JPS58141559A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58141559A
JPS58141559A JP2501482A JP2501482A JPS58141559A JP S58141559 A JPS58141559 A JP S58141559A JP 2501482 A JP2501482 A JP 2501482A JP 2501482 A JP2501482 A JP 2501482A JP S58141559 A JPS58141559 A JP S58141559A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
manufacturing
semiconductor
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2501482A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwai
洋 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2501482A priority Critical patent/JPS58141559A/en
Publication of JPS58141559A publication Critical patent/JPS58141559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To interrupt a conductor pattern positively, and to operate a redundant circuit by implanting the ions of insulating impurity atoms or impurity atoms giving conductivity into a substrate region or a semiconductor layer from the recessed section of a protective film. CONSTITUTION:A thin SiO2 film 12 is formed onto a p type silicon semiconductor substrate 11 through thermal oxidation treatment. A first resist pattern 13 in which a section corresponding to a diffusion-layer forming prearranged section is bored is formed. Phosphorus ions are implanted into the substrate 11 under predetermined conditions while using the resist pattern 13 as a mask, and n<+> type diffusion layers (conductor patterns) 141, 142 are formed. The resist pattern 13 is removed, and the protective film 15 is formed onto the SiO2 film 12. A second resist pattern is shaped onto the protective film 15, and the protective film 15 and the SiO2 film 12 are removed through etching in succession. A thin oxide film 16 is formed onto the surface being exposed of the substrate 11 through thermal oxidation treatment.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a method for manufacturing a semiconductor device.

〔発明の技術重荷は〕[The technical burden of invention is]

周知の如く、半導体装置とくに集積回路は、ここ23年
急激に集積度を上列しつつある。
As is well known, the degree of integration of semiconductor devices, especially integrated circuits, has been rapidly increasing over the past 23 years.

ぞして、かかる高集積化は、大部分が素子の微細化によ
っているため、微細加工技術が集積度を決定すると言っ
ても過言ではない。一方、加工の微細化につれ、て加工
不良あるいは欠陥の密度は著しく増加し、歩留の低下を
φ、たらす。このようなことから、半導体装置の製造時
に予め、主回路の他に該主回路を救肴する予備メモリを
形成し、良否試験時に不良ピッドが発見されたとき、冗
長回路を用いて予備メモリに変換するという方式が採用
されている。なお、この仝1す1は、半導体装置の所定
位置に何らかのフ」−−ズを組み込み、このフユーズを
切断又は接続して冗長回路を動作させることにより行う
Since such high integration is largely due to the miniaturization of elements, it is no exaggeration to say that microfabrication technology determines the degree of integration. On the other hand, as processing becomes finer, the density of processing defects or defects increases significantly, resulting in a decrease in yield. For this reason, when manufacturing a semiconductor device, a spare memory is formed in addition to the main circuit in advance to save the main circuit, and when a defective pin is discovered during a pass/fail test, a redundant circuit is used to store the spare memory. A method of converting is used. Note that this step 1 is performed by incorporating some type of fuse into a predetermined position of the semiconductor device, and operating a redundant circuit by cutting or connecting this fuse.

前述した予備メモリを備えた半導体装置は、従来第1図
(al 、 (blに示す如く製造されている。
The semiconductor device equipped with the above-mentioned spare memory is conventionally manufactured as shown in FIGS.

まず、例えばn型の半導体基板1上に酸化膜2を形成す
る。つづい“C1この酸化膜2上にアンドープ多結晶シ
リコン層(図示せず)を形成する。次に、このシリコン
層をパターンニングしてレーザビーム照射予定部が幅狭
のシリコンパターンを形成する。この後、前記シリコン
パターン上にレジスト膜を塗布し、写真蝕刻法により、
低抵抗の拡散領域形成予定部が開孔したレジストパター
ン3を形成する。次いで、このレジストパターン3をマ
スクとしてn型不純物例えばリンをイオン注入し、一方
が図示しない予備メモリに接続する低抵抗のnl−型拡
散領域4I。
First, an oxide film 2 is formed on an n-type semiconductor substrate 1, for example. Continuing with "C1, an undoped polycrystalline silicon layer (not shown) is formed on this oxide film 2. Next, this silicon layer is patterned to form a silicon pattern in which the area to be irradiated with the laser beam is narrow. After that, a resist film is applied on the silicon pattern, and photolithography is performed to
A resist pattern 3 is formed in which a portion where a low resistance diffusion region is to be formed is opened. Next, using this resist pattern 3 as a mask, an n-type impurity such as phosphorus is ion-implanted into a low-resistance nl-type diffusion region 4I, one of which is connected to a spare memory (not shown).

