JPS58141370A - Alloying treatment of galvanized steel plate - Google Patents

Alloying treatment of galvanized steel plate

Info

Publication number
JPS58141370A
JPS58141370A JP1954282A JP1954282A JPS58141370A JP S58141370 A JPS58141370 A JP S58141370A JP 1954282 A JP1954282 A JP 1954282A JP 1954282 A JP1954282 A JP 1954282A JP S58141370 A JPS58141370 A JP S58141370A
Authority
JP
Japan
Prior art keywords
alloying
heating
strip
galvanized
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1954282A
Other languages
Japanese (ja)
Inventor
Takayoshi Shimomura
下村 隆良
Masaki Abe
阿部 雅樹
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1954282A priority Critical patent/JPS58141370A/en
Publication of JPS58141370A publication Critical patent/JPS58141370A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To reduce an alloying time considerably by heating the galvanized surfaces of a steel strip which are galvanized continuously, quickly by irradiation of laser light thereby alloying said surfaces. CONSTITUTION:A steel strip X is electrolytically washed and pickled 20 and is then galvanized in an electroplating cell 21, and the galvanized strip is passed through a scrubber 22. The plated surfaces of the strip X past the scrubber 22 are dried with a dryer 30, whereafter laser light is irradiated to the dried surfaces from above and below or from either above or below to heat the surfaces quickly. The strip X of which the plated surfaces are alloyed by such quick heating is cooled 32 and is then phosphated 23 and rinsed 24, whereby the treatments are finished. The length of the longitudinal pass in the galvanizing line is reduced and the line is made compact by the above-mentioned method; in addition, the traveling speed of the strip is increased.

Description

【発明の詳細な説明】 この発@は亜鉛メッキ鋼板の合金化処理方法に関する・ 近年・自動車周円・外IIO耐食性向上を目的として合
金化亜鉛メツ命鋼板に対する需要が高まっている・ 亜鉛メッキ鋼板の合金化に関しては、■溶融亜鉛ボッ)
K浸漬した鋼帯を再びSSO℃近傍に加熱、均熱してF
・−Znn全金層構成させる方法、■電気凰鉛メッキを
施し九鋼帯をオフラインで会食化処理を行なう方法、■
電気メツ中にてF・−znn全金層直接メッキする方法
などがあるが、主意性など0点で上記007渋が一般的
である。
[Detailed Description of the Invention] This invention relates to an alloying treatment method for galvanized steel sheets.In recent years, there has been an increasing demand for alloyed galvanized steel sheets for the purpose of improving the corrosion resistance of automobile circumferences and outer IIO.Galvanized steel sheets Regarding the alloying of
The K-dipped steel strip is heated again to near SSO℃, soaked, and F
・-Method of forming a Znn all-gold layer, ■Method of applying electrical lead plating to nine steel strips, ■Method of performing offline conversion treatment,■
There is a method of directly plating the entire gold layer of F.-znn in an electrometallurgical chamber, but the above-mentioned method 007 is generally used with 0 points such as intentionality.

