’a
 1 /Ia 、 1 /Il+にJ、って、外筒18
に固定されている9、外筒1Bはその流入側において、
鍔部18aで接合管16の鍔部16aど結合し、二r、
−1−シーストマニホールドに接続され−Cいる。ぞの
艮夕・1側である流出側に115いては、鍔部1811
で接合管17の鍔部171)と結合し、1ノ1気管に接
続され(いる。 フィルタ波防10の一方の電極8に導線12aかろうイ
ζt +Jその他の¥一段で電気的に接続され、外筒1
8に貫設した碍子13ξ1ににす111体と絶縁状態を
保持したまま外部へ導かれ、電源Eのマイナス側に接続
及び接地されている。 他方の?IIi極9にら導線121)がろう(=J(J
(の他の手段で電気的に接続され、ダ筒18にt)1 
tiQした碍子13 tlによりΦ体と絶縁状態を保持
しIこまま外部へ轡かれ電源[のブフス側にスイン11
5を介しC接続されてa3す、これら電源r: 、 ;
xi線]2a、121)、スイッチ15おJ、びフィル
タ装置10仝体で加熱回路を形成1ノでいる。 −11− 十配構成におい−(、IIンジンがらのカーボン微粒子
を含lυだ排ガスは1−Aジ−ストマニホールドおにび
接続管16をイの;1;ま通過し一]1流ブノ向「より
、微粒子除去用フィルタ装置a? 10の入「1通路1
へ流入Jる1、ついで第1図の点線で示Jごとく1ノ1
ガスは濾過壁7を通り扱り、出1」通路2に出(、fi
! II 4よりフィルタ菰it¥10外へJJI出さ
れ、下流0)1ノl気管の方向8へ向う、。 上記濾過壁7を通り抜【ノることにより、IIガス内の
カーボン微粒子が濾過壁7で捕捉され、カーボン微粒子
をほとんど含まないljlカスが中外へJJI出びれる
ことになるのである。 イこで、スイン(IF5をAンすることにJ、り両電極
8.9間に通電し、)rルタ装置10を発熱させて、カ
ーボン微粒子を発火湿度まで加熱Jると、カーボンが燃
焼消滅してカーボンの(1着11(積にJ、るノーr)
レタの目詰りおJ:び目i/iりによる11力旧失を未
然に防11−づる・ことができるのである。 この加熱回路においで、導線128及び121)が、カ
ーボン微粒子の流vJシている空間に露出J−12− ることかなく、7J−ボン微粒子が轡粍)表向にイ・1
盾1(n lt!lづることがイj−いので、ショー1
〜の恐れがなくなり、有利である1゜ また、このフィルタの多孔質壁構造体内に白金などの触
媒金属を分散状に担持させてaシくことは、カーボンの
焼Mlをにり低い湿度で行うことができるので右利とな
る。これは、たとえば、多孔質壁構造体を触媒金属の酸
もしくは」nの液に浸漬後、比較的高い湿度で加熱処理
Jることによって得ることがC゛きる。 以十のごとく、本発明の可燃111微粒子除去用フィル
タ’JAHによれば、入1]側から出口側へ延びる複数
の通路を形成J8壁構造体をなJとともに該通路は出口
側が出「1閉鎖壁で閉鎖された入口通路群ど入11側が
入[]閉鎖壁で閉鎖された出[1通路酊/JI Iらな
りしかして任意の1つの入口通路は少なくとも1つの出
1」通路と壁を共布して可燃性微粒子を捕17する濾過
壁をなづフィルタにd3いて゛、少なくとも壁構造体を
多孔質導電性レラミックで形成するとともに該壁構造体
を通電加熱するための電−13− j]−印加手段を上記フィルタの外周壁部に段()るこ
とにより、従来のハニカム構造型フrルタの形状を特に
変更りることなく、カーボン微粒子濾過と加熱のための
フィルタ構造が簡j1iになり製造が容易となる。 又、使用時にa3いて、フィルタ全体、特に濾過壁自体
が発熱するので、捕捉されたカーボンが全て効率的に加
熱焼却され、讐湿も速くてエネルギ効率がよい。しかも
圧力損失が少なくて、カーボン微粒子捕捉性が良1’(
であるというハニカム構造型フィルタ本来の長所し保持
している。 なお、排カスも加熱されるので、フィルタに捕捉された
可燃性の微粒子の燃焼消滅が効率よく行われる。 次に具イホ的な製造の実施例を挙げて説明覆る。 実施例 1 炭化珪素粉末、焼れ一助剤としての炭化ホウ素(化学式
BaC)どフ[ノール樹脂及び孔径制御剤としてのグラ
フアイ1〜粉末(平均粒径25 u )を、5i(E:
100、[3aC:0.25、フェノ−14− −ル樹脂:5、グラフj・イト粉末:15の重171人
′1合で調合した調合物100に苅し、ポリビニル】ノ
ルコール:;3、水:25の割合て・配合、混練したb
のを、金型に通して押し出し、出通状態にある通路をイ
1Jる長尺物を成形して、必要な良さに切断し、牛の壁
椙j告1本を(qlこ。 次に予め流入[1又は流出口をFlら抜いた、十記ど同
一配合の牛のシートを、前記の切断したで1の壁fS造
体の両切断面に、上記の成分の内、溶剤の割合を増加さ
せて配合したペース1−を介して接着させ)Joこのも
のを1950 °C:、窒$雰°囲気下で3時間焼成し
、更に人気中で1000℃にて余分な燃焼性のカー11
