JPS5814291Y2 - Thermal response valve device - Google Patents

Thermal response valve device

Info

Publication number
JPS5814291Y2
JPS5814291Y2 JP12029678U JP12029678U JPS5814291Y2 JP S5814291 Y2 JPS5814291 Y2 JP S5814291Y2 JP 12029678 U JP12029678 U JP 12029678U JP 12029678 U JP12029678 U JP 12029678U JP S5814291 Y2 JPS5814291 Y2 JP S5814291Y2
Authority
JP
Japan
Prior art keywords
temperature
valve
passage
main body
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12029678U
Other languages
Japanese (ja)
Other versions
JPS5536772U (en
Inventor
稲田雅己
里元篤
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to JP12029678U priority Critical patent/JPS5814291Y2/en
Publication of JPS5536772U publication Critical patent/JPS5536772U/ja
Application granted granted Critical
Publication of JPS5814291Y2 publication Critical patent/JPS5814291Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 本考案は、熱応動型バルブ装置に係り、殊に自動車用エ
ンジンの制御の一つである例えば排気ガス浄化システム
に使用され、温度変化に応答して流体信号を匍脚する熱
応動型バルブ装置に関する。
[Detailed Description of the Invention] The present invention relates to a thermally responsive valve device, which is particularly used in an exhaust gas purification system, which is one of the controls for automobile engines, and which responds to temperature changes by generating fluid signals. The present invention relates to a thermally responsive valve device.

この種の熱応動型バルブ装置としては、その装置本体と
なるボディな熱伝導性に優れた部材で形成し、とのボデ
ィ内に温度変化に応じて変位作動する熱応動部材である
例えばバイメタルディスクの変位作動により弁作動をす
る弁部材を配設し、ボディの外周にねじを形成し、例え
ばエンジン冷却用のウォータジャケラ1?エンジンのイ
ンテークマニホールドのエンジンルームに面した外側に
穿設したネジ穴に捻子込んで配設するもの〔例えば特開
昭53−39333号公報、公開1978(昭和53)
年4月6日、に開示された如き装置〕が知られている。
This type of thermally responsive valve device has a body that is made of a material with excellent thermal conductivity, and a thermally responsive member, such as a bimetal disc, that is displaceable in response to temperature changes within the body. A valve member is disposed that operates the valve by the displacement operation of the body, and a thread is formed on the outer periphery of the body, for example, a water jacket 1 for engine cooling. A device that is screwed into a screw hole drilled on the outside of the engine intake manifold facing the engine room [for example, Japanese Patent Application Laid-Open No. 53-39333, Publication No. 1978 (Showa 53)
A device such as the one disclosed on April 6, 2007] is known.

熟年、ウォータジャケットやインテークマニホールドに
ネジ穴或は熱応動型バルブ装置を捻子込む際の工具が使
用出来るだけのスペースを確保する必要があるが、エン
ジン本体の周囲には各種の耐層機器が配置されておりス
ペースの確保は容易でなく、特にエンジンの制御の多様
化から特性(例えば作動温度)が異る熱応動型バルブ装
置を複数個取付るような場合には、スペースの確保は更
に困難に7ヨるという問題が生じている。
At a mature age, it is necessary to secure enough space to use the screw holes in the water jacket and intake manifold or tools for screwing in the heat-responsive valve device, but various layer-resistant devices are placed around the engine body. It is difficult to secure space, especially when multiple thermally responsive valve devices with different characteristics (e.g. operating temperature) are installed due to the diversification of engine control, and it is even more difficult to secure space. The problem has arisen that it is 7 times too long.

このような点を解決する為の方策として、金層製ブロッ
クに温度検出対象流体の通路を形成するとともに、この
通路に向けてネジ穴を穿設し、このネジ穴に前述の如き
熱応動型バルブ装置を捻子込んで一つの組立体とし、温
度検出対象流体である例えば冷却水のエンジン本体から
離れた所に配設さた通路の途中(例えばヒータ用のウォ
ータバイパス通路の途中)に金層製ブロックの通路を連
結して介装することが採用されることがしばしばある。
As a measure to solve this problem, a passage for the fluid to be temperature detected is formed in the block made of gold layer, a screw hole is drilled toward this passage, and a heat-responsive type as described above is installed in this screw hole. The valve device is twisted into one assembly, and a gold layer is placed in the middle of a passage (for example, in the middle of a water bypass passage for a heater) located away from the engine body, where the temperature of the fluid whose temperature is to be detected is, for example, cooling water. It is often adopted to connect and interpose the passages of the blocks.