そこて上記■07j法に関して代表的な無酸化一方式O
#I融亜鉛メツキラインのツイン構成を第1IIK示す
0図中(1)は無酸化加熱帯、(2)は還元IF訃よび
徐冷帯、(3)はガスジェット冷却帯%(4)は亜鉛ボ
ッ)%(5)は直火加熱式ガルバニール炉と保熱スEl
−)、(lはガスジェット冷却帯、(7)は強制空冷帯
を示すΦ合金化処理紘亜鉛メッキを施された鋼帯(X)
をガルバニール炉優)で再びSSO℃近傍に加熱、均熱
すると七によって行なわれる・従って、亜鉛ポットから
トラ10−ルに至る縦パスの長′さは仁の合金化鵡鳳時
闘によって決められる働近離亜鉛メツ中鋼板に対する1
豪の拡大に対応するため1メツキラインの高速化による
化量性0向上がIIすれており・このような従来の加熱
方法によるガルバニール炉にお−てはツインの高速化を
行なうために紘炉長の伸長が不可避で−それに伴う縦パ
ス長O増長によ〕ラインの大量化を招くばか〕か、鋼1
0位置変動の増大に伴う加熱ムラあるいは炉体との接触
による表igi+ズO問題がある・従って、含金化処理
時間が従来の合金化処理時間15秒前11に比べて著し
くa細出未為ならばラインのコンパクト化が可能とt!
+ばかりか、ラインの高速化に対しても従来の直火加熱
方式Oガルバニール炉に比べて有利に対応出来、その工
業的価値は極めて高i。
Therefore, regarding the above method ■07j, a typical non-oxidized one-type O
Figure 1 IIK shows the twin configuration of the #I galvanized plating line. In Figure 1, (1) is the non-oxidizing heating zone, (2) is the reducing IF and slow cooling zone, (3) is the gas jet cooling zone, and (4) is the zinc %(5) is a direct-fired galvanil furnace and a heat-retaining element.
-), (l is a gas jet cooling zone, (7) is a forced air cooling zone. Φ alloyed galvanized steel strip (X)
Heating again in the vicinity of SSO°C in a galvanized furnace and soaking is carried out by 7.Therefore, the length of the vertical path from the zinc pot to the 10-hole is determined by the alloying process. 1 for work-proximity galvanized medium steel plate
In order to respond to the expansion of the Australian market, it has become necessary to increase the speed of the 1-metal line to increase the yield rate to 0.In order to increase the speed of the twin furnaces, the galvanic furnace using the conventional heating method has been Either the extension of the line is unavoidable and the accompanying increase in the vertical path length O leads to an increase in the number of lines, or steel 1
There is a surface problem due to uneven heating due to increased zero position fluctuations or contact with the furnace body. Therefore, the metallization processing time is significantly shorter than the conventional alloying processing time of 15 seconds before 11. If so, it is possible to make the line more compact!
Not only that, but it can also handle faster line speeds more favorably than the conventional direct-fired heating type O galvaneal furnace, and its industrial value is extremely high.

ta上記0の電気亜鉛メッキ鋼1[0合金化に対しては
、工業的規模でコスト的に引き会う合金化部層技術は開
発されておらず、オフラインで低温長時間O合金化処理
を行なっているのが現状である・従ってインラインで短
時間での倉金化旭履が可能と會れば同様に工業的価値は
極めて高いと言える・ 本発明は上記した観点に鎧みてなされ危もので、レーず
光を照射、して急速加熱すると七によp合金化l&雇時
間を着しく短縮することを可能にした40″tIある・ これによ)溶融亜鉛メツキラインにおいてはガルバニー
ル炉のa縮化が電気亜鉛メツキラインにかiではインラ
インでO合金化処理が可能と&ゐΦ 以下本発明方法を図INK基づiてll@する・第!図
は本発明方法を接融亜鉛メツキラインに適用した例を示
す賜ので、lll中第imlと同一〇%t)K線間−〇
番号を付しである。
For the above electrogalvanized steel 1[0 alloying, no alloying layer technology has been developed that is cost-effective on an industrial scale, and low-temperature, long-time O alloying treatment is performed off-line. The present invention is based on the above-mentioned viewpoints, and it is dangerous that the present invention is made based on the above-mentioned viewpoints. When irradiated with laser light and rapidly heated, there is a 40" tI which made it possible to significantly shorten the time required for p-alloying. This makes it possible to reduce the a-condensation of the galvanil furnace in the hot-dip galvanizing line. However, it is possible to perform in-line O alloying treatment on an electrolytic galvanizing line. For the purpose of showing an example, the number is given between 〇%t) K line - 〇 number, which is the same as the iml in lll.

