JPS58141376A - Plasma cementation - Google Patents

Plasma cementation

Info

Publication number
JPS58141376A
JPS58141376A JP2305582A JP2305582A JPS58141376A JP S58141376 A JPS58141376 A JP S58141376A JP 2305582 A JP2305582 A JP 2305582A JP 2305582 A JP2305582 A JP 2305582A JP S58141376 A JPS58141376 A JP S58141376A
Authority
JP
Japan
Prior art keywords
plasma
gas
hardening
cementation
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2305582A
Other languages
Japanese (ja)
Inventor
Masatoshi Saito
正敏 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP2305582A priority Critical patent/JPS58141376A/en
Publication of JPS58141376A publication Critical patent/JPS58141376A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To carry out plasma cementation with high energy efficiency in a short time by diffusing a metal or a nonmetal in a metallic surface using plasma. CONSTITUTION:A gas such as B2H6, PH3, SiH4, G2H6, SbH3, CrCl2 or an analogue thereof, a mixture of >=2 kinds of said gases or a mixture of said gas with steam, ammonia, hydrogen or the like is used. Plasma is generated by arc or glow discharge using DC high frequency power. The service temp. is about 150-700 deg.C, the high frequency power is about 30W-3kW, and the pressure of the gas is regulated to 0.05-50Torr. The gas contg. a metallic or nonmetallic element is decomposed with the plasma, and the element is diffused in a metallic surface to obtain a hardened surface layer having about 0.1mm. thickness.

Description

【発明の詳細な説明】 本発明は、グッズマを用いて表面処理を行なうプラズマ
セメンテーシ日ンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma cementation system that performs surface treatment using Goodsma.

従来、表面硬化法としては、火j11焼入れ、高周波焼
入れ、シロットビーニング、浸炭、浸脚窺化、窒化、セ
メン、テーシ曹ン法、硬質表Iiaを接着させる方法等
がある。しかし、これらO方法、例えば、火嬬鉤入れ、
高周波焼入れ紘、均質な鉤入れ層をIIIIiK得るこ
とは困難であ)、内l1iIIl織の変態を生じさせ、
これらの処運後、焼戻しを行なわねばならず、工*S*
が多く、償11I性、多大な設備投資、小型製品の処理
が困難である等の欠点がある。又、シ璽ットビーニング
法は、250℃以上になるとシ謬ットビー二ングを施し
丸材料の疲労限は消失し、耐熱性がなく、小球を打ちつ
けると龜の騒音、小11製品の処理が不可能、大型製品
の処理も不可能等の欠点がある。
Conventional surface hardening methods include fire hardening, induction hardening, syrup beaning, carburizing, immersion foot hardening, nitriding, cement, Teishing carbon method, and bonding method of hard surface Iia. However, these O methods, for example,
In induction hardening, it is difficult to obtain a homogeneous hardening layer), which causes the transformation of the inner weave,
After these treatments, tempering must be carried out and
However, there are disadvantages such as low compensation, large capital investment, and difficulty in processing small products. In addition, in the sheet beaning method, when the temperature exceeds 250°C, the fatigue limit of the round material disappears, it has no heat resistance, and when a small ball is hit, it causes noise from the hammer, and the processing of grade 11 products is poor. However, there are drawbacks such as the inability to process large products.

浸炭、浸炭窒化、窒化による表面硬化法は、その処:1
il11蜜形中割れの防止の為、更に熱処理をしなけれ
ばならず、コスト高、炉を使用する為、多大な設備投資
、高温処理であるのでエネルギ効率が悪い、精度を要求
する表面処理が困難等O欠点を有する。
Surface hardening methods by carburizing, carbonitriding, and nitriding are: 1
il11 In order to prevent honey-shaped cracks, additional heat treatment is required, resulting in high costs; the use of a furnace requires a large investment in equipment; the high-temperature treatment is energy-efficient; surface treatment requires precision; It has disadvantages such as difficulty.

セメンテーシ曹ン法、硬質表面層を接着させる方法は、
適用できる材料が限られ、汎用性に欠けること、高温I
&環である為、素材も高温、例えば1000℃に耐えう
るものでなけれ蛯ならない等の欠点を有している。
The cementation method, a method for bonding hard surface layers, is
Limited applicable materials, lack of versatility, high temperature I
Since it is a ring, it has the disadvantage that the material must be able to withstand high temperatures, for example, 1000°C.

本発明は、かかる欠点を除去したもので、その目的は、
経済的でエネルギー高率を高めること、無公害である、
低温の処理であること、処理工稠を短縮できる、独特な
特性を表面に付与できることを見出した点に基いて成さ
れている。
The present invention eliminates such drawbacks, and its purpose is to:
Economical, increasing energy efficiency, non-polluting,
This process is based on the discovery that it is a low-temperature treatment, that the processing time can be shortened, and that unique properties can be imparted to the surface.