熟年、このようなものでも金属製ブロックに熱応動型バ
ルブ装置取付のネジ穴を穿設せねばならないとともに熱
応動型バルブ装置を捻子込む煩しさがあり、又、組立体
としては金層ブロックを配しなげればならないことから
所定機能を有する装置の割に大型化し重量が増大して好
ましくない、尚、複数の熱応動型バルブ装置を金層製ブ
ロックに取付るようにした場合ネジ穴とネジ穴との間に
所定の間隔を保つ必要が生じ且つ捻子込用工具が使用で
きる間隔とせねばならず、更に大型化せざるを得ない。
Even with such a device, it is necessary to drill a screw hole for installing a heat-responsive valve device in the metal block, and it is a hassle to screw the heat-responsive valve device, and as an assembly, it is difficult to use a gold-layer block. This is undesirable as it increases the size and weight of the device, which has the specified function.In addition, when multiple heat-responsive valve devices are installed on a gold-layer block, screw holes and It is necessary to maintain a predetermined distance between the screw hole and the screw hole, and the distance must be such that a screw-in tool can be used, which necessitates further increase in size.

この問題を解決するために装置本体を樹脂材にて形成し
、この装置本体内に冷却水や吸入空気等の温度検出対象
流体の流れる通路を設けて、この通路に隣接して多数の
穴を設け、この穴に熱応動部材、弁ケーシングを順次挿
入して、感温弁を内蔵させ全体を小型軽量化することが
考えられる。
In order to solve this problem, the main body of the device is made of a resin material, a passage is provided in the main body of the device through which the fluid to be temperature detected, such as cooling water or intake air, flows, and a large number of holes are provided adjacent to this passage. It is conceivable to provide a temperature-sensitive valve and to sequentially insert a thermally responsive member and a valve casing into this hole, thereby making the whole body smaller and lighter.

ところで、このために装置本体を樹脂材にて形成し本体
内に通路を形成した場合、材料強度の点から通路と熱応
動部材との隔壁をあまり薄くすることができないために
、この間壁によって熱伝導性を阻害する。
By the way, if the main body of the device is made of a resin material and a passage is formed in the main body for this purpose, the partition wall between the passage and the thermally responsive member cannot be made very thin due to material strength. inhibits conductivity.

その結果例えば温度検出対象流体の温度が変化して予め
設定した弁作動2行わせる温度となったにもかかわらす
熱応動部材の部分でその温度となっておらず熱応動部材
は作動せず弁作動が行われないという熱応動型バルブ装
置の熱応動不良を来たす。
As a result, for example, even though the temperature of the fluid to be detected changes and reaches a preset temperature that causes valve operation 2 to be performed, the thermally responsive member does not operate at that temperature and the valve does not operate. This causes a thermal response failure of the thermally responsive valve device in which the valve device does not operate.

本考案は、温度検出対象流体の通路と熱応動部材とを可
及的に近附けることができるようにすることをその技術
的課題とするものである。
The technical problem of the present invention is to make it possible to bring the passage of the fluid whose temperature is to be detected and the thermally responsive member as close as possible.

このために講じた本考案の技術的手段は、樹脂材より成
る本体に、樹脂材に比し強靭で且つ熱伝導性の良い金属
性の伝熱部材を埋設し、上記本体内にこの伝熱部材に近
接して多数の穴を形成し、紋穴に感温弁を内蔵させると
ともに、伝熱部材内に温度検出対象流体の通路を形成す
ることである。
The technical means of the present invention taken for this purpose is to embed a metallic heat transfer member, which is stronger and has better thermal conductivity than the resin material, in a main body made of a resin material, and to conduct heat transfer within the main body. A number of holes are formed close to the member, a temperature-sensitive valve is built into the hole, and a passage for a fluid whose temperature is to be detected is formed within the heat transfer member.

この手段は次のように作用する。This means works as follows.

すなわち、伝熱部材自体が高い強度を有するので上記穴
の底と伝熱部材の間に形成される樹脂の隔壁を可及的に
薄くすることができる。
That is, since the heat transfer member itself has high strength, the resin partition formed between the bottom of the hole and the heat transfer member can be made as thin as possible.