第211に&いて、従来の直火加熱式ガルバニール炉に
かえて、レーず加熱方式のガルバニール炉曽を採用し、
ことで亜鉛メッキした鋼帯(X) C)メッキ1liK
レーず光を照射して急速加熱を行い、メッキlIO合金
化処理を行っている。
In the 211th & 211th, instead of the conventional direct fire heating type galvanil furnace, we adopted a laser heating type galvanil furnace.
Galvanized steel strip (X) C) Plated 1liK
Rapid heating is performed by irradiation with laser light, and plating lIO alloying treatment is performed.

謳801に第tgと第2図のラインにおiてライン速[
80町〜臘で過板したと暑の亜鉛ボット出側からガスジ
ェット帯出側に至る縦パスでの鳳鉛メッキ鋼蕾の熱履歴
を示す・第illの従来の直火加熱式ガルバニール炉(
8)で合金化を行なった鳩舎、TLI/IIメツ中銅帯
を約450℃から約560’Cまで加熱、均熱して合金
化を完了するのに約15秒を要してお)1合金化処理後
のガスジェット冷却時間を含めると縦パスでの通板時間
社はぼ20〜25秒となっている。これに対し、レーザ
加熱方式のガルバニール炉αQを用いた場合短時間でメ
ッキ層を加熱することが可能であるため、従来法に比べ
て加熱温度を上げて短時間で所定の合金化を完了させる
ことが可能となる・第4図は加熱温度と合金化所要時間
を示したもので、590℃程度では4秒程度の加熱、均
熱で合金化が可能で、しかも急速加熱を行なうことkよ
シ加熱過程での合金化の進行を抑制出来最適合金化時間
の範囲が拡大し・プロセス制御上有利となる。
In 801, the line speed [
Showing the thermal history of a lead-plated steel bud in the vertical path from the hot zinc bot exit side to the gas jet belt exit side when over-plated at 80°C.
It takes about 15 seconds to heat and soak the pigeon house and TLI/II metal copper strip alloyed in step 8) from about 450°C to about 560'C to complete alloying. Including the gas jet cooling time after the chemical treatment, the threading time in the vertical pass was about 20 to 25 seconds. On the other hand, when using the laser heating type galvanil furnace αQ, it is possible to heat the plating layer in a short time, so compared to conventional methods, the heating temperature can be raised and the desired alloying can be completed in a short time.・Figure 4 shows the heating temperature and the time required for alloying.At about 590℃, alloying can be achieved by heating for about 4 seconds and soaking, and rapid heating is not necessary. The progress of alloying during the heating process can be suppressed and the range of optimal alloying time can be expanded, which is advantageous in terms of process control.

第5図は上記した本発明の効果を更に!!j確にするた
めのもので、亜鉛目付量30 f/−と120 t/−
の場合について、従来の直火加熱を用いた方法および本
発明のレーザ加熱を用いた方法で加熱したときの銅帯の
滞炉時間とメッキ層中のF・含有量で評価した合金化率
(最適範I!二8〜15%)の関係を示す。レーザ加熱
を行なうことによシ約2秒で590℃に達し、3秒以上
の合金化で最適合金化領域に入る。
Figure 5 further shows the effects of the present invention described above! ! This is to ensure that the zinc weight is 30 f/- and 120 t/-.
In the case of , the alloying rate (evaluated by the residence time of the copper strip and the F content in the plating layer when heated by the conventional method using direct flame heating and the method using the laser heating of the present invention) Optimal range I!2 8-15%) is shown. By performing laser heating, the temperature reaches 590° C. in about 2 seconds, and the optimum alloying region is reached by alloying for 3 seconds or more.