本発明に於いて、用いるガスはB、H,、Pli、 、
 8(H4e  G#H4e GIH@  t  81
. H4t  86HS  、HBデ 、  8SCj
4  。
In the present invention, the gases used are B, H,, Pli, ,
8 (H4e G#H4e GIH@t 81
.. H4t 86HS, HB de, 8SCj
4.

CrCJ、等、又はこれらと類似のガスであ)、これら
の内のひとつ、又は二種類以上の組合せた混合ガスを用
いるか、水蒸気、アンモニア、水素、酸素、ハ!ゲンガ
ス、有機ガス、不活性ガスの内のいずれかと混合して用
いるかである。
CrCJ, etc., or similar gases), use one of these gases, or a mixture of two or more of these gases, or use water vapor, ammonia, hydrogen, oxygen, ha! It can be used in combination with any one of natural gas, organic gas, and inert gas.

本発明に於いて、プラズマは、アーク放電又はグロー放
電によ〕得られ、放電形式としては、直流、高周波放電
が用いられる。
In the present invention, plasma is obtained by arc discharge or glow discharge, and direct current or high frequency discharge is used as the discharge type.

プラズiは、電子、イオン、中性粒子、ラジ゛カル粒子
が混在してお)、これらが素材表面と反応し、内部拡散
して表面硬化層が得られる。プラズマは、非常に活性で
あシ、従来の方法よりも時間短縮、低温処理が可能、硬
化層の制御が容易、素11:1111 材内部の材質変化を起こさせずに表面硬化を実現できる
。本発明は、かかるプラズマの利点利用し金属又は非金
属元素を含むガスをプラズマによシ分解し、表面に拡散
させ、表面硬化層を得るものである。
Plas i contains a mixture of electrons, ions, neutral particles, and radical particles), which react with the surface of the material and diffuse internally to obtain a hardened surface layer. Plasma is very active, takes less time than conventional methods, allows low-temperature treatment, makes it easy to control the hardened layer, and can harden the surface without causing any change in the internal properties of the material. The present invention utilizes the advantage of plasma to decompose a gas containing a metal or nonmetal element by plasma and diffuse it onto the surface to obtain a hardened surface layer.

金属内部へ浸透する金属又は非金属は、母相金属の格子
歪を誘起し、或いは、金属間化合物を形成することKよ
シ、表面を硬化する。表面硬化層は、0.l■狽度であ
ル、グッズマセメンテーシ薯ンは、セメンテーシ冒ン法
の如く、800℃以上の高温でない為、・処理後の焼割
れがなく焼戻しの必要がない。
Metals or non-metals penetrating into the metal induce lattice distortion in the parent metal or form intermetallic compounds, thereby hardening the surface. The surface hardening layer is 0. 1) Since the goods macerating process does not involve high temperatures of 800°C or higher, unlike the cementing process, there is no quenching cracking after the process and there is no need for tempering.

本発明の適用できる形状は、小型から大型のものまで可
能である。
The shapes to which the present invention can be applied range from small to large.

本発明に於いて温度は、150℃〜700℃、高周波電
力は、30W〜3!W、ガス圧は0.05〜50tor
rとする。以下、実施例に従って本発明の顕著なる効果
を説明する。
In the present invention, the temperature is 150°C to 700°C, and the high frequency power is 30W to 3! W, gas pressure is 0.05 to 50 torr
Let it be r. Hereinafter, the remarkable effects of the present invention will be explained according to Examples.

実施例1 清浄され丸軸受鋼IINCM25、直径55I×長さ2
0aIをグルー放電槽内に設定し、槽内をlXl01o
rデの真空度KL、軸受鋼O温度を400℃とし、アル
ゴンで希釈した10LsBslis  を流してlto
デデとする。その後電極間K 24jSOMIigの電
力を投入してグロー放電を起こし、lKWの電力が入力
される。
Example 1 Cleaned round bearing steel IINCM25, diameter 55I x length 2
Set 0aI in the glue discharge tank, and set the inside of the tank to lXl01o.
The degree of vacuum in the r de is set to KL, the temperature of the bearing steel O is set to 400°C, and 10 LsBslis diluted with argon is flowed into the lto
Dede. Thereafter, power is applied between the electrodes K24jSOMIig to cause glow discharge, and power of 1KW is input.