従って、樹脂材より成る本体内に収容した感温弁の熱応
動部材を伝熱部材に可及的に接近させることができ、伝
熱部材自体が伝熱性が高いので、伝熱部材内の流体の温
度変化に対する感温弁の応答性は良い。
Therefore, the thermally responsive member of the temperature-sensitive valve housed in the body made of resin can be brought as close as possible to the heat transfer member, and since the heat transfer member itself has high heat conductivity, the fluid inside the heat transfer member The responsiveness of the temperature-sensitive valve to temperature changes is good.

又、本体を形成する樹脂材に比し強靭な伝熱部材が樹脂
材より戒る本体に一体的に埋設されているため本体を補
強する役割を果たすことから樹脂そのものを格別機械的
強度の高いものを用いる必要がない。
In addition, since the heat transfer member, which is stronger than the resin material that forms the main body, is embedded integrally in the main body, it plays the role of reinforcing the main body, so the resin itself has an exceptionally high mechanical strength. There is no need to use anything.

以下、本考案に従った一実施例について、添付図面に基
づいて説明する。
An embodiment according to the present invention will be described below with reference to the accompanying drawings.

図面に示される熱応動型バルブ装置10に於て、樹脂材
より形成された本体であるボディ11内に弁ケーシング
である第1ケーシング12と第2ケーシング13がゴム
から成るO−リング14,15を介して気密的に結合さ
れ、更に第1人力ポート16と第1出力ポート17及び
第2人力ポート18と第2出力ポート19を有するカバ
一部材20が、ネジ21.22によりボディ11に結合
されている。
In a thermally responsive valve device 10 shown in the drawings, a first casing 12 and a second casing 13, which are valve casings, are provided in a body 11, which is a main body made of a resin material, and O-rings 14, 15 made of rubber. A cover member 20 is coupled to the body 11 by screws 21.22 and further has a first manual port 16, a first output port 17, a second manual port 18, and a second output port 19. has been done.

ケーシング12,13とカバ一部材20との間に配設さ
れた0 −IJソング3,24は、シール性を保持する
ためのものである。
The 0-IJ songs 3, 24 disposed between the casings 12, 13 and the cover member 20 are for maintaining sealing performance.

第1入カポート16は負圧源例えばエンジンのインテー
クマニホールド(図示せず)に連通し、第1出力ポート
17は点火時期制御システムのバキュームアドバンサ(
図示せず)に連通している。
The first input port 16 communicates with a negative pressure source, such as an engine intake manifold (not shown), and the first output port 17 communicates with a vacuum advancer (not shown) of the ignition timing control system.
(not shown).

一方、第2人力ポート18は大気源例えばエアクリーナ
(図示せず)に連通し、第2出力ポート19は排気ガス
再循環システムのEGRバルフ(図示せず)に連通して
いる。
Meanwhile, the second manpower port 18 communicates with an atmospheric source, such as an air cleaner (not shown), and the second output port 19 communicates with an EGR valve (not shown) of an exhaust gas recirculation system.

第1ケーシング12には第1通路25が形成され、該通
路25は第1人力ポート16に常時連通し、またケーシ
ング12内には第1作動室26が形成され、該作動室2
6は第1出力ポート17に常時連通している。
A first passage 25 is formed in the first casing 12, and the passage 25 is in continuous communication with the first manual port 16. A first working chamber 26 is formed in the casing 12, and the working chamber 2
6 is in constant communication with the first output port 17.

作動室26に配設された第1バルブ部材27は第1通路
25と第1作動室26との連通を開閉制御するものであ
り、通路25中に形成された第1バルブシート28に当
接可能であり、且つ常時スプリング29により図示下方
に付勢されている。
A first valve member 27 disposed in the working chamber 26 controls opening and closing of communication between the first passage 25 and the first working chamber 26, and comes into contact with a first valve seat 28 formed in the passage 25. This is possible, and is always urged downward in the drawing by the spring 29.

ケーシング12の図示下端の型112aにその外周が支
持された第1バイメタルデイスク30は皿状を成してお
り、後述の冷却水温等を感知し第1設定温度において反
転作動(スナップアクション)し図示の位置に保持ささ
るものであり、スプリング31により図示上方に付勢、
支持されている。
The first bimetal disk 30, whose outer periphery is supported by a mold 112a at the lower end of the casing 12 in the figure, has a plate shape, and senses the cooling water temperature, etc., which will be described later, and performs a reversal operation (snap action) at a first set temperature, as shown in the figure. It is held in the position shown in FIG.
Supported.

