JPS5814304A - Optical thermomagnetic erasing and recording method - Google Patents

Optical thermomagnetic erasing and recording method

Info

Publication number
JPS5814304A
JPS5814304A JP11251581A JP11251581A JPS5814304A JP S5814304 A JPS5814304 A JP S5814304A JP 11251581 A JP11251581 A JP 11251581A JP 11251581 A JP11251581 A JP 11251581A JP S5814304 A JPS5814304 A JP S5814304A
Authority
JP
Japan
Prior art keywords
magnetic field
bit information
bias magnetic
recording
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11251581A
Other languages
Japanese (ja)
Inventor
Masahiko Kaneko
正彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11251581A priority Critical patent/JPS5814304A/en
Publication of JPS5814304A publication Critical patent/JPS5814304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To simplify operations of erasing and recording of bit information, by making a practical continuous light incident without changing the direction of an applied bias magnetic field when bit information is recorded on a recording medium. CONSTITUTION:A thermomagnetic optical recording reader 1 is fixed freely attachably and detachably to a bias magnetic field generating device 2 such as a permanent magnet by adhesion and is so arranged that a bias magnetic field is always applied to the device 1. The argon laser having, for example, wavelength 488mm. generated from a light generating device 5 is led to an optical modulator 6 and passes through a polarizer 7 and a half mirror 8 to record bits on the reader 1. In case that recorded bit information is erased, the incident light is irradiated so as to be superposed slightly onto bits to be erased while being moved in the direction opposite to the direction for write. Thus, operations of erasing and recording of bit information are simplified.

Description

【発明の詳細な説明】 本発明は光熱磁気記録および消去方法に関するものであ
り、更に詳細には、光熱磁気記録δれたビット情報を抗
磁力を必要とせずに光熱磁気消去すると同時に、新たな
ビット情報を記録する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photothermal magnetic recording and erasing method. More specifically, the present invention relates to a photothermal magnetic recording and erasing method. This invention relates to a method of recording bit information.

従来の光熱磁気記録すれたビット情報を消去する方法に
は大別して2通りあって、記録媒体の磁性材料の抗磁力
より大きなバイアス磁界を印加してビット情報の全てを
同時に消去Tる方法(例えば、アプラ4 )’、 :t
ブティックス(ムppl ied Opt 1cm)、
第16巻(@4号)、第770〜777頁参照)および
記録媒体の磁性材料の抗磁力よりも小δな1<イアス磁
界を記録のときとは逆方向に印加し光ノクルスを入射し
て昇温された部分のビットを消去する方法(例えば、ジ
ャパニーズ・ジャーナル・オブ・アプライド・フィジッ
クス(Japanese Journ@l ofApp
lied Physlcm)、第18巻(1979)サ
プルメント18−1、第231〜234頁参照)がある
There are two methods for erasing bit information that has been conventionally recorded photothermally and magnetically. , Apra4)', :t
Boutiques (ppl ied Opt 1cm),
Vol. 16 (@ No. 4), pp. 770-777) and a 1 (e.g. Japanese Journal of Applied Physics)
18 (1979) Supplement 18-1, pp. 231-234).

しかし、抗磁力よりも大きいバイアス磁界を印加してビ
ット情報を消去する方法では、例えばMnB1膜のよう
に抗磁力の大きい磁性材料を用いた場合には、10tt
sWの入射光量で7oooeもの強いバイアス磁界を印
加する必要がある。このように強いバイアス磁界の印加
を消去のためにも要するところから、装置も大証のもの
を要し実用的ではない。鵞た、記録されたビット情報を
選択的に消去することができず不便である。
However, in the method of erasing bit information by applying a bias magnetic field larger than the coercive force, if a magnetic material with a large coercive force is used, such as an MnB1 film, for example, 10tt
It is necessary to apply a bias magnetic field as strong as 7oooe with an incident light amount of sW. Since the application of a strong bias magnetic field is also required for erasing, the device must be made by Osaka Securities Co., Ltd., which is not practical. Moreover, it is inconvenient that the recorded bit information cannot be selectively erased.