ζン成分を焼切り、フィルタを作つ lこ 。 次に11素50重量%、ニラグルおよびコバル1〜の微
わ)未50重量%の混合物を1500℃の非酸化1′l
J雰囲気下で゛30分間焼成し合金化した−らのを史に
粉砕し!、:粉末のペーストを、上記の焼成したフィル
タの両シー1一部分の表面に塗布したのち、乾燥し、1
500’Cの非酸化+!1雰囲気中で10分−15− 間焼き(jl IJ 、第1表の性状の円筒体可燃11
1微$r+了除去用フイルタ装置を得た。 第1表 直径   100mm 長さ    100mm 濾過壁厚ざ   0.5mm 通路内のり   −辺3.0mmの正方形濾過面積  
 約F’3200 mm2/ i n3平均気孔率  
 jう5% 」i内気孔径   20μ 電(粉量[氏抗(自 〈 1ル溜1)      0.
5 0実施例 2 EIjl化モリブデンの粉末72小吊部、アルミナ8市
吊部、グラフj・イ1〜粉末20重邑部に対し、有機パ
インタとしノでポリビニルアルコールa Ri fi部
および水20重半部を配合し混練したものを実施例1ど
同様な形状、条11C゛成形おj、び焼成し、更に、大
気中で1000°0にて余分な燃焼11のカーボン成分
を焼切り、−フィルタを作った。 得られたフィルタの両シー1へ部分の表面に白金−16
− 粉末のベース1〜を塗イ(i シ、人気中で、1200
℃にて焼き付けて、円筒体rIl燃竹微性徴除)、川フ
Cルタ装置を1r:また9゜ 子の性状は帛渇の電極間抵抗1i1が0.30であった
こと以外(ま第1表と同じであつlこ、1脣渇試験 実施例1で1りられたフィルタS4i’fJの両電極間
【こ人気中で26Vの電圧を印加したところ、常温から
6001〕を越える温度まで、108秒間で)ヱした。 一方、実施例2で得られたフィルタ装置の両電極間に大
気中で26Vの電圧を印加したところ、常温から60 
(’) °Cを越える温度まで、103秒間で達した。 又、二珪化モリブデンのフィルタは正rI刊であるので
、温度制御が容易であ・)だ。
[ and then heat the carbon fibers by passing an electric current η to sinter the carbon fine particles 711 and [
A method was taken to prevent clogging. However, when using a 1] membrane wire, the heat generating area is small and the energy efficiency is poor.Furthermore, it is time-consuming to attach the heat generating metal layer to the filter (', l).
If a filter is used, it must be installed in a narrow and small area to prevent filtration. If that doesn't work, you may have to burn off the carbon particles that fill the tank after stopping the engine.Also, the fuel 11FI rule and high ff discharge method are exceptional. It requires out-of-sight equipment, consumes a lot of energy, causes problems such as fire caused by fuel, damage to filters due to discharge, and if carbon fibers are used, the fibers themselves may burn due to combustion. On the other hand, a ceramic honeycomb structure filter is known for similar purposes, and this filter has finer mesh than the general R-3 filter. It is suitable for removing carphones from automobile exhaust gas because it has low pressure loss and is non-abacting. However, if clogging occurs,
Since the filtration surface covers a wide range, the filter can be used easily.