従って、バイメタルディスク30は、ケーシング12に
形成されたガイド部12bの軸穴を移動可能に配設され
たロッド32を介して、第1バルブ部材27をその閉位
置に付勢・支持している。
Therefore, the bimetal disc 30 urges and supports the first valve member 27 in its closed position via the rod 32 which is movably disposed in the shaft hole of the guide portion 12b formed in the casing 12. .

而して、第1バイメタルデイスク30は、温度変化に応
じて変位作動する熱応動部材を呈し、又、第1バルブ部
材27及び第1バルブシート28を含む部分が弁部材を
呈しており、これらが感温弁を構成している。
The first bimetal disk 30 is a thermally responsive member that is displaced in response to temperature changes, and a portion including the first valve member 27 and the first valve seat 28 is a valve member. constitutes a temperature-sensitive valve.

一方、第2ケーシング13内には第2通路33が形成さ
れ、該通路33は第2人力ポート18に常時連通し、ま
たケーシング13内には第2作動室34が形成され、該
作動室34は第2出力ポート19に常時連通している。
On the other hand, a second passage 33 is formed in the second casing 13, and the passage 33 is always in communication with the second manual port 18, and a second working chamber 34 is formed in the casing 13, and the working chamber 34 is in constant communication with the second output port 19.

作動室34に配設された第2バルブ部材35は通路33
と作動室34との連通を開閉制御するものであり、通路
33中に形成された第2バルブシート36に当接可能で
あり、且つ常時スプリング37により常時図示下方に付
勢されている。
The second valve member 35 disposed in the working chamber 34 is connected to the passage 33
It controls opening and closing of communication between the valve and the working chamber 34, can come into contact with a second valve seat 36 formed in the passage 33, and is always urged downward in the drawing by a spring 37.

ケーシング13下部の肩部13aにその外周が支持され
た第2バイメタルデイスク38は図示の様に皿状を成し
ており、後述の冷却水温等を感知し第2設定に於て反動
作動(スナップアクション)するものであり、スプリン
グ39により図示上方に付勢・支持されている。
The second bimetal disk 38, whose outer periphery is supported by the shoulder 13a at the bottom of the casing 13, has a plate shape as shown in the figure, and senses the cooling water temperature, etc., which will be described later, and performs a reaction movement (snap) in the second setting. action), and is urged and supported upward in the figure by a spring 39.

従ってバイメタルディスク38は、ケーシング13に形
成されたガイド部13bの軸穴を移動可能に配設された
ロッド40を介して、第2バルブ部材35をその閉位置
に付勢・支持している。
Therefore, the bimetal disc 38 urges and supports the second valve member 35 in its closed position via the rod 40 that is movably disposed in the shaft hole of the guide portion 13b formed in the casing 13.

而して、第2バイメタルデイスク38は、温度変化に応
じて変位作動する熱応動部材を呈し、又、第2バルブ部
材35及び第2バルブシート36を含む部分が弁部材を
呈しており、これらが感温弁を構成している。
The second bimetal disk 38 is a thermally responsive member that is displaced in response to temperature changes, and a portion including the second valve member 35 and the second valve seat 36 is a valve member. constitutes a temperature-sensitive valve.

さて、装置本体となる前記ボディ11は樹脂材から戒り
、該ボディ11にはボディ11を形成する樹脂材に比し
強靭で且つ熱伝導性の良い伝熱部材である金属部材、例
えば黄銅あるいは、アルミニウムを含む合金で形成した
金属パイプ41が埋設して一体的に形成さている。
Now, the body 11, which is the main body of the device, is made of a resin material, and the body 11 is made of a metal material that is a heat transfer material that is stronger and has better thermal conductivity than the resin material that forms the body 11, such as brass or other metal material. , a metal pipe 41 made of an alloy containing aluminum is embedded and integrally formed.

該金属パイプ41内には、エンジンの冷却水や吸入空気
等の温度検出対象流体の流れる通路42が形成され、該
通路420両端は例えばゴムホースにより、ヒーター用
のウォータバイパス通路途中に取付けられている。
A passage 42 is formed in the metal pipe 41 through which a fluid whose temperature is to be detected, such as engine cooling water or intake air, flows, and both ends of the passage 420 are attached, for example, by rubber hoses, in the middle of a water bypass passage for a heater. .

また、ボディ11を形成する樹脂材もまた熱伝導性に優
れたものが選ばれ、通路42内を流れる冷却水等の温度
変化を前述のバイメタルディスク30.38に伝達可能
になっている。
Further, the resin material forming the body 11 is also selected to have excellent thermal conductivity, so that changes in temperature of the cooling water or the like flowing in the passage 42 can be transmitted to the bimetal discs 30 and 38 described above.