また、従来の消去方式であるバイアス磁界を記録のとき
とは逆方向に印加してビット情報を消去する方法では、
例えばGdCo膜を使用する場合には、900・という
かなり低いバイアス磁界の印加の下に書き込み・消去が
なされている。この方法による消去は、記録すれたビッ
トに、消去するための光パルスが完全に重なり合うよう
に入射されなければならず、トラッキングとビット間の
厳密な信号同期を要することになる。この信号同期が少
しでも狂えば、記録されたビットは部分的にしか消去さ
れず、残りのビット部分が残存してしまうことにもなり
、コントラストの低下を生ずる虞れがあるばかりでなく
、新たなビット情報を記録しても以前の記録が残存する
こともあり得て実用上好ましくない。
In addition, in the conventional erasing method, where bit information is erased by applying a bias magnetic field in the opposite direction to that during recording,
For example, when using a GdCo film, writing and erasing are performed under the application of a fairly low bias magnetic field of 900°. Erasing using this method requires that the optical pulse for erasing be applied to the recorded bits so as to completely overlap them, and requires tracking and strict signal synchronization between the bits. If this signal synchronization goes out even slightly, the recorded bits will only be partially erased, and the remaining bits will remain, which may not only cause a decrease in contrast, but also cause new Even if bit information is recorded, the previous recording may remain, which is not desirable in practice.

前述したような従来技術では、ビット情報の消去と同時
に、新たなビット情報を記録させるのは不可能である。
With the conventional technology as described above, it is impossible to record new bit information at the same time as erasing bit information.

本発明は°、記録媒体にビット情報を記録Tるときに印
加したバイアス磁界の方向を変えることなく実質的な連
続光を入射させることによって記録されたビット情報を
選択的に消去Tると同時に、その連続光を断続させて新
たなビット情報を記録する方法を提供するものである。
The present invention is capable of selectively erasing recorded bit information by injecting substantially continuous light without changing the direction of the bias magnetic field applied when recording bit information on a recording medium. , provides a method for recording new bit information by intermittent continuous light.

本発明に係る方法における消去は、配置媒体に実質的な
連続光を照射することによって行なわれ、形成きれた温
度勾配の及ぶ範囲内にあるビット情報を消去するもので
ある。
Erasing in the method according to the invention is carried out by irradiating the placement medium with substantially continuous light to erase bit information within the range of the temperature gradient that has been formed.

本発明においてビット情報の消去のために簿州される実
質的な連続光とは、通常の連続光の他に、その光が入射
しても記録が残らない程度の断続光をも包含するものと
理解すべきである。場合によっては、本発明において実
質的な連続光に包會裏れるかかる断続光として、例えば
50Hg@度の繰り返し光パルスが挙げられる。
In the present invention, the substantially continuous light used for erasing bit information includes not only normal continuous light but also intermittent light to the extent that no record remains even if the light is incident. It should be understood that In some cases, such intermittent light encompassed by substantially continuous light in the present invention may include, for example, repetitive light pulses of 50 Hg@degrees.

本発明における消去方法において、実質的な連続光を照
射して温度勾配が形成されたときのピント移動を考えれ
ば、温度勾配によって磁化M、と磁壁エネルギー〜に勾
配ができたとき、ビットは次式によって与えられる速度
Vdに従って移動する。
In the erasing method of the present invention, if we consider the focus shift when a temperature gradient is formed by irradiating substantially continuous light, when a gradient is created in magnetization M and domain wall energy ~ due to the temperature gradient, the bit will be It moves according to the speed Vd given by Eq.