In view of the above-mentioned drawbacks of the previous technology, the present inventors have developed the following method:
As a result of intensive research, a ceramic honeycomb structure was developed with the aim of efficiently removing combustible particulates without worsening pressure loss or requiring a particularly complex setup. By using the filters as energized heating elements, the current equipment has to be drastically changed to 4T.
They discovered that combustible particles can be removed efficiently and completed the present invention. The gist of the present invention and the point of 1J is that it uses a wall structure that forms a plurality of passages extending from the population side to the exit side, and that the passages are closed with an exit side and an exit side. Entrance 1] Passage group entry 1] side is closed with entry 1] closing wall - 4
- Outlet [1] passageway group white, so that one inlet one passageway has at least one outlet [one passageway and a wall] ξ with a filtration wall for trapping flammable signs. In a J filter, at least the wall structure is porous and conductive and is formed by one stain, and a voltage applying means for heating the wall structure by electricity is provided on the outer peripheral wall of the filter. 'J Particulate Removal Filter Device. Next, explanation will be given with reference to the figures. FIG. 1 is a front view of a cylindrical filter device according to an embodiment of the present invention, and FIG. il shows a sectional view thereof, and FIG. 33 shows a partially broken schematic perspective view thereof. In FIG. 1, reference numeral 1 denotes an inlet passageway . Similarly, the outlet 1''4 of the outlet passage group 2 opens at the opposite end 22 of this end face 21, and the filter device
Together with 0, the whole forms a cylindrical body. Next, as explained in FIG. 2, the entrance passage JIY1 is
The end of the passageway opposite the inlet 3 into which the gas enters -5- is closed at a closure v5, the sides of which are covered by a porous electrically conductive ceramic filter wall 7, which, as a whole,
A hole with a rectangular cross section of 11゜ is formed without passing through the hole. Outlet [1] Passage group 2 is closed by a closing wall 6 at the end of the passage opposite to the outflow ITI /I through which the gas flows out, and the side surface of A is made of porous conductive material similar to the passageway 1. The filter wall 7 is made up of four sides of a ceramic filter wall 7, and as a whole forms a hole with a square cross section without any threads. and entry]-1 passage fiY 1 each passage and exit passage group 2
The passages are arranged adjacent to each other and share one or more filter walls 7, and if the passage 1.2 has a square cross section, up to four sides of one passage are the inlet passage and the outlet passage. The overall arrangement is as shown in Figure 1, with a square inlet 13 or 4 at each end forming a checkerboard pattern with a closing wall 5 or 6. On the external surface of the cylindrical side wall 20, metallic electrodes 8.9 for voltage application are formed in a strip shape from the end portions 21 to 22 at regular intervals. It is best to set the width of each electrode around 60''' when viewed from the center line of the cylinder, and set VL to 50' to 80' from the point of view of uniform heat generation in the honeycomb cross section. . The gas filtration effect of this embodiment will now be explained.The gas first flows in from the direction of the end face 21, and then enters the inlet passage flY1 from each inlet port 3 that is connected to the end face 21. Porous filter wall 7 as shown by the dotted arrow in Figure 2
It passes through the hole [-) and leaks into the adjacent outlet passage group 2. At this time, fine particles in the gas are captured by the filter wall 7,
Only gas flows out from each outlet 4 through the I passage 11Y2. At this time, if a voltage is applied between both electrodes of the filter device and electricity is applied, the filtration wall 7 of the filter will generate heat, and the temperature will exceed the combustion temperature of carbon, etc.: The filtration wall The i11 bamboo mold particles such as carbon trapped in the carbon burn and disappear. Here, the filter wall 7.20 and the closure %t 56 are made of porous conductive relamic, and the inflow [)3-7
= It acts to filter the gas that has entered the inlet 1-1 passage 1 and guide it to the outlet 4 from the outlet 1] passage 27p +, and the pore diameter is usually 2μ ~