以上の構成に於て、次にその作用について説明する。Next, the operation of the above configuration will be explained.

エンジンの冷吸水が通路42を流れるものとすると、先
ず、冷却水温が共に第1及び第2設定温度以下の場合に
は、第1バイメタルデイスク30は図示から反転した位
置に保持さるので、第1バルブ部材27はその開位置に
保持される。
Assuming that cold water intake from the engine flows through the passage 42, first, when both the cooling water temperatures are lower than the first and second set temperatures, the first bimetal disc 30 is held in a position reversed from that shown in the figure. Valve member 27 is held in its open position.

力、第2バイメタルデイスク38は図示の位置に保持さ
れるので、第2バルブ部材35は同様にその開位置に保
持される。
Since the second bimetallic disc 38 is held in the position shown, the second valve member 35 is likewise held in its open position.

従って、負圧が第1出力ポート17かもバキュームアト
バイ叶rへ、また大気が第2出力ポート19からEGR
バルフヘ夫々供給される。
Therefore, negative pressure flows from the first output port 17 to the vacuum pump, and atmospheric air flows from the second output port 19 to the EGR.
It is supplied to Balfu respectively.

次に、冷却水温が上昇し第1設定温度以上になると、第
1バイメタルデイスク30は反転して図示の位置に保持
されるので、第1バルブ部材27は図示の様にバルブシ
ート28に当接し第1通路25が閉じられる。
Next, when the cooling water temperature rises and becomes equal to or higher than the first set temperature, the first bimetal disk 30 is reversed and held at the position shown in the figure, so that the first valve member 27 comes into contact with the valve seat 28 as shown in the figure. The first passage 25 is closed.

従って、バキュームアトバンサへの負圧の供給が遮断さ
れる。
Therefore, the supply of negative pressure to the vacuum attenuator is cut off.

更に、冷却水温が更に上昇し第2設定温度になると、第
2バイメタルデイスク38は前述の図示の状態から反転
した位置に保持されるので、第2バルブ部材35は第2
バルブシート36に当接し、第2通路33が閉じる。
Furthermore, when the cooling water temperature further rises to the second set temperature, the second bimetal disc 38 is held in the reversed position from the previously illustrated state, so the second valve member 35 is moved to the second set temperature.
It comes into contact with the valve seat 36 and the second passage 33 is closed.

従って、EGRバルブへの大気の供給が遮断される。Therefore, the supply of atmospheric air to the EGR valve is cut off.

以上、詳述した様に本考案に従った温度感知バルブ装置
に於ては、装置本体となるボディ11を形成する樹脂材
にパイプ41等の金属部材を埋設して一体的に形成し、
該パイプ41内に冷却水等の温度検出対象流体の流れる
通路42を設けた構造になっているので、エンジンの冷
却回路の例えばヒーター用バイパス通路途中等に容易に
取付けることができる。
As described in detail above, in the temperature sensing valve device according to the present invention, metal members such as the pipe 41 are embedded in the resin material forming the body 11, which is the main body of the device, and are integrally formed.
Since the pipe 41 has a structure in which a passage 42 is provided in which a fluid whose temperature is to be detected, such as cooling water, flows, it can be easily installed, for example, in the middle of a heater bypass passage in an engine cooling circuit.