〜:易動度 CM%C#:物理定数で決まる正の整数ビットは、磁化
M、が大きい方へ、または磁壁エネルギー〜が小さい方
へ移動する。一般に−MSおよびg、の温度係数は負で
あって、その絶対値は〜の方が大きいから、ビットは高
温側へ移動する憤向を持っている。したがって、光ビー
ムによって昇温した部分は、その温度勾配の及ぶ範囲内
曇こあるビットを引き込む力があるから、この力が上式
の抗磁力の項およびビット同士の反撥力に打ち勝つと、
消去すべきビットは光ビームにIN+/)込まれて消去
されるものと考えられる。このようiこ光ビームは、形
成された温度勾配の範囲内にあるビットを消去しつるの
で、従来技術のように厳密に信号同期をする必要がなく
、たとえ光ビームが消去すべきビットに一部重畳する場
合は勿論のこと、一定距離、丁なわち形成された温度勾
配の範囲内、一般的にはビットのトラックからビット径
程度離れていてもそのビットを消去できる。
~: Mobility CM% C#: A positive integer bit determined by a physical constant moves toward the side where the magnetization M is larger or the domain wall energy ~ is smaller. Generally, the temperature coefficients of -MS and g are negative, and their absolute values are larger for ~, so the bit has a tendency to move to the high temperature side. Therefore, the part heated by the light beam has a force that pulls the cloudy bit within the range of its temperature gradient, so if this force overcomes the coercive force term in the above equation and the repulsive force between the bits, then
It is considered that the bit to be erased is inserted into the light beam IN+/) and erased. Since such a light beam erases bits within the range of the temperature gradient formed, there is no need for strict signal synchronization as in the prior art, and even if the light beam is aligned with the bit to be erased, Of course, the bit can be erased not only when the bits overlap, but also when the bit is located at a certain distance, that is, within the range of the formed temperature gradient, and generally, the bit is separated from the bit track by about the diameter of the bit.

本発明に係る記録方法は、丁でに記録されているビット
情報を消去するために照射されている連続光を断続する
と、その場所に、印加しているノイイアス磁界とはその
磁化方向が逆向きの円筒磁区が新たに形成されることに
なる。続いて更に連続光を照射するとビット情報の消去
を1統してqなうことができる。したがって、連続光の
照射aよび連続光の断続を繰り返すことによって、消去
および記lIkを繰り返して行なうことができる。ま瓢
Tでに記録、すれているビット情報のうちの一部を消去
せずに漢訳的に残し新たに形成させるピント情報と任意
に組み合わせることもでき極めて有利である。なお、こ
の記録の場合は、単に消去のために照射している実質的
な連続光を断続暮せるだけでよく操作が極めて簡単であ
る。
In the recording method according to the present invention, when continuous light is irradiated intermittently in order to erase bit information recorded on a disk, the direction of magnetization is opposite to that of the applied noisy magnetic field. A new cylindrical magnetic domain will be formed. Subsequently, by further irradiating continuous light, the bit information can be erased all at once. Therefore, by repeating the continuous light irradiation a and the interruption of the continuous light, erasing and writing can be repeatedly performed. It is extremely advantageous that part of the blurred bit information recorded in the eyeglass T can be left in the form of a Chinese translation without being erased, and can be arbitrarily combined with newly formed focus information. In the case of this recording, the operation is extremely simple, as it is only necessary to intermittent the substantially continuous light irradiated for erasing.