42を形成する。この際、イオン注入されないレジスト
パターン3■・のシリコンパターン部分は、109Q以
上の1ntrinsic poly Si層(I層)5
となる。このような半導体装置において主回路が正常な
動作をするときは、n 型拡散領域’1+’lを電気的
に分離した状態で使用する。
form 42. At this time, the silicon pattern portion of the resist pattern 3* which is not ion-implanted is a 1ntrinsic poly Si layer (I layer) 5 of 109Q or more.
becomes. In such a semiconductor device, when the main circuit operates normally, the n-type diffusion regions '1+'l are used in an electrically isolated state.

一方、不良を確認したときは、レジストパターン3を除
去後、パルスレーザをその不良箇所番こ十 対応するn 型拡散領域4.,4.間のI r@ 5に
照射して該1層5を低抵抗(約103Z))の導体領域
6とし、n+型拡散領域4..4.を短絡することによ
り冗長回路を作動させて半導体装置の不良を救済する。
On the other hand, when a defect is confirmed, after removing the resist pattern 3, a pulsed laser is applied to the n-type diffusion region 4. ,4. The layer 5 is made into a low resistance (approximately 103Z) conductor region 6 by irradiating the I r@ 5 between the n+ type diffusion regions 4. .. 4. By short-circuiting, a redundant circuit is activated and a defective semiconductor device is relieved.

なお、このように高抵抗の領域(1層)を低抵抗の領域
に変化することにより冗長回路を作動させる方法は、□
sumaMinato  et  of   ”  H
凰gh  CMO84K  5tatic  RAM 
 ”I 8SCCDigest of ’l’echn
ical paper8 、 p 14−15Feb、
1981より公知である。
Note that the method of operating a redundant circuit by changing a high resistance region (layer 1) to a low resistance region in this way is as follows.
sumaMinato et of”H
凰gh CMO84K 5tatic RAM
”I 8SCCDigest of 'l'echn
ical paper8, p 14-15Feb,
It is known since 1981.

〔背g社術の問題点〕[Problems with back gshajutsu]

しかしながら、前述した方法では1/−ザにより高温度
で局部的な熱処理を行うため、基板への欠陥発生の要因
となる。また、前述した方法は、アンドープ多結晶シリ
コン層を材料とする十 低抵抗のn 型拡散領域41+’2間の同材料からなる
高抵抗(1099以上)の1層5に、パルスレーザを照
身1し、低抵抗(約1030)の領域に変化することに
よってn+型拡散領域4□ 。
However, in the above-described method, localized heat treatment is performed at high temperature using a 1/- laser, which may cause defects in the substrate. In addition, in the method described above, a pulsed laser beam is applied to one layer 5 of high resistance (1099 or more) made of the same material between the n-type diffusion regions 41+'2 of ten low resistance made of an undoped polycrystalline silicon layer. 1 and the n+ type diffusion region 4□ by changing to a region of low resistance (approximately 1030Ω).

42の短絡を行う方式であるため、通常の熱処理工程で
容易に短絡が生じないように予め1層5の長さを一定の
間隔に維持しなければならず、横方向の集積度が低下す
るという問題があった。
Since this is a method in which 42 short circuits are performed, the length of each layer 5 must be maintained at a constant interval in advance so that short circuits do not easily occur during the normal heat treatment process, which reduces the degree of lateral integration. There was a problem.

一方、1層5の長さが長すぎると、上記短絡時に照射す
るパルスレーザの加速電圧をより太きくしなければなら
ないため、周辺の素子に熱的悪影響を及ぼしたり、ある
いは短絡が不十分で冗長回路が作動しないなどの欠点が
あった。
On the other hand, if the length of the first layer 5 is too long, the acceleration voltage of the pulsed laser irradiated at the time of the above-mentioned short circuit must be increased, which may have an adverse thermal effect on the surrounding elements, or the short circuit may be insufficient and redundant. There were drawbacks such as the circuit not working.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、横方向の集
積度の低下や熱的悪影響もなく、確実に導電体パターン
の断続をなし得る半導体装置の製造方法を提供するこL
を目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can reliably intermittent conductor patterns without reducing the degree of lateral integration or having adverse thermal effects.
The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置に形成された冗長回路の作動に際
し、従来の如くパルスレーザ等の高惠 エネルギビームを使用することなく、半導体基板の表面
あるいは半導体層の両端に互いに接続乃至分離した導電
体パターンを形成し、かっこの導電体パターンの断続部
に対応する部分が凹部を有する保腹膜を形成した後、こ
の保護膜の凹部から前記基鈑領域又は半導体層に絶縁化
する不純物原子又は導電性を与える不純物原子をイオン
注入するこ乏により、確実に導?に体パターンを断続し
て冗長回路を作動させることを図ったことを骨子とする
The present invention enables the operation of a redundant circuit formed in a semiconductor device by using conductors that are connected to or separated from each other on the surface of a semiconductor substrate or at both ends of a semiconductor layer, without using a high-energy beam such as a pulsed laser as in the past. After forming a pattern and forming a peritoneal protective film having recesses in the portions corresponding to the discontinuous portions of the conductor pattern in parentheses, impurity atoms or conductive materials are insulated from the recesses of the protective film to the base plate region or semiconductor layer. Is it possible to ensure reliable conduction by ion-implanting impurity atoms that give The main idea is to operate a redundant circuit by intermittent body patterns.