30 // later, it is suitable for capturing combustible 1'l fine particles such as carbon. 1. :However, it is not necessary for the filter wall 20 or the closing wall 5.6 to be porous in Hi, but it is better to have the same material so that it is less likely to be damaged by W such as ) 111 heat 14 etc. Here, the ceramic DFi tl used for the filtration wall 7 and the closing wall 5.6 is mainly composed of carbonized carbonized fibers (chemical formula SiC) or -f1-formed liveden (chemical formula MO8iz). Zuru i-) is used, especially molybdenum silicide, which has 11 components, and changes in electrical resistance against thermal ulcers exhibit 11 characteristics in the entire temperature range in which it is used, making it easy to adjust the temperature. . In order to manufacture the honeycomb structure of the -C filtration wall in the above embodiment, Example A is carried out as follows. In addition to ingredients such as carbide or molybdenum, fine powders such as alumina, silica, etc., sodium alginate, ammonium aluminate, polyvinyl fluoride, etc. An organic binder such as, water, and a solvent such as ethyl alcohol E3- are added and kneaded to make a mixture, and the cross-sectional shape of the through hole is polygonal such as triangular, square, hexagonal, circular, oval, etc. By extruding from a die consisting of many slits so as to form a predetermined shape, a long piece of integrated structure is obtained, and the raw filter wall is cut into the required shape. It is possible to obtain a honeycomb structure. Next, in order to manufacture a filter device from the honeycomb structure, for example, gas inlets of all inlet passages BY1 are placed at the inlet]=1 passage 1 and outlet [1 passage 2 inlet 1] side ends of the structure. 3
A raw ceramic sheet punched out only at the location is pasted using a paste-like composition of raw ceramic as a binding agent to form the closing wall 6, and in the same manner, a gold mine [ Paste a raw ceramic sheet that has been punched out only at the gas outlet 4 of the first passage group 2. It is possible to select various shapes such as a square prism and a cylindrical body, and it is also possible to select various shapes for the passage such as a square prism, hexagonal 6, triangular odd 1 etc. -1] Metal powder paste 1" such as platinum is applied to the outer surface of the cylindrical side wall 20 of the (fired cylindrical) router.
- Or nickel, = 1 balt, etc. and silicon powder paste 1 ~ mixture is burnt in strips at intervals, and the filter device is laminated with 1 metal electrode 8.9.
You can do it. Further, in order to provide airtightness to the side wall 20 of the filter device row, the glass-containing ceramic layer can be partially or entirely fired, so that the high temperature 111 gas leaked from the side wall 20 is absorbed by other gases. It is possible to prevent any adverse effects on the parts. The shape of the filter device is not cylindrical or 4-J, but may be prismatic, for example. FIG. 5 shows a square prism-shaped filter device. Metallic N poles 23.2 /I 4;t are provided on two opposing sides of the four sides of the filter device. FIG. 4 shows an example of application of the present invention as a filter device for filtering automobile exhaust gas. Here, 16 +; is the Noirta mounting for the combustible particulate 1 part - 10 - membrane of the present invention, and
1 /Ia, 1 /Il+, J, outer cylinder 18
9, the outer cylinder 1B is fixed to, on its inflow side,
The flange 16a of the joint pipe 16 is connected to the flange 18a, and 2r,
-1- Connected to the seat manifold -C. 115 on the outflow side, which is the 1st side, is the collar part 1811
It is connected to the flange 171) of the joint tube 17, and is connected to the trachea.The conductor 12a is electrically connected to one of the electrodes 8 of the filter wave shield 10 by the other one step. , outer cylinder 1
The insulator 13ξ1 penetrated through the insulator 111 is led to the outside while maintaining an insulated state with the insulator 111, and is connected to the negative side of the power source E and grounded. The other? IIi pole 9 conductor 121) is wax (=J (J
(electrically connected to the cylinder 18 by other means) 1
TiQ insulator 13 maintains the insulated state with the Φ body by tl, and the I piece is passed to the outside and connected to the power supply side 11
These power supplies R: , ;
xi line] 2a, 121), the switch 15 and the filter device 10 together form a heating circuit. -11- 10-port configuration - (The exhaust gas containing carbon fine particles from the II engine passes through the 1-A exhaust manifold and connecting pipe 16) towards the 1st flow vent. Filter device for removing particulates a?