なお、本発明に係る方法は、磁壁抗磁力が印加するバイ
アス磁界よりも充分に小さな磁性材料からなる磁性薄膜
に、バイアス磁界の方向とは逆向きの磁化方向を有する
円筒磁区として記録されたビット情報を消去するのと同
時に、新たにかかる円筒磁区によるビット情報を記録す
るのに適用することができる。このような磁性材料とし
て使用できるのは、例えば、その膜面に垂直な方向に強
い1聯磁気異方性を有しかつその膜面に謙化容易軸を有
する軟磁性の材料であって、(Y8mCa)g(F@G
e)i、OnなどのようなYSmCaFeGe系ガーネ
ットなどが例示暮れる。前述したような磁性材料は、い
わゆる軟磁性膜面垂直容易磁化膜を形成することができ
、その軟磁性の程度は、これを−気記録織体に適用した
場合に、書き込まれるビット径が実際上バイアス磁界の
みで決定3れる11&である仁とが好ましく、その抗磁
力は約30e以下、好ましくは約10e以下であるのが
よい。かかる磁化薄膜は、この軟磁性ガリウムガーネッ
ト(GGG)のような希土類ガリウムガーネットなどの
基板結晶上にY8mCaFIGe系ガーネットなどの結
晶を液相エピタキシャル法(LPFi)によって成長3
せて形成するのが好ましい。このようにして得られる軟
磁性膜11fi直容易磁化膜に所定強度゛のバイアス磁
界を印加すると、その膜面の全面擾こ亘って単磁区でか
つ磁化が膜面に対して垂直方向に向いた状態になる。印
加するバイアス磁界の強ざは、使用される軟磁性膜面垂
直容易磁化膜の種類によって多少異なるのは轟然である
か、ランアウト磁界H1とコラプス磁界Hoとの間であ
って、例えば前述した(Y8mCa)1(F@Ge)g
012LPg膜の場合には、57ρ−と730eとの間
である。ビット情報の書き込みは、その全面がバイアス
磁界の印加によりそのバイアス磁界とは磁化方向が膜面
に対し垂直な単磁区になっている軟磁性膜面垂直容易磁
化膜に光パルスを入射することにより所定径の円筒磁区
であっηその磁化方向が印加しているバイアス磁界とは
逆向きであるものを形成ξせて行なうことができる。
Note that the method according to the present invention is a method for recording bits recorded as cylindrical magnetic domains having a magnetization direction opposite to the direction of the bias magnetic field in a magnetic thin film made of a magnetic material whose domain wall coercive force is sufficiently smaller than the applied bias magnetic field. It can be applied to simultaneously erase information and record new bit information using such cylindrical magnetic domains. What can be used as such a magnetic material is, for example, a soft magnetic material that has strong one-strand magnetic anisotropy in the direction perpendicular to its film surface and has an easy-to-moderate axis in its film surface, (Y8mCa)g(F@G
e) Examples include YSmCaFeGe garnets such as i and On. The above-mentioned magnetic material can form a so-called soft magnetic film with easy magnetization perpendicular to the film surface, and the degree of soft magnetism is such that when this is applied to a magnetic recording material, the actual bit diameter to be written is determined. It is preferable that the coercive force is 11&, which is determined only by the upper bias magnetic field, and the coercive force is about 30e or less, preferably about 10e or less. Such a magnetized thin film is produced by growing a crystal such as Y8mCaFIGe-based garnet on a substrate crystal such as rare earth gallium garnet such as this soft magnetic gallium garnet (GGG) by liquid phase epitaxial method (LPFi).
It is preferable to form the same. When a bias magnetic field of a predetermined intensity is applied to the soft magnetic film 11fi easily magnetized film thus obtained, a single magnetic domain exists over the entire surface of the film, and the magnetization is oriented perpendicular to the film surface. become a state. It is obvious that the strength of the bias magnetic field to be applied varies somewhat depending on the type of the soft magnetic film surface-perpendicular easily magnetized film used, and it is between the runout magnetic field H1 and the collapse magnetic field Ho, for example, as mentioned above ( Y8mCa)1(F@Ge)g
In the case of 012LPg film, it is between 57ρ- and 730e. Bit information is written by applying a bias magnetic field to the entire surface, and by injecting a light pulse into a soft magnetic film with easy magnetization perpendicular to the surface of the film, where the bias magnetic field is a single domain with the magnetization direction perpendicular to the film surface. This can be done by forming a cylindrical magnetic domain with a predetermined diameter η whose magnetization direction is opposite to the applied bias magnetic field.