〔発明の実施例〕[Embodiments of the invention]

本発明を第2図(at 、 (bl、M3図(al 、
 (hl、第4図(a) 、 (b)及び第5図(a)
 、 (t)1に基づいて説明する3、実施例1 〔11まず、n型のシリコン半導体M−&JJ土に熱酸
化処理を楕して薄い5io2膜12を形成した。つづい
て、写真蝕刻法により拡散層形成予定部に対応する部分
が開孔した第1のレジストパターン13を形成した。次
いで、このし・シストパターン13をマスクとして、前
記基板11に所定の条件下でリンをイオン注入してn+
型の拡散層(導電体パターン)14..142を形成し
た(第2図(at図示)。なお、前記拡散層14..1
4.のうぢいずれか一方は、図示しない予備メモリに接
続ひれている。
The present invention is illustrated in FIG. 2 (at, (bl, M3) (al,
(hl, Figure 4(a), (b) and Figure 5(a)
, (t) 3. Example 1 [11] First, a thin 5io2 film 12 was formed on an n-type silicon semiconductor M-&JJ soil by thermal oxidation treatment. Subsequently, a first resist pattern 13 having holes corresponding to the portions where the diffusion layer was to be formed was formed by photolithography. Next, using the cyst pattern 13 as a mask, phosphorus is ion-implanted into the substrate 11 under predetermined conditions to form an n+
Mold diffusion layer (conductor pattern) 14. .. 142 (as shown in FIG. 2).
4. One of the two is connected to a spare memory (not shown).

〔11〕次に、レジストパターンJ3を除去した。[11] Next, the resist pattern J3 was removed.

つづいて、前記S I 02 iI°′112土に保護
膜15を形成した。次いで、この保設腎ノ5土に、前記
vh Vli層14..14.間の透析領域に対応する
部分が開孔したa 20=+ +/レジストパターン図
示セず)を形成した後、このレジストパターンをマスク
としで前記イ尿護膜r5、sio、喚12を順次エツチ
ング除去した。この後、熱酸化処理を施して露出する基
板11表面に薄い酸化膜16を膨軟1した。この結果、
この薄い酸化膜J6と前記保抑膜15とにおいて複数の
四部17が形成される。しかる後、かかる構造の半導体
装置において、該装置の機能又は性能を試験することに
より半回路に年長が生じたことを確認したときは、そJ
)不良箇所に対応する拡散層24..14.間の基板領
域に、この基板領域に対応する凹部12からリンを所2
[−′の条件下でAP的にイオン注入、了ニールをして
n型の拡散領域18を形成した(第2図(i)1図示)
。この結果、この拡散領域18を介してn+型の拡散1
呂14..14.が短絡し、冗長回路が作動した。なお
、主回路が正當な働きをしている場合(才、その1ま使
用できる。
Subsequently, a protective film 15 was formed on the S I 02 iI°'112 soil. Next, the VH Vli layer 14. is applied to this preserved kidney soil. .. 14. After forming a resist pattern (a20=+ +/not shown in the figure) with holes corresponding to the dialysis areas in between, the urinary protective membranes R5, SIO, and C12 are sequentially etched using this resist pattern as a mask. Removed. Thereafter, a thin oxide film 16 was formed on the exposed surface of the substrate 11 by thermal oxidation treatment. As a result,
A plurality of four portions 17 are formed between this thin oxide film J6 and the retention film 15. Thereafter, if it is confirmed that a half circuit has aged in a semiconductor device with such a structure by testing the function or performance of the device, the J.
) Diffusion layer 24 corresponding to the defective location. .. 14. Phosphorus is applied to the substrate area between 2 from the recess 12 corresponding to this substrate area.
An n-type diffusion region 18 was formed by AP ion implantation and annealing under the condition of [-' (see FIG. 2(i) 1).
. As a result, n+ type diffusion 1 is formed through this diffusion region 18.
Ro 14. .. 14. was shorted and the redundant circuit was activated. In addition, if the main circuit is working properly, it can be used.