ζうしてたれを加分間放電を継続してビッカース硬度針
で測定した。その結果をj11mlK示す、横軸は、表
面からの距離、縦軸は、荷重10 Fのビッカース硬度
である。これよ)、ビッカース硬度が最大で600〜6
50前後の値が、表面から80μ惰1度まであシ、この
ことはプラズマセメンチージョン法が極めて効果的であ
ることを示す。
The discharge was continued during addition and the dripping was measured with a Vickers hardness needle. The results are shown in j11mlK, where the horizontal axis is the distance from the surface and the vertical axis is the Vickers hardness at a load of 10 F. This is it), Vickers hardness is up to 600-6
Values around 50 were obtained up to 80μ inertia 1 degree from the surface, indicating that the plasma cementation method is extremely effective.

実施例2 実施例1と同様にして但しガスは、CH4、C1”CJ
諺* を用イ、’f−e)流量比Fi、CH4/Cr0
4m0.2〜5.0が適当であるが、実施例2では1と
し、ガス圧は1torr他の条件は、実施例1と同等と
しえ、用いた素材は、a45cであ〕、形状は、直径2
txm、長さ10−c!IIである。プラズマ処理後、
I分間500’CK保りてビッカース硬度針によシ表面
からの硬度を調べた。その結果を第2図に示す。横軸は
、表面からの距離、縦軸はビッカース硬度である。1は
、プラズマ処理をしない素材の硬度、2は、プラズマ処
理のみをした場合、3Fi、プラズマ処理後、500″
tl:に30分間保持した場合である。これよ〕、表面
硬化は、CrとCO固溶硬化どり四ムが炭化物を形成す
る仁とKよる硬化が、IC、プラズマ処理のみをし九素
材を高温で用いると更に硬化する2次硬化の作用のある
ことがわかシ、これは、耐摩耗性の要求される場合に1
加工時は、それ程硬化していない為、加工が容易であ)
、使用時は周囲が高温ならば、析出自硬によシ、耐摩耗
性を得ることができるという利点がある。
Example 2 Same as Example 1 except that the gases were CH4, C1”CJ
Proverb * Use a, 'fe) Flow rate ratio Fi, CH4/Cr0
4 m 0.2 to 5.0 is appropriate, but in Example 2 it was set to 1, the gas pressure was 1 torr, the other conditions were the same as in Example 1, the material used was A45C], the shape was diameter 2
txm, length 10-c! II. After plasma treatment,
The hardness from the surface was examined using a Vickers hardness needle after maintaining the temperature at 500'CK for 1 minute. The results are shown in FIG. The horizontal axis is the distance from the surface, and the vertical axis is the Vickers hardness. 1 is the hardness of the material without plasma treatment, 2 is the hardness of the material with plasma treatment only, 3Fi, 500'' after plasma treatment
tl: for 30 minutes. Surface hardening is solid solution hardening with Cr and CO, hardening with nickel and K, in which four atoms form carbides, and secondary hardening, which is further hardened when the material is used at high temperatures with only IC or plasma treatment. It has been found that this is effective when wear resistance is required.
During processing, it is not hardened so it is easy to process)
The advantage is that if the surrounding temperature is high during use, self-hardening due to precipitation can be avoided and wear resistance can be obtained.

実施例3 実施例1と同様kL’t”但しガスは、””4eムrt
用い、その流量比は8 (Hvムチ0.01〜1が適当
であるが、実施例3では0.1とし、ガス圧は0.1f
oデデ他の条件紘、温度を650℃とする以外同等とし
た。
Example 3 Same as Example 1, but gas is 4e mrt
The flow rate ratio was 8 (Hv whip 0.01 to 1 is appropriate, but in Example 3 it was set to 0.1, and the gas pressure was 0.1f.
Other conditions were the same except that the temperature was 650°C.

用いた素材は、a45cであシ、形状は、直径2tms
The material used is A45C, and the shape is 2tms in diameter.
.