このようにして書き込まれたビット情報の消去′はラン
アウト磁界とコラプス磁界との範囲内のバイアス磁界を
印加しながら行なわれるが、そのバイアス磁界は記録の
ときおよびそれ以後でその大*iおよび方向も変える必
要なく同じ状態のままで行なうことができ極めて有利で
ある。勿論、バイアス磁界の強δを、前述した磁界の範
囲内において記録のと倉とは異なるように前述した磁界
の範囲内で変えても同様に消去できるのは轟然である・ 本発明に係る方法が適用できる磁性材料は、同一範囲内
、即ちランアウト磁界とコラプス磁界との間のバイアス
磁界を印加しながら、ビット情報の書き込み記録と、そ
の記録されたビット情報の消去とができるものである。
Erasing the bit information written in this way is performed while applying a bias magnetic field within the range of the runout magnetic field and the collapse magnetic field, but the bias magnetic field is This is extremely advantageous since it can be carried out in the same state without having to change anything. Of course, it is amazing that even if the strength δ of the bias magnetic field is changed within the above-mentioned magnetic field range to be different from the recording range within the above-mentioned magnetic field range, the same erasure can be achieved.The method according to the present invention The magnetic material to which this can be applied is one in which bit information can be written and recorded and the recorded bit information can be erased while applying a bias magnetic field within the same range, that is, between the runout magnetic field and the collapse magnetic field.

したがって、その磁性材料は、そのバイアス磁界の範囲
内において、ビット情報の書き込みができる領域、いわ
ゆる書き込み領域と、その書き込蒙れたビット情報の消
去ができる領域、いわゆる消去領域とが、重複した部分
を有するものでなければならない。この重複部分に相癲
するバイアス磁界を印加しながら、連続光を照射してビ
ット情報を消去し、その連続光を断続して新たなビット
情報を記録できるのである。
Therefore, within the range of the bias magnetic field, the magnetic material has an area where bit information can be written, the so-called write area, and an area where the written bit information can be erased, the so-called erase area. It must have a part. It is possible to erase bit information by irradiating continuous light while applying a complementary bias magnetic field to this overlapping portion, and record new bit information by cutting off the continuous light.

以上述べたように、本発明に係る光熱磁気消去および記
録方法は、磁壁抗磁力が小さい材料を使うので、比較的
小さなバイアス磁界を印加すればよく、シかも書き込み
記録ならびに消去と新たな書き込み記録のときでバイア
ス磁界を変える必要がなく操作が簡単になり極めて有利
である。まへ実質的な連続光を使用して、温度勾配を形
成し。
As described above, since the photothermal magnetic erasing and recording method according to the present invention uses a material with a small domain wall coercive force, it is only necessary to apply a relatively small bias magnetic field, and it is possible to perform write recording, erasure, and new write recording. It is extremely advantageous because there is no need to change the bias magnetic field at this time, which simplifies the operation. Use virtually continuous light to create a temperature gradient.

その温度勾配の範囲内にあるビット情報を引き込んで消
去できるので、ビット情報が部分的に一つたりすること
なく、また従来方゛法のような厳冑な信号同期が必要な
く操作に際して極めて有利であるO 以下、本発明を実施例により更に詳細番こ説明する・ II!麹例慣 例1として、厚み0.51のGd1o11,01.基板
上に液相エピタキシャル法(LPW)によって成長させ
た( Y 10M 8mg、I Cm O,N )(P
a 4.02 Ge ロ、g@ )012ガーネツトの
厚み4,6plI4の薄膜を用いた。この薄膜の飽和磁
化4πMm=142G、磁壁抗磁力Hc = 0−50
e sコラプス磁界Ho = 62.70eであった。
Since the bit information within the range of temperature gradient can be drawn in and erased, there is no need for partial loss of bit information, and there is no need for strict signal synchronization as in conventional methods, which is extremely advantageous during operation. Hereinafter, the present invention will be explained in more detail with reference to Examples. II! As a koji example convention 1, Gd1o11,01. with a thickness of 0.51. (Y 10M 8 mg, I Cm O,N) (P
A thin film of 012 garnet with a thickness of 4.6 plI4 was used. Saturation magnetization of this thin film 4πMm = 142G, domain wall coercive force Hc = 0-50
The collapse magnetic field Ho = 62.70e.