しかして、本発明によれば、冗長回路の作動に際し、従
来の如くアンドープ多結晶シリコン層を材料とする低抵
抗の拡散領域4..42間の同材料からなる高抵抗のl
1i5にパルス1/−寸を照射し、核Ir脅5を低抵抗
の導体領域6に変えることに、より前記拡散領域’ I
  y ’ 2間の短絡を行うのではなく、基板11に
形成された拡散層”l 、14□間の基板領域にリンの
イオン注入を行うことにより両拡散1i14I 914
□間の短絡をして冗長回路を作動させる方式であるため
、従来の如く、通常の熱処理工程時を考慮したI層5の
横方向の余裕度をとる必要がない。従って、従来と比べ
横方向の集積度を向上することができる。また、同上の
理由により、拡散M 14 r  + l ’tを近接
して砿敗后141.14.間の基板領域を狭くできると
ともに、この基イP!領域上に四部17が形成されCい
るため、11来の9nり局部的な加熱による熱的悪影響
もなく確(樋に拡WttJ)J 4+  、 J 4□
の短絡をし゛C冗長回路苓作動できる。
According to the present invention, when the redundant circuit is operated, the low resistance diffusion region 4 made of an undoped polycrystalline silicon layer is used as in the conventional method. .. High resistance l made of the same material between 42
By irradiating 1i5 with a pulse 1/- size and changing the nuclear Ir threat 5 into a low-resistance conductor region 6, the diffusion region'I
Instead of short-circuiting y' 2, both diffusion layers 1i14I 914 are implanted by ion implantation of phosphorus into the substrate region between the diffusion layers "l" and 14□ formed on the substrate 11.
Since this method operates a redundant circuit by short-circuiting between □, there is no need to provide a margin in the lateral direction of the I layer 5 in consideration of the normal heat treatment process, as in the conventional method. Therefore, the degree of lateral integration can be improved compared to the conventional case. Moreover, for the same reason, the diffusion M 14 r + l 't is placed close to the 141.14. In addition to being able to narrow the board area between, this basic P! Since the four parts 17 are formed on the area, there is no adverse thermal effect due to local heating as in 11 (extended to the gutter) J 4+ , J 4□
The redundant circuit can be activated by shorting the circuit.

実施例2 Li)まず、p型ンリ−」ン半導体基版1ノの表面に常
法によりrl  型の拡散層(導電体バ・メーン)19
を形成した。つついて、全面にアンドープ多結晶シリコ
ン1m (図示セす)を形成した後、パターニングして
111記拡散M 191こ御名じが接触するアンド・−
プ多結晶からなる半導体層20を形成した。仄に、全部
にBi□、膜21を形成した保、千尋体層20の一部に
対応するS l 02膜21部分を開孔した。次いで、
全面にn型不純物ドープ多結晶シリコン層(図示せず)
イ被后した後、パターニングしで前記開孔部を介して半
導体7420と接触するn型不純物ドープ多績晶からな
る導電体パターン22を形成した(第3図(a)図示)
。なお、導電体パターン22あるいは前6己拡散層I9
のうちいずれか一フ′J(′:□r1図示しない予備メ
モリに接続し、ている。
Example 2 Li) First, an RL type diffusion layer (conductor bar main) 19 is formed on the surface of a p-type green semiconductor substrate 1 by a conventional method.
was formed. After forming 1 m of undoped polycrystalline silicon (as shown in the figure) on the entire surface, patterning is performed to form 111 diffusion M 191 and -
A semiconductor layer 20 made of polycrystalline polycrystalline material was formed. A hole was slightly opened in the S 1 02 film 21 corresponding to a part of the Chihiro body layer 20 on which the Bi□ film 21 was formed. Then,
N-type impurity-doped polycrystalline silicon layer (not shown) on the entire surface
After that, a conductor pattern 22 made of an n-type impurity-doped crystal was formed by patterning to contact the semiconductor 7420 through the opening (as shown in FIG. 3(a)).
. Note that the conductor pattern 22 or the front 6 self-diffusion layer I9
One of them is connected to a spare memory (not shown).

〔11〕次に、全面に保護膜23を形成した。つづいて
、この保護膜23−ヒに、前記半導体層20に対応する
部分が開孔した第4のレジストパターン(図示せず)を
形成した後、このレジストパターンを用いて保護膜23
をエツチンク除去した、次いで、熱酸化処理を施して篩
用する導電体パターン22上に薄い酸化膜24を形成し
た。この結果、この薄い酸化1@24と保護H@23と
において複数の四部25が形成される。
[11] Next, a protective film 23 was formed on the entire surface. Subsequently, a fourth resist pattern (not shown) in which a portion corresponding to the semiconductor layer 20 is opened is formed on the protective film 23-A, and then this resist pattern is used to form the protective film 23-1.
Then, a thin oxide film 24 was formed on the conductor pattern 22 to be used as a sieve by performing a thermal oxidation treatment. As a result, a plurality of four portions 25 are formed in this thin oxide 1@24 and protection H@23.