長さlOmであ為、第3図に結果を示す。横軸は表両か
らの距離、縦軸はビッカース硬度である。1はプラズマ
処理をしない場合、2はプラズマ処理をし九場合であシ
、とれよ〕プツズ!セメンテージョンは、非常に有効で
ある。シリコンは、炭素と結合して炭化物を形成するが
、析出するととはなく、析出歪を生じない。従って寸法
精度が要求される場合に有効である。
The length was 10m, and the results are shown in FIG. The horizontal axis is the distance from both sides, and the vertical axis is the Vickers hardness. 1 means no plasma treatment, 2 means no plasma treatment, take it! Cementation is very effective. Silicon combines with carbon to form carbide, but does not precipitate and does not cause precipitation strain. Therefore, it is effective when dimensional accuracy is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ボロンをプラズマセメンチーシロンし九場合
の硬度と表面深さの関係を示す、横軸は表面からの距離
、縦軸は、ビッカース硬度である。 第2図は、クロムをプラズマセメンチーシロンした場合
の硬度と表面探さの関係を示す、横軸は表面からの距離
、縦軸は、ビッカース硬度である。 第3図は、シリコンをプラズマセメンチーシロンし九場
合の硬度と表面深さの関係を示す、横軸は、ll!面か
らの距離、縦軸は、ビッカース硬度である。 以   上 出願人 株式会社諏訪精工舎 表命1・らの詠龍 第1図 長面丁らの用舷  第2図 表f7fら1シget 第3図
FIG. 1 shows the relationship between hardness and surface depth when boron is plasma cemented. The horizontal axis is the distance from the surface, and the vertical axis is the Vickers hardness. FIG. 2 shows the relationship between hardness and surface profilability when chromium is plasma cemented. The horizontal axis is the distance from the surface, and the vertical axis is Vickers hardness. Figure 3 shows the relationship between hardness and surface depth when silicon is plasma cemented. The horizontal axis is ll! The distance from the surface, the vertical axis, is Vickers hardness. Applicant: Suwa Seikosha Co., Ltd. Omotomei 1, Ra no Eiryu Figure 1 Chomencho et al.'s port Diagram 2 f7f et al. 1 page Figure 3

Claims (1)

【特許請求の範囲】[Claims] プラズーtt用いて金属表WK、種々の金属又は非金属
を浸透させることを特徴とするグッズッセメンテーシ璽
Goods cementation seal characterized by infiltrating metal surface WK, various metals or non-metals using Prazo TT
JP2305582A 1982-02-16 1982-02-16 Plasma cementation Pending JPS58141376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305582A JPS58141376A (en) 1982-02-16 1982-02-16 Plasma cementation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305582A JPS58141376A (en) 1982-02-16 1982-02-16 Plasma cementation

Publications (1)

Publication Number Publication Date
JPS58141376A true JPS58141376A (en) 1983-08-22

Family

ID=12099752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305582A Pending JPS58141376A (en) 1982-02-16 1982-02-16 Plasma cementation

Country Status (1)

Country Link
JP (1) JPS58141376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600082A1 (en) * 1986-06-13 1987-12-18 Balzers Hochvakuum THERMO-CHEMICAL PROCESS FOR SURFACE TREATMENT IN REACTIVE GAS PLASMA, AND PARTS PROCESSED THEREBY
FR2649995A1 (en) * 1989-07-19 1991-01-25 Air Liquide PROCESS FOR SILICIURATION OF STEEL BY CHEMICAL DEPOSITION IN THE GAS PHASE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600082A1 (en) * 1986-06-13 1987-12-18 Balzers Hochvakuum THERMO-CHEMICAL PROCESS FOR SURFACE TREATMENT IN REACTIVE GAS PLASMA, AND PARTS PROCESSED THEREBY
FR2649995A1 (en) * 1989-07-19 1991-01-25 Air Liquide PROCESS FOR SILICIURATION OF STEEL BY CHEMICAL DEPOSITION IN THE GAS PHASE

Similar Documents

Publication Publication Date Title
Bell et al. Environmental and technical aspects of plasma nitrocarburising
Gräfen et al. New developments in thermo-chemical diffusion processes
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
O'Brien et al. Plasma(Ion) Nitriding
CN113862610B (en) Pretreatment method for improving corrosion resistance of carburized layer
US7655100B2 (en) Method for preparation of steel material
JP2000129418A (en) Vacuum carburizing method for steel parts and apparatus therefor
US11840765B2 (en) Nitriding process for carburizing ferrium steels
Torchane Influence of rare earths on the gas nitriding kinetics of 32CrMoNiV5 steel at low temperature
GB2261227A (en) Surface treatment of metals at low pressure
JPS58141376A (en) Plasma cementation
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
CN106835005B (en) A kind of cryogenic gas method for carburizing of austenitic stainless steel
JPS57134554A (en) Manufacture of die
CN102676978A (en) Method for improving mechanical properties of surface of non austenitic stainless steel
JPS62224665A (en) Gas nitriding method for maraging steel sheet
CN102676980B (en) Low-temperature carburization method of stainless steel
CN109295411A (en) A kind of automobile transmission gear under Q&P&T technique
JPH04232247A (en) Method for applying nitride layer to member composed of titanium and titanium alloy
Tesi et al. Analysis of surface structures and of size and shape variations in ionitrided precipitation hardening stainless steel samples
Reynoldson Advances in surface treatments using fluidised beds
KR102360964B1 (en) Complex heat treatment method of steel for gear
CN106637058A (en) Low-temperature gas nitriding method for austenitic stainless steel
JPS58113371A (en) Plasma surface hardening method