この薄膜を用いて、第1図に示すような熱磁気光記録銃
み出し装置(1)を形成した。この装置は、前述した(
Y8mC鳳)暴(Fe伽)8012ガーネツトなどの磁
性薄膜(11)を希土類ガリウムガーネットの結晶基板
(1b)に液相エピタキシャル法で成長3せ得た薄層に
、無反射コーティング層(1C)をその結晶基板の磁性
薄膜を設けた反対側にそして例えば厚み0.3#Iのア
ルミニウム蒸着膜からなる反射1@ (1d)およびそ
の外側に1例えば厚み0,5.mの二酸化ケイ素からな
る保護膜(1C)を被着させた構成になっている。この
ような構成からなる熱磁気光記録読み出し装置(1)を
、第2図に示Tように、永久磁石などのバイアス磁界発
生装置(21に、たとえば着脱自在に被着させて固定さ
せ常時バイアス磁界が印加されるように配置する。この
熱磁気光記録読み出し装置は、モータ(3)などによっ
て移動できるように構成することができる。また、その
装置の周辺には補助バイアス用コイル(4)を配置させ
て、必要に応じて、バイアス磁界を増加させることもで
きる。このような構成にした装置(1)に対して、光発
生装置(5)から発生された例えば波長48811II
lのアルゴンレーザーを光変調器(6)に導入して光パ
ルスとして取り出し、その光パルスを偏光子(7)およ
びハーフミラ−(8)を介して集光レンズ(9)によっ
て集光させることによってビットを記録させた。この場
合、入射光量Pnは15mW、光パルス幅は50Mであ
って、繰り返し2Hzおよびバイアス磁界600・の条
件で、その装置を一方向に一定速度で移動暮せてビット
間隔が約25.#FFlになるようにビットを形成させ
た。なお、この装置(1)に記録されたビット情報の読
み出しは、この装置の反射膜(1d)での偏光専れた反
射光を検光子Qlに導入し、その光を光電子増倍管αυ
に送り、その出力をオシロスコープミノで観察するよう
にし゛てもよい。な詔、透過光によって記録読み出しを
行う場合には、その読み出し装置(1)から反射膜(1
d)を除き、バイアス磁界発生装置(2)をその装置の
下部ではなく周辺部に置き、特にファラデー効果で直線
偏光された透過光によって読み出しをすればよい。
Using this thin film, a thermomagneto-optical recording gun extraction device (1) as shown in FIG. 1 was formed. This device was previously described (
A non-reflective coating layer (1C) is applied to the thin layer obtained by growing a magnetic thin film (11) such as Y8mC 8012 garnet on a rare earth gallium garnet crystal substrate (1b) by liquid phase epitaxial method. On the opposite side of the crystal substrate where the magnetic thin film was provided, there is a reflection 1@(1d) made of an aluminum vapor deposited film with a thickness of, for example, 0.3 #I, and on the outside thereof there is a reflection layer 1@ (1d) with a thickness of, for example, 0.5 #I. It has a structure in which a protective film (1C) made of silicon dioxide of m is deposited. As shown in FIG. 2, the thermomagneto-optical recording/reading device (1) having such a configuration is attached and fixed to a bias magnetic field generating device (21) such as a permanent magnet, for example, in a removable manner so as to maintain constant bias. Arranged so that a magnetic field is applied.This thermomagneto-optical recording/reading device can be configured to be movable by a motor (3), etc.In addition, an auxiliary bias coil (4) is installed around the device. If necessary, the bias magnetic field can be increased by arranging a
By introducing 1 argon laser into the optical modulator (6) and extracting it as a light pulse, the light pulse is focused by a condenser lens (9) via a polarizer (7) and a half mirror (8). The bit was recorded. In this case, the incident light amount Pn is 15 mW, the optical pulse width is 50 M, and the device can be moved at a constant speed in one direction under the conditions of a repetition rate of 2 Hz and a bias magnetic field of 600 mm, and the bit interval is approximately 25 mm. The bits were formed to become #FFl. To read the bit information recorded in this device (1), the polarized light reflected by the reflective film (1d) of this device is introduced into the analyzer Ql, and the light is passed through the photomultiplier tube αυ.
You may also send it to a computer and observe its output with an oscilloscope. When reading records using transmitted light, the reflective film (1) is connected to the readout device (1).
Except for d), the bias magnetic field generator (2) may be placed at the periphery of the device rather than at the bottom, and reading may be performed using transmitted light that is linearly polarized by the Faraday effect.