この後、主回路の不良を確dシしたときO↑、実施例1
と同様に、その不良古所に対応する拡散I―19と導電
体パターン22間の半導体In 2θ((−1この半導
体層20ζこ対応する四部26かC)リンを所定の条件
下で選択的にイオン注入、アニールして低抵抗の半導体
層20’とした(第:4図(用図示)。この結果、この
半導体層20′を介して前記拡散1−19と導電体パタ
ーン22が短絡し、冗長回路が作動した。
After this, when confirming that the main circuit is defective, O↑, Example 1
Similarly, phosphorus is selectively added to the semiconductor In 2θ ((-1 corresponding to the semiconductor layer 20ζ) between the diffusion I-19 and the conductor pattern 22 corresponding to the defective part 26) under predetermined conditions. ion implantation and annealing to form a low-resistance semiconductor layer 20' (see Figure 4). As a result, the diffusion 1-19 and the conductive pattern 22 are short-circuited via this semiconductor layer 20'. , the redundant circuit was activated.

なお、実施例2では、基板表面に形成した拡散層19と
、基41i!11上番こ半導体層20を介して形成され
た導′R(、稀パターン22との短絡の場合について述
ベヘ″これに限らず、いずれも基板上に半導体層を介し
−C基板の厚み方向に上下に形成された不純物1・゛−
プ多結晶からなる導電体パターン同志をクリ絡してもよ
い。
In Example 2, the diffusion layer 19 formed on the substrate surface and the base 41i! 11 We will discuss the case of a short circuit with the conductive layer 20 formed through the semiconductor layer 20 (and the rare pattern 22). Impurities formed up and down in the direction 1・゛−
Conductive patterns made of polycrystalline polycrystals may be interconnected.

また、実施例2では導電体パターンの拐料としてn型の
不純ルグドーブ多結晶シリコン層を用いたが、これに1
94らず、不純物ドープした単結晶シリコン117や1
′)−ルフγスシリコン層或いは金属層やン11−11
−11・化した縁でもよい。
In addition, in Example 2, an n-type impurity Lugdove polycrystalline silicon layer was used as the conductive pattern material;
94, impurity-doped single crystal silicon 117 and 1
') - Rufus silicon layer or metal layer 11-11
-11・It may be a curved edge.

実施例3 〔1〕まず、p−1〜りのシリコン半導体基板11十に
リンを選択的ζこイオン注入、活性化して酸化膜形成予
定部にさ・1応する部分が幅狭のn 型の拡散領域(導
市、イ杢パターン)27を形成した(第4図Ca1図7
J・ン。なお、この拡散領域27の一端は図示しない予
備メモリに接続している。
Embodiment 3 [1] First, phosphorus is selectively implanted into a silicon semiconductor substrate 110 of p-1 to 110, and activated, and a narrow n-type is formed in the area corresponding to the area where the oxide film is to be formed. 27 was formed (Figure 4 Ca1 Figure 7).
J.N. Note that one end of this diffusion region 27 is connected to a spare memory (not shown).

〔11〕次に、全面(こ保護H2gを形11yシた。−
)づいて、この保神8−28に酸化膜形iV+定HB 
H(対応する部分が開孔した第5のレジストパターンを
形成した後、このレジストパターンをマスクとして前記
保護膜28をエッチンク除ツー・シた。
[11] Next, the entire surface (this protection H2g was cut into the shape 11y.-
) Based on this Hojin 8-28, oxide film type iV + constant HB
After forming a fifth resist pattern with openings in corresponding portions, the protective film 28 was removed by etching using this resist pattern as a mask.

次いで、熱酸化処理を施して鼻出する拡散領域27上に
薄い酸化膜29を形成した。この結果、この薄い酸化膜
29と保詐膜28とにおいて、凹部30が形成された。
Next, a thin oxide film 29 was formed on the protruding diffusion region 27 by thermal oxidation treatment. As a result, a recess 30 was formed between the thin oxide film 29 and the security film 28.

この後、主回路の不、+tを確認したときは、その不良
箇所に対応する拡散領域27の所望部分に、前i己凹部
30から酸素イオンを照射、アニールして絶縁化し酸化
膜3)を形成した(第4図(b1図示)。この結果、こ
の酸化膜31を)火んで前記拡散領域27が2つに分離
され、冗長回路が作り山した。
After this, when a failure or +t in the main circuit is confirmed, a desired part of the diffusion region 27 corresponding to the defective part is irradiated with oxygen ions from the recess 30, annealed and insulated, and an oxide film 3) is formed. The formed oxide film 31 (as shown in FIG. 4 (b1)) was ignited, and the diffusion region 27 was separated into two, creating a pile of redundant circuits.