Flow into Jru1, then 1no1 as shown by the dotted line in Figure 1.
The gas passes through the filter wall 7 and exits to the output 1" passage 2 (, fi
! From II 4, the filter is sent out to the outside, downstream 0) 1 nol, in the direction of the trachea. By passing through the filter wall 7, the carbon particulates in the II gas are captured by the filter wall 7, and the ljl dregs containing almost no carbon particulates flows out from the inside. At this point, turn on the IF5 and apply current between both electrodes 8 and 9 to generate heat in the router device 10 and heat the carbon particles to the ignition humidity, causing the carbon to burn. Carbon disappears (1st place 11 (product J, runo r)
It is possible to prevent the loss of strength due to clogging of letters. In this heating circuit, the conducting wires 128 and 121) are exposed to the space where the carbon particulates are flowing, and the 7J-bon particulates are not exposed to the surface.
Shield 1 (n lt!l is cool to write, so show 1
This is advantageous because it eliminates the fear of 1°.Also, the fact that catalyst metals such as platinum are supported in a dispersed manner within the porous wall structure of this filter makes it possible to reduce the sintered Ml of carbon at low humidity. Since you can do it, you will be right-handed. This can be obtained, for example, by immersing the porous wall structure in a catalytic metal acid or liquid, followed by heat treatment at relatively high humidity. As described above, according to the filter for removing combustible 111 particulates of the present invention, a plurality of passages are formed extending from the inlet side to the outlet side. A group of inlet passageways closed with a closing wall has an inlet side and an outlet closed with a closing wall. The filter has a filtration wall for trapping combustible particulates by forming at least a wall structure of porous conductive ceramic, and an electric current for heating the wall structure. ] - By arranging the application means on the outer peripheral wall of the filter, the filter structure for carbon particulate filtration and heating can be simplified without changing the shape of the conventional honeycomb structure type filter. This makes manufacturing easier. In addition, since the entire filter, especially the filter wall itself, generates heat during use, all of the captured carbon is efficiently heated and incinerated, and moisture is removed quickly, resulting in good energy efficiency. Moreover, the pressure loss is small and the carbon particulate capture property is good.
It maintains the inherent advantages of honeycomb structure filters. Incidentally, since the exhaust gas is also heated, the combustible particulates captured by the filter are efficiently burned and extinguished. Next, a detailed manufacturing example will be given and explained. Example 1 Silicon carbide powder, boron carbide (chemical formula BaC) as a burning aid, phenol resin, and Graphi 1 powder (average particle size 25 u) as a pore size control agent were mixed into 5i (E:
100, [3aC: 0.25, phenol-14-ol resin: 5, graphite powder: 15 weight 171 people' 1 mixture was mixed into 100, polyvinyl] norkol:; 3, Water: 25 parts blended and kneaded b
Extrude it through a mold, mold it into a long piece that fits the passage in the open state, cut it to the required size, and make one piece of the cow's wall (ql).Next. A cow sheet with the same composition as Juki, with the inlet [1 or outlet] removed in advance, was placed on both cut surfaces of the wall fS structure in the cut section 1, with the proportion of solvent among the above components. This was baked at 1950°C for 3 hours under a nitrogen atmosphere, and then heated at 1000°C with an extra flammable carton. 11
A filter is made by burning off the ζn component. Next, a mixture of 50% by weight of element 11 and 50% by weight of Niraglu and Kobal 1~ was heated to 1500°C with non-oxidized 1'l.
Sintered for 30 minutes in a J atmosphere to form an alloy, then crushed into pieces! : After applying a powder paste to the surface of a portion of both sheets 1 of the above-mentioned fired filter, drying it,
500'C non-oxidation +! 10 minutes in an atmosphere of 15 minutes
A filter device for removing 1 minute amount was obtained. Table 1 Diameter: 100 mm Length: 100 mm Filtration wall thickness: 0.5 mm Glue in passage - Square filtration area with sides of 3.0 mm
Approximately F'3200 mm2/in3 average porosity
5% Inner pore diameter 20μ Powder amount
50 Example 2 72 parts of molybdenum chloride powder, 8 parts of alumina, and 20 parts of graph J/I 1 to 20 parts of powder were treated with organic pine nuts, polyvinyl alcohol a Ri fi part and 20 parts of water. Half of the mixture was mixed and kneaded, and the same shape as in Example 1 was formed into strips 11C, and then fired, and further, the excess carbon component of combustion 11 was burned off at 1000 ° 0 in the atmosphere, and - I made a filter. Platinum-16 was applied to the surface of both seams of the obtained filter.