又、熱応動により変換された信号により他の制御部材を
作用させる場合、例えばエンジンの点火時期の調整を司
るバキュームアドバンサを作用させる場合、これの近く
に本考案に従った装置を配置し温度検出対象流体を導く
ようにすれば信号回路の長きを短くでき、応答性を向上
することができ、更に、樹脂材から成る本体に直接通路
を設けるようなものに比して、温度検出対象流体に対す
る対熱、対圧性を大幅に向上することができ、加えて、
感温部材を伝熱部材に可及的に接近させることができ、
本体を金属で形成したものと同等の熱応答性を確保した
上で本体の生産性を大巾に向上でき、加えて又、作動温
度或は制御対象の異る熱応動部材及び弁部材の組立体を
同一の本体内に複数配設することができ装置全体をコン
パクトにできることから、コスト及び生産性の面でメリ
ットを保つことが出来るので、その実用上の効果は大で
ある。
In addition, when operating other control members using signals converted by thermal response, for example, when operating a vacuum advancer that controls the adjustment of the ignition timing of the engine, the device according to the present invention should be placed near this to control the temperature. By guiding the temperature of the fluid to be detected, the length of the signal circuit can be shortened and the response can be improved. It can significantly improve heat and pressure resistance, and in addition,
The temperature sensing member can be brought as close as possible to the heat transfer member,
It is possible to greatly improve the productivity of the main body while ensuring the same thermal response as that of a main body made of metal. Since a plurality of three-dimensional bodies can be arranged in the same main body and the entire device can be made compact, advantages can be maintained in terms of cost and productivity, so the practical effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に従った熱応動型バルブ装置の一実施例
を示す断面図、第2図は第1図に於ける装置の平面図、
第3図は第1図に於ける装置のA−A断面図である。 符号の説明、図中、11は樹脂材より成る本体、41は
伝熱部材、30.38は熱応動部材、27゜28.35
.36は弁部材、42は通路、10は熱応動型バルブ装
置を夫々しめす。
FIG. 1 is a sectional view showing an embodiment of a thermally responsive valve device according to the present invention, FIG. 2 is a plan view of the device in FIG. 1,
FIG. 3 is a sectional view taken along the line AA of the device in FIG. Explanation of symbols: In the figure, 11 is a main body made of a resin material, 41 is a heat transfer member, 30.38 is a thermally responsive member, 27° 28.35
.. 36 is a valve member, 42 is a passage, and 10 is a thermally responsive valve device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 樹脂材より成る本体、該本体にこの本体を形成する樹脂
材に比し強靭で且つ熱伝導性の良い金属製の伝熱部材を
埋設し、前記本体内に前記伝熱部材に近接して多数の穴
を形威し、紋穴に感温弁を内蔵させるとともに、前記伝
熱部材内に温度検出対象流体の通路を形成して成る熱応
動型バルブ装置。
A main body made of a resin material, a metal heat transfer member that is stronger and has better thermal conductivity than the resin material forming the main body is embedded in the main body, and a large number of metal heat transfer members are embedded in the main body in proximity to the heat transfer member. A thermally-responsive valve device comprising a hole in the shape of a hole, a temperature-sensitive valve built into the hole, and a passage for a fluid whose temperature is to be detected in the heat transfer member.
JP12029678U 1978-08-31 1978-08-31 Thermal response valve device Expired JPS5814291Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12029678U JPS5814291Y2 (en) 1978-08-31 1978-08-31 Thermal response valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12029678U JPS5814291Y2 (en) 1978-08-31 1978-08-31 Thermal response valve device

Publications (2)

Publication Number Publication Date
JPS5536772U JPS5536772U (en) 1980-03-08
JPS5814291Y2 true JPS5814291Y2 (en) 1983-03-22

Family

ID=29076370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12029678U Expired JPS5814291Y2 (en) 1978-08-31 1978-08-31 Thermal response valve device

Country Status (1)

Country Link
JP (1) JPS5814291Y2 (en)

Also Published As

Publication number Publication date
JPS5536772U (en) 1980-03-08

Similar Documents

Publication Publication Date Title
CA2234124C (en) Thermostat for an automotive engine cooling system
ES8601389A1 (en) Fail-safe oil flow control apparatus.
CA2369239A1 (en) Thermostat device
AU748592B2 (en) Cooling system for an automotive engine
JPS5814291Y2 (en) Thermal response valve device
CN108167516B (en) A kind of constant-temperature water valve
GB1434529A (en) Internal combustion engine air intak control systems
ES8205988A1 (en) Control valve for fluid-operated clutch
Zhao et al. A study of warm-up processes in si engine exhaust systems
JPS6229730Y2 (en)
US4711393A (en) Water temperature control device
CA1080060A (en) Three port thermal vacuum valve with electrical switch
US4126109A (en) Temperature responsive device for internal combustion engine
JPH0229230Y2 (en)
CN2408320Y (en) Self control thermostat valve
JP2551491Y2 (en) Water temperature control structure for automotive engine
JP2002097957A (en) Cooling water control valve for engine
SE8206925D0 (en) DEVICE FOR THE CONTROL OF THE TEMPERATURE OF THE BUCKING AIR OF A COMBUSTION ENGINE
JPS6035825Y2 (en) temperature sensitive valve
WO2001001053A1 (en) Electro-thermal expansion valve system
JPS6021272B2 (en) temperature sensing valve device
JPS6332334Y2 (en)
JPH0329661Y2 (en)
JPH0587028A (en) First idling control device
JPS6311305Y2 (en)