〔実施例4J まず、pQシリコン半導体基(ν1〕上に、常法に従っ
てS’0211’ス32、中央部が幅狭の【1(゛型不
純物ドープ多結晶からなる傅′亀体パターン33を順次
形成した(第5図(a1図示)。なお、この導磁性パタ
ーン33の一端は予備メモリに接続している。つづいで
、実施例3と同様にして、半導体層形成予力′忰冒こ開
孔[3を有する保贈膜28、この開孔部に設けられる湯
い酸化膜29を順次形成した。この佐、主回路の不良を
確認したときは、実施例3と同様に@累イオンの注入、
アニールにより、その不良面断に対応する導電体パター
ン33のrir望領域を絶縁化して酸化lI(へ34と
した(第51ネi (b)図示)。この結果、この酸化
膜34を挟んで前記導電体パターン33が2つに分離さ
れ、冗長回路が作動した。
[Example 4J] First, on a pQ silicon semiconductor substrate (ν1), a S'0211' space 32 and a square body pattern 33 made of a [1 (' type impurity doped polycrystal) with a narrow central part were formed by a conventional method. The magnetic conductive pattern 33 was formed sequentially (as shown in FIG. A protection film 28 having an aperture [3] and a hot oxide film 29 provided in the aperture were successively formed.In this case, when a defect in the main circuit was confirmed, as in Example 3, a protective film 28 was formed. injection of,
By annealing, the desired region of the conductor pattern 33 corresponding to the defective cross section was insulated into oxide 34 (as shown in 51st (b)). As a result, the oxide film 34 was sandwiched between The conductor pattern 33 was separated into two, and a redundant circuit was activated.

なお、上記実施例1及び2では、基板領域あるいは半導
体層へイオン注入してn型化するに除し、不純物原子と
してリンを用いたが、これに限らず、砒素でもよい。、
また、p型化する場合はボロンが挙けられる。同様に実
施例3及び4では、基板領域あるいは半導体I−へイオ
ン注入して絶縁化するに際し、酸素イオンを用いたが、
これに限らず、イ″素・イオンを用いてもよい、更に、
前記基板領域の場合はpNを形成するポロンをイオン住
人し、p−nジャンクションを形成することによりn 
型の拡ft、層間の分離を行ってもよい。
In Examples 1 and 2, phosphorus was used as the impurity atom when ions were implanted into the substrate region or the semiconductor layer to make it n-type, but the impurity atoms are not limited to this, and arsenic may also be used. ,
In addition, boron can be used to make the material p-type. Similarly, in Examples 3 and 4, oxygen ions were used when insulating the substrate region or semiconductor I- by ion implantation.
Not limited to this, ions and ions may be used, and further,
In the case of the substrate region, poron forming a pN is ionized and a p-n junction is formed.
The mold may be expanded and the layers may be separated.

上記実施例1及び2では、短絡により冗長回路を作動さ
せる場合について述べたが、ROM等の回路に応用して
もよい。
In the first and second embodiments described above, the redundant circuit is activated by a short circuit, but the present invention may also be applied to a circuit such as a ROM.

上記実施例1〜4では、基板9域又は半導体層に不純物
注入をすることによって導電体パターンの断続を行った
が、これに限らない。例えば、第6図に示す如<、p晴
のシリコン半導体基鈑11表面に基板領域35を挾んで
n 型の拡散層36.、.96.が形成され、^11記
楠根領h々。
In Examples 1 to 4 described above, the conductor pattern is interrupted by implanting impurities into the substrate 9 region or the semiconductor layer, but the present invention is not limited to this. For example, as shown in FIG. 6, an n-type diffusion layer 36 is formed on the surface of a p-clear silicon semiconductor substrate 11 with a substrate region 35 in between. ,.. 96. was formed, and the 11th Kusune region was formed.

35上にゲー ト絶縁膜37、ゲート電、極38が順次
形成され、更にこのゲート電極38をバむ基板26上に
、基板領域35に対応するfil1分に四部39を有し
た保護膜40が形成された構造のMO8型トランジスタ
を造り、凹部39からゲートr狂極3,9を曲して基板
1/jこ不純物を注入し、しきい値電圧をかえることに
tって前記拡?li層361.36.の断続を行っても
よい。
A gate insulating film 37, a gate electrode, and a electrode 38 are sequentially formed on the gate electrode 35, and a protective film 40 having four parts 39 in a fil1 portion corresponding to the substrate region 35 is further formed on the substrate 26 that covers the gate electrode 38. An MO8 type transistor with the formed structure is manufactured, the gates 3 and 9 are bent from the recess 39, impurities are implanted into the substrate 1/j, and the threshold voltage is changed. li layer 361.36. may be intermittent.

才た、上記実施例1〜4では、基板領域又は半導体層に
不純物科人した後アニールを行ったが、これに限らず、
通常の熱処理でもよいし、或いはレーザアニール哲のエ
ネルキビーム照射でもよい。
In Examples 1 to 4 above, annealing was performed after impurities were added to the substrate region or semiconductor layer, but the present invention is not limited to this.
Ordinary heat treatment may be used, or energy beam irradiation for laser annealing may be used.

四に、上記実施例1〜4で6J1半導体基板の導電型と
してpalの揚台に°ついて述べたか、これに限らず、
n型でもよい。
Fourth, in Examples 1 to 4 above, the PAL platform was described as the conductivity type of the 6J1 semiconductor substrate, but it is not limited to this.
It may be n-type.