- Apply powder base 1~ (Ishi, popular, 1200
Baked at ℃, the cylindrical body rIl (fine traces of combustion), and the river filter device 1r: Also, the properties of the 9°C were determined except that the interelectrode resistance 1i1 of the explosion was 0.30 (and Same as Table 1, the temperature between the two electrodes of the filter S4i'fJ that was removed in Example 1 of the 1-starvation test [when a voltage of 26 V was applied in this heat, from room temperature to a temperature exceeding 6001] , in 108 seconds). On the other hand, when a voltage of 26V was applied in the atmosphere between both electrodes of the filter device obtained in Example 2,
A temperature exceeding (') °C was reached in 103 seconds. Also, since the molybdenum disilicide filter is a genuine product, temperature control is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の可燃fl微粒子除去用フィルタ装置の
一実施例の正面図、第2図はそのII −IT断面図、
第3図はその部分破断概略斜視図、第4ンIは自動車+
11カス濾適用フイルタ装置の概略断面図−17− 第5図は他の実/dli例の概略斜視図である、。 1・・・・・・入1]通路11Y 2・・・・・・出1]通路IIY 7・・・・・・濾過b? 8.9.23.2’l・・・・・・金属Y′1↑11極
代理人 弁理士 定立 勉 −18− 手続補正書坊式) 昭和57年6月2日 2  発明の名称 可燃性微粒子除去用フィルタ装置 3、 補正をする者 事件との関係  特許出願人 住 所     名古屋市瑞穂区高辻町14番18号氏
 名(名称)   <454)日本特殊陶業株式会社代
表者 小 川 修 次 4、代理人〒4.60 住 所   名古屋市中区錦二丁目9番27号5、 補
正命令の日付 昭和57年5月25日 (発送日) 第2図
FIG. 1 is a front view of an embodiment of a filter device for removing combustible fl particulates according to the present invention, and FIG. 2 is a sectional view taken along line II-IT thereof.
Figure 3 is a partially cutaway schematic perspective view of the same, and Figure 4 is a schematic perspective view of the car.
11 Schematic cross-sectional view of filter device applying dregs filtration -17- Fig. 5 is a schematic perspective view of another actual/dli example. 1...Input 1] Passage 11Y 2...Output 1] Passage IIY 7...Filtration b? 8.9.23.2'l...Metal Y'1↑11Public Agent Patent Attorney Tsutomu Seitatsu-18- Procedural Amendment Book Type) June 2, 1980 2 Name of Invention Flammable Particulates Removal filter device 3, relationship with the person making the correction Patent applicant address 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Name <454) NGK Spark Plug Co., Ltd. Representative Osamu Ogawa 4. Agent 4.60 Address: 2-9-27-5 Nishiki, Naka-ku, Nagoya Date of amendment order: May 25, 1980 (Date of dispatch) Figure 2

Claims (1)

【特許請求の範囲】 1 人口側から出]]側へ延びる複数の通路を形成づる
壁構造体をなηどどもに該通路は出に1側が出口閉鎖壁
で閉鎖された入[1通路1’Xと入1−1側が入口閉鎖
壁で閉鎖された出口通路nI ip (うなりしかして
任意の1つの入[1通路は少<’K りとも1つの出「
1通路と壁を共有して可燃性微粒子を捕捉りる濾過壁を
なづフィルタにおいて、少なくとも壁構造体を多孔質導
電性セラミックで形成するとどしに該@1F4造体を通
電加熱するための電圧印加手段を十記フィルタの外周壁
部に設(プてなる可燃性微粒子除去用フィルタ装置。 2 多孔質導電性セラミックが炭化珪素を主成分とする
ものである特許請求の範囲第1項記載の可燃性微粒子除
去+11フイルタ装置。 3 多孔質導電↑1セラミックが二T:l化モリブデン
を主成分とするしのである特許請求の範囲第1− 1 
− 項記載の可燃性微粒子除去用フィルタ装置。
[Scope of Claims] A wall structure forming a plurality of passages extending from the population side to the exit [1] side, the passages having an inlet [1 passage 1 '
In a filter having a filtration wall that shares a wall with one passage and captures combustible particles, at least the wall structure is formed of porous conductive ceramic, and the @1F4 structure is heated by electricity. A filter device for removing combustible particulates comprising a voltage applying means provided on the outer peripheral wall of the filter. 2. Claim 1, wherein the porous conductive ceramic is mainly composed of silicon carbide. Combustible particulate removal+11 filter device.3 Porous conductive↑1 Ceramic is a ceramic whose main component is molybdenum diT:l chloride.Claim No. 1-1
- A filter device for removing combustible particulates as described in Section 1.