前件したように記録されたビット情報を消去するには、
入射光を、入射光量15mWの連続光として、ビット情
報を書き込んだ試料を書き込みのときとは逆方向に移動
させながら、消去Tべきビットに僅かに重畳するように
照射するとビットが消去されていることが観測された。
To erase the recorded bit information as in the previous case,
When the incident light is continuous light with an incident light intensity of 15 mW and the sample with bit information written is moved in the opposite direction to the writing direction, the bit is erased when it is irradiated so as to slightly overlap the bit to be erased. It was observed that

また、その連続光を断続させると、その場所に新たなビ
ットが形成された。
Furthermore, when the continuous light was interrupted, a new bit was formed at that location.

実施例2 実施例1で用いた試料および装置を用いて、入射光量お
よびバイアス磁界を変えて書き込みおよび消去を行なっ
た結果を第3図に示す。第3図において、曲線人は書き
込みのための臨界−−であって、この曲線の上部領域に
おいて書き込みが可能である。曲−Bは消去のための臨
界−線を示すものであって、この曲線の右領域が消去可
能領域である。したがって、本発明に係る方法が適用で
きる領域は書き込み領域と消去可能領域とが重複してい
る領域である。
Example 2 Using the sample and apparatus used in Example 1, writing and erasing were performed while changing the amount of incident light and the bias magnetic field. The results are shown in FIG. In FIG. 3, the curved line is critical for writing, and writing is possible in the upper region of this curve. Curve B shows the critical line for erasure, and the region to the right of this curve is the erasable region. Therefore, the area to which the method according to the present invention can be applied is an area where the write area and the erasable area overlap.

【図面の簡単な説明】[Brief explanation of drawings]

111図は本発明に使用できる熱磁気光記帰読み出し装
置を示す断面図、11112図はビット観測用装置のブ
ロック図、第3図は書き込み領域および消去領域を示す
グラフである。 なお図面に用いた符号醗こおいて、 (1)・・・・・・・・・・・・・・・熱磁気党記録読
み出し装置(1a)・・・・・・・・・・・・磁性薄膜
(1b)・・・申・・・・・・結晶基板(2)・・・・
・・・・・・・・・・・バイアス磁界発生装置である。 代理人 土量 勝 I  松材 修
FIG. 111 is a sectional view showing a thermomagnetic optical recursive readout device that can be used in the present invention, FIG. 11112 is a block diagram of a bit observation device, and FIG. 3 is a graph showing write areas and erase areas. In addition, considering the symbols used in the drawings, (1)・・・・・・・・・・・・Thermomagnetic record reading device (1a)・・・・・・・・・・・・Magnetic thin film (1b)...Crystal substrate (2)...
......It is a bias magnetic field generator. Agent Katsu I Doyo Osamu Matsuzai

Claims (1)