史ζこ上記央す龜1シ11では(V護膜ζこ凹部を設け
るのζこ(’N護膜の一部をエッチツク除去し、除去し
た部分に熱酸化膜を設けて行°つCいたが、これに限ら
ずたとえば保a ++2の一部を途中までエツチングI
I去して一部を残し、ここを四部としてもよい。
In step 11 above, a part of the N protective film is removed by etching, and a thermal oxide film is provided on the removed part. However, it is not limited to this, for example, etching a part of a +2 to the middle of I
You can also remove part I and leave a part, making this the fourth part.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれは、従来の如く横方向の
集fjl屋の低下や熱的悪影響もなく、確実に導電体パ
ターンの断続をなし得る冗長回路等に好適な半導体li
4置の製造方法を提供できるものである。      
             3
As described in detail above, the present invention provides a semiconductor li which is suitable for redundant circuits, etc., in which conductor patterns can be reliably interrupted without causing a decrease in lateral concentration or adverse thermal effects as in the prior art.
It is possible to provide a four-position manufacturing method.
3

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al 、 (blは従来の半導体装置の製造方
法を製造工程順に示す断面図、第2図(a) 、 (b
lは本発明の実施例1の半導体装置の一17!布方法を
製造工程順に示す断面図、第3 rgl (a) 、 
(blは本発明の実施例2の半導体装置の製造方法を製
造工程1111に示す断面図、第4図(at 、 (b
lは本発明の実施例3の半導体装置の製造方法を製造工
程1順に示す断面図、第5図(a) 、 (b)は本発
明の実施例4の半導体装置の製造方法を製造工程11[
亀に示す断面図、第6図は、本発明方法により得られた
別の実施例を示す半導体装置の断面図である。 11・・・p姑のシリコン半導体基板、12,21゜3
2・・・sio□膜、14..14□ 、 79 、 
、”46.。 36、−−−n+型の拡散層、15,2.9.28.4
0・・・保餓膜、)6,24,29,31 、J4・・
・酸化月似、Jy、zs、3o、s9・・凹部、18゜
27・・・拡散和積、20.20’、、94・・・半導
体層、22.33・・・導電体パターン、35・・・見
物領域、7・・・ゲート絶縁膜、38・・・ゲート4極
。 出如人代ド(1人 弁J11!士 鈴 江 武 彦第2
図 (a) 第3 図 (b) 11) (b) 第3図 (a) (a) (b)
Figure 1 (al, (bl) is a sectional view showing a conventional semiconductor device manufacturing method in the order of manufacturing steps, Figure 2 (a), (b
l is 117 of the semiconductor device according to the first embodiment of the present invention! Cross-sectional views showing the fabric method in order of manufacturing steps, 3rd rgl (a),
(bl is a cross-sectional view showing the manufacturing process 1111 of the semiconductor device manufacturing method of Example 2 of the present invention, FIG. 4 (at, (b
1 is a cross-sectional view showing the method for manufacturing a semiconductor device according to Example 3 of the present invention in the order of manufacturing process 1, and FIGS. [
6 is a cross-sectional view of a semiconductor device showing another embodiment obtained by the method of the present invention. 11...p's silicon semiconductor substrate, 12, 21°3
2...sio□ membrane, 14. .. 14□, 79,
,"46.. 36,---n+ type diffusion layer, 15,2.9.28.4
0...storage membrane,)6,24,29,31,J4...
・Oxidation shape, Jy, zs, 3o, s9... Concavity, 18° 27... Diffusion sum product, 20.20', 94... Semiconductor layer, 22.33... Conductor pattern, 35 ... Viewing area, 7... Gate insulating film, 38... Gate 4 poles. Dejojindai Do (1 person Ben J11! Shi Suzue Takehiko 2nd
Figure (a) Figure 3 (b) 11) (b) Figure 3 (a) (a) (b)

Claims (1)