JP57026540A 1982-02-19 1982-02-19 Filter apparatus for removing combustible fine particle Granted JPS58143817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026540A JPS58143817A (en) 1982-02-19 1982-02-19 Filter apparatus for removing combustible fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026540A JPS58143817A (en) 1982-02-19 1982-02-19 Filter apparatus for removing combustible fine particle

Publications (2)

Publication Number Publication Date
JPS58143817A true JPS58143817A (en) 1983-08-26
JPH0153083B2 JPH0153083B2 (en) 1989-11-13

Family

ID=12196325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026540A Granted JPS58143817A (en) 1982-02-19 1982-02-19 Filter apparatus for removing combustible fine particle

Country Status (1)

Country Link
JP (1) JPS58143817A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252820A (en) * 1985-04-30 1986-11-10 Toyota Motor Corp Filter for collecting particulates
JPS63105713U (en) * 1986-12-27 1988-07-08
JPS63105716U (en) * 1986-12-27 1988-07-08
JPS63197511A (en) * 1986-12-05 1988-08-16 イベコ フィアト エセ ペ ア Regenerable filter for exhaust gas from internal combustion engine
JPH01104322A (en) * 1987-10-19 1989-04-21 Mitsubishi Heavy Ind Ltd Dedusting apparatus for exhaust gas
JPH0315616A (en) * 1989-01-31 1991-01-24 Ibiden Co Ltd Exhaust gas purifying device
WO1993005862A1 (en) * 1991-09-20 1993-04-01 Nippondenso Co., Ltd. Self-heating filter
US5259190A (en) * 1991-08-01 1993-11-09 Corning Incorporated Heated cellular structures
WO1995002117A1 (en) * 1993-07-09 1995-01-19 Pall Corporation Regenerable diesel exhaust filter and heater
US5393586A (en) * 1992-10-27 1995-02-28 Corning Incorporated Localized electrical heating of honeycomb structures
US5497620A (en) * 1988-04-08 1996-03-12 Stobbe; Per Method of filtering particles from a flue gas, a flue gas filter means and a vehicle
EP0336883B1 (en) * 1988-04-08 1999-01-13 Per Stobbe Method for preparing a porous filter body
JP2011195378A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Ceramic-metal joined body and method for producing the same
JP2011212577A (en) * 2010-03-31 2011-10-27 Ngk Insulators Ltd Honeycomb structure
JP2011230999A (en) * 2010-04-09 2011-11-17 Ibiden Co Ltd Honeycomb structure and exhaust gas cleaning device
JP2011246340A (en) * 2010-04-28 2011-12-08 Denso Corp Honeycomb structure and manufacturing method therefor
DE102019203978A1 (en) 2018-03-29 2019-10-02 Ngk Insulators, Ltd. hONEYCOMB STRUCTURE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110311A (en) * 1980-12-27 1982-07-09 Kyocera Corp Ceramic honeycomb filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110311A (en) * 1980-12-27 1982-07-09 Kyocera Corp Ceramic honeycomb filter

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252820A (en) * 1985-04-30 1986-11-10 Toyota Motor Corp Filter for collecting particulates
JPS63197511A (en) * 1986-12-05 1988-08-16 イベコ フィアト エセ ペ ア Regenerable filter for exhaust gas from internal combustion engine
JPS63105713U (en) * 1986-12-27 1988-07-08
JPS63105716U (en) * 1986-12-27 1988-07-08
JPH0517371Y2 (en) * 1986-12-27 1993-05-11
JPH0521614Y2 (en) * 1986-12-27 1993-06-03
JPH01104322A (en) * 1987-10-19 1989-04-21 Mitsubishi Heavy Ind Ltd Dedusting apparatus for exhaust gas