【特許請求の範囲】[Claims] 磁壁抗磁力が印加するバイアス磁界よりも充分に小さな
磁性材料からなる磁性薄膜に、印加しているバイアス磁
界の方向とは逆向きの磁化方向を有する円筒磁区として
記録されたビット情報を、そのバイアス磁界の方向を変
えずにかつそのバイアス磁界の大きさをランアウト磁界
とコラプス磁界との間にあるようにして実質的な連続光
による光入射に伴う熱磁化効果によってビット情報を消
去すると同時に、その実質的な連続光を断続させること
番こよって新たな円筒磁区であって、その磁化方向がバ
イアス磁界とは逆向きのものを形成させてビット情報を
記録することを特徴とする光熱磁気消去および記録方法
Bit information recorded as a cylindrical magnetic domain with a magnetization direction opposite to the direction of the applied bias magnetic field in a magnetic thin film made of a magnetic material whose domain wall coercive force is sufficiently smaller than the applied bias magnetic field is By keeping the direction of the magnetic field unchanged and setting the magnitude of the bias magnetic field between the runout magnetic field and the collapse magnetic field, the bit information can be erased by the thermal magnetization effect accompanying light incidence by substantially continuous light. Photothermal magnetic erasure and recording of bit information by discontinuing substantially continuous light and forming new cylindrical magnetic domains whose magnetization direction is opposite to the bias magnetic field. Recording method.
JP11251581A 1981-07-18 1981-07-18 Optical thermomagnetic erasing and recording method Pending JPS5814304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11251581A JPS5814304A (en) 1981-07-18 1981-07-18 Optical thermomagnetic erasing and recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11251581A JPS5814304A (en) 1981-07-18 1981-07-18 Optical thermomagnetic erasing and recording method

Publications (1)

Publication Number Publication Date
JPS5814304A true JPS5814304A (en) 1983-01-27

Family

ID=14588572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11251581A Pending JPS5814304A (en) 1981-07-18 1981-07-18 Optical thermomagnetic erasing and recording method

Country Status (1)

Country Link
JP (1) JPS5814304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686661A (en) * 1983-06-23 1987-08-11 Canon Kabushiki Kaisha Information processing apparatus used in a magneto-optical information recording-reproducing apparatus and having improved erasing capability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686661A (en) * 1983-06-23 1987-08-11 Canon Kabushiki Kaisha Information processing apparatus used in a magneto-optical information recording-reproducing apparatus and having improved erasing capability

Similar Documents

Publication Publication Date Title
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
EP0315415A2 (en) Overwriting information in magneto-optical memory
EP0061892B1 (en) Thermomagnetic recording methods
JPH01251357A (en) Direct writing type magnetooptical system for strip erasion and slender magnetic domain recording and directly writing method and apparatus for digital data recorded on magnetooptical recording medium containing single head directly writing type magnetooptical system
JPS6048806B2 (en) Thermomagnetic recording method
JPS5814304A (en) Optical thermomagnetic erasing and recording method
JPH0721892B2 (en) Magneto-optical recording method
JPH0551975B2 (en)
JPH0440761B2 (en)
JPS5814308A (en) Optical thermomagnetic erasing method
Kryder et al. Direct overwrite in magneto-optical recording technology
WO1990001769A1 (en) Overwrite type magnetooptical recording apparatus
JPH03266243A (en) Magneto-optical recording method
JP2604700B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
Kryder et al. Improved methods of direct overwrite in magneto-optical recording media
JPS5816276B2 (en) Hikarijikikikirokuhoushiki
JPH05205332A (en) Optical data storage medium and manufacture thereof
JP2591729B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPS5814307A (en) Optical thermomagnetic erasing method
JP3398766B2 (en) Magneto-optical recording method
US5528564A (en) Direct overwrite magneto-optic system for strip erasing and recording elongated domains
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH0231356A (en) Information recording and reproducing device
JP3458234B2 (en) Magneto-optical recording method
JPS63316344A (en) Magneto-optical recording system