【特許請求の範囲】 1 半導体基板の表面あるいは半導体層0)両端に互い
に接続乃至分離した導電体パターンを形成する工程さ、
前記半導体基板あるいCイ半導体層上番こ、11■記導
電体パターンの断続部に対応する部分に四部を有する保
護膜を形hνする工程と、この保捗膜の四部から前記地
相領域又は半導体層に不純物原子をイオン注入すること
により前記導電体パターンを断続する工程とを具備する
ことを特徴とする半導イ4・装置の製造方法。 2、導・1体パターンが分前して形成され・イAン注入
される不純物原子として導電性を匂、λる不純物原子を
用いることを特徴とする特W1・請求の範囲第1項記載
の半導体装置の製造づ1法。 3 導電性を与える不純物1県子として、基板あるい(
4半導体j@と同4vLノヘ9となる砒素、リンあるい
はポロンυ)・うちいすね、か・つを用いることを特徴
とする特許請求の範囲第2」1記載の半導体装置の製造
方法。 4 導電体パターンが接続して形成され、イオン注入さ
れる不純物原子さして絶縁化する不純物原子を用いるこ
Lを特徴とする特許請求の範囲第11貞由i時の半導体
装11tの製造方法。 5 絶縁化する不純物1hiイが、酸素イオンまたに窒
素イオンであることを!特命と4−るl時的請求の範囲
第4項61載の半導体装1dの製造方法。 6 分離した4市1体パターンのうちいずオ]か一方が
、予備メ4−リに接続さね7、不良救済のための冗長回
路形111こ用いられることを特徴とする%ilf請求
の範囲第1項記載の半導体装置の製造方法。 7 接続した導′d1.併パター ンの一端が、予備メ
モリに接続され、不良救済のための冗長回路形成に用い
られるこ吉を特徴とする特πf請求の範囲第1項1把載
の半導体装置の製造方法。
[Claims] 1. A step of forming conductive patterns connected to or separated from each other on the surface of a semiconductor substrate or on both ends of a semiconductor layer,
Step 11: Forming a protective film having four parts on a portion corresponding to the discontinuous portion of the conductor pattern on the semiconductor substrate or the semiconductor layer; or ion-implanting impurity atoms into the semiconductor layer to interrupt the conductor pattern. 4. A method for manufacturing a semiconductor device. 2. A conductive single-body pattern is formed in advance, and impurity atoms having a conductivity of λ are used as the impurity atoms to be implanted. A method for manufacturing semiconductor devices. 3 As an impurity that provides conductivity, the substrate or (
4. The method of manufacturing a semiconductor device according to claim 2, characterized in that arsenic, phosphorus, or poron υ), which has the same 4vL value as 4 semiconductors, is used. 4. A method for manufacturing a semiconductor device 11t according to claim 11, characterized in that the conductive patterns are connected to each other and impurity atoms are used to insulate the impurity atoms that are ion-implanted. 5. The impurities that cause insulation are oxygen ions and nitrogen ions! 61. A method for manufacturing a semiconductor device 1d according to claim 4. 6. A %ILF claim characterized in that one of the four separated one-piece patterns is connected to a spare relay 7, and a redundant circuit type 111 is used for relieving defects. A method for manufacturing a semiconductor device according to scope 1. 7 Connected conductor'd1. 1. The method of manufacturing a semiconductor device according to claim 1, wherein one end of the combined pattern is connected to a spare memory and used for forming a redundant circuit for relieving defects.
JP2501482A 1982-02-18 1982-02-18 Manufacture of semiconductor device Pending JPS58141559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2501482A JPS58141559A (en) 1982-02-18 1982-02-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2501482A JPS58141559A (en) 1982-02-18 1982-02-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58141559A true JPS58141559A (en) 1983-08-22

Family

ID=12154053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2501482A Pending JPS58141559A (en) 1982-02-18 1982-02-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58141559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384046A (en) * 1986-09-26 1988-04-14 Tokyo Electron Ltd Method for repairing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384046A (en) * 1986-09-26 1988-04-14 Tokyo Electron Ltd Method for repairing semiconductor device

Similar Documents

Publication Publication Date Title
US4450620A (en) Fabrication of MOS integrated circuit devices
TW234771B (en)
US4851257A (en) Process for the fabrication of a vertical contact
US4514251A (en) Method of manufacturing a semiconductor device, in which patterns are formed in a layer of silicon nitride by means of ion implantation
US5168076A (en) Method of fabricating a high resistance polysilicon load resistor
US5172211A (en) High resistance polysilicon load resistor
JPS60501083A (en) Manufacturing method of semiconductor device
JPH08236729A (en) Manufacture of semiconductor element
JPS61104662A (en) Schottky barrier junction for semiconductor surface and manufacture thereof
TWI334219B (en) Manufacturing method of semiconductor device
US20070080404A1 (en) Semiconductor device
US4365405A (en) Method of late programming read only memory devices
JPS607775A (en) Semiconductor device and manufacture thereof
KR0139772B1 (en) Semiconductor integrated circuit device and its manufacture
JPH0758219A (en) Highly integrated semiconductor wiring structure, and manufacture thereof
JPS58141559A (en) Manufacture of semiconductor device
JP3794915B2 (en) Manufacturing method of semiconductor device
US6057191A (en) Process for the fabrication of integrated circuits with contacts self-aligned to active areas
US6232222B1 (en) Method of eliminating a critical mask using a blockout mask and a resulting semiconductor structure
JPH0851146A (en) Semiconductor device and manufacture thereof
JPH11214620A (en) Semiconductor capacitor, semiconductor device provided with the same and manufacture thereof
JP2719751B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH01201940A (en) Formation of electrode wiring of semiconductor device
JP2572843B2 (en) Method for manufacturing semiconductor device
JPS58147028A (en) Preparation of semiconductor device