EP0336883B1 (en) * 1988-04-08 1999-01-13 Per Stobbe Method for preparing a porous filter body
US5497620A (en) * 1988-04-08 1996-03-12 Stobbe; Per Method of filtering particles from a flue gas, a flue gas filter means and a vehicle
JPH0315616A (en) * 1989-01-31 1991-01-24 Ibiden Co Ltd Exhaust gas purifying device
US5259190A (en) * 1991-08-01 1993-11-09 Corning Incorporated Heated cellular structures
US5405422A (en) * 1991-09-20 1995-04-11 Nippondenso Co., Ltd. Self-heating filter
WO1993005862A1 (en) * 1991-09-20 1993-04-01 Nippondenso Co., Ltd. Self-heating filter
US5457945A (en) * 1992-01-07 1995-10-17 Pall Corporation Regenerable diesel exhaust filter and heater
US5393586A (en) * 1992-10-27 1995-02-28 Corning Incorporated Localized electrical heating of honeycomb structures
WO1995002117A1 (en) * 1993-07-09 1995-01-19 Pall Corporation Regenerable diesel exhaust filter and heater
JP2011195378A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Ceramic-metal joined body and method for producing the same
JP2011212577A (en) * 2010-03-31 2011-10-27 Ngk Insulators Ltd Honeycomb structure
JP2011230999A (en) * 2010-04-09 2011-11-17 Ibiden Co Ltd Honeycomb structure and exhaust gas cleaning device
JP2011246340A (en) * 2010-04-28 2011-12-08 Denso Corp Honeycomb structure and manufacturing method therefor
DE102019203978A1 (en) 2018-03-29 2019-10-02 Ngk Insulators, Ltd. hONEYCOMB STRUCTURE
JP2019173728A (en) * 2018-03-29 2019-10-10 日本碍子株式会社 Honeycomb structure body
US11312661B2 (en) 2018-03-29 2022-04-26 Ngk Insulators, Ltd. Honeycomb structure
DE102019203978B4 (en) 2018-03-29 2024-08-01 Ngk Insulators, Ltd. Honeycomb structure

Also Published As

Publication number Publication date
JPH0153083B2 (en) 1989-11-13

Similar Documents

Publication Publication Date Title
JPS58143817A (en) Filter apparatus for removing combustible fine particle
US5557923A (en) Method and device for removing particles from exhaust gases from internal combustion engines
US4509966A (en) Wall-flow monolith filter with porous plugs
US4283207A (en) Diesel exhaust filter-incinerator
US4519820A (en) Fitter apparatus for purifying exhaust gases
US5149508A (en) Parallel path catalytic converter
DE2732365A1 (en) METHOD AND DEVICE FOR GENERATING HEAT BY COMBUSTION OF A GAS / AIR MIXTURE
JPH0211287B2 (en)
JPS63197511A (en) Regenerable filter for exhaust gas from internal combustion engine
EP0504422B1 (en) Self-heating filter
JPS5867914A (en) Purification device for fine carbon particles of internal-combustion engine
JPS58119317A (en) Filter device for removal of combustible fine particles
JPS57195814A (en) Fine grain purifier of internal combustion engine
JPH0153082B2 (en)
US20210106981A1 (en) Diesel Particulate Filtration (DPF) System
JPH0211288B2 (en)
JPH07136435A (en) Filter for exhaust gas purifying apparatus and production thereof
JPS6349216A (en) Filter for purifying exhaust gas
JPS6356814B2 (en)
JPH11280451A (en) Exhaust emission control device
JPH0247248B2 (en)
JPS58174217A (en) Ceramic filter for removing combustible fine particle
JPH10272325A (en) Apparatus for treating fine particles
JPS5937224A (en) Filtering device for removing inflammable fine particle
DE102023202287A1 (en) HONEYCOMB STRUCTURE, ELECTRICALLY HEATED SUPPORT AND EXHAUST GAS PURIFICATION DEVICE