この場合、レーザ発振装置として3KWの(二〇ル−ザ
を鋼帯面左右にそれぞれ4基ずつ千鳥に配し、レーず光
はレンズ及び反射鏡から成る光学系によって5■真の光
束に集合して銅帯幅方向く高速で走査しながら鋼帯に照
射した・ 図から明らかなようにレーザ加熱の場合。
In this case, four 3KW (20) lasers are arranged in a staggered manner on each side of the steel strip surface as a laser oscillation device, and the laser light is collected into 5 true beams by an optical system consisting of a lens and a reflecting mirror. The steel strip was irradiated while scanning at high speed in the width direction of the copper strip.As is clear from the figure, this is the case of laser heating.

出力制御が容易であるため、目付量Kかかわらずほぼ同
一時間で合金化を終えることが出来、炉温が低く、さも
に地鉄による冷却が期待出来るため、レー簀加熱を中断
することにより銅帯が漕デ中であっても過度の合金化を
抑制することが出来る・これに対し、従来の直火加熱方
式では合金化6cl!する時間が長いば、か夛か、亜鉛
目付量によって合金化速度が著しく異なる・従って、目
付量によってライン速度の変更が必要となる。また炉温
が1000℃以上と高い友め鋼帯枦滞炉中は合金化が進
行し、目付量が少ない場合は合金化が過度に進行すると
言う問題がある。従って本発明はライン操業上極めて有
利な合金化処理法と言える。
Because the output is easy to control, alloying can be completed in almost the same time regardless of the basis weight K. Since the furnace temperature is low and cooling by the steel base can be expected, it is possible to Excessive alloying can be suppressed even when the strip is being heated.In contrast, with the conventional direct heating method, only 6cl of alloying is required! If the time is long, the alloying speed will vary significantly depending on the zinc basis weight.Therefore, it is necessary to change the line speed depending on the zinc basis weight. Further, there is a problem that alloying progresses in a steel strip retention furnace where the furnace temperature is as high as 1000° C. or higher, and that alloying progresses excessively when the area weight is small. Therefore, the present invention can be said to be an extremely advantageous alloying treatment method for line operation.

両者の条件で合金化を行なったときの合金層の断面を走
査型電子顕微鏡で観察すると、従来法(560℃に加熱
後5秒均熱、処理時間15秒)と本発明法(レーザ加熱
にて690℃に加熱後3秒均熱、処理時間5秒)によっ
て合金化したものと比較すると1本発明法により短時間
加熱処理であっても、従来の直火加熱によって形成され
た合金層忙匹敵すゐ合金層が形成されることが分かる・ 次に本発明方法を電気亜鉛メツ却ティンに適用した場合
のライン構成を第6図に示す。
Observation of the cross section of the alloy layer when alloyed under both conditions using a scanning electron microscope reveals that the conventional method (heating to 560°C, soaking for 5 seconds, treatment time 15 seconds) and the method of the present invention (laser heating) Compared to the alloy formed by heating to 690°C for 3 seconds, soaking for 3 seconds, and treatment time for 5 seconds), even if the method of the present invention is heat-treated for a short time, the alloy layer formed by conventional direct flame heating is It can be seen that a comparable alloy layer is formed.Next, FIG. 6 shows a line configuration when the method of the present invention is applied to electrolytic zinc oxide tin.

図中(イ)は電解清浄及び酸洗槽、I#は電気メツキ層
、勾はスクラバ、に)はリン酸塩処理槽、(財)紘水洗
檜てあ)、この構成は従来のものと同一である・ 本発明方法においてはスクラバ(2)とリン酸塩処理槽
に)との間にドライヤ(至)とレーザ加熱装置(11)
と冷却装置(32)とを設け、急速加熱を行う。レーず
加熱装置(31) it鋼鋼帯X)の上下面に夫々設け
、独立に制御可能とし、差厚メッキ及び片面メッキ鋼板
に対しても有効に合金化を図ることができるようにしで
ある。
In the figure, (a) is the electrolytic cleaning and pickling tank, I# is the electroplating layer, gradient is the scrubber, and (b) is the phosphate treatment tank.This configuration is the same as the conventional one. In the method of the present invention, a dryer (to) and a laser heating device (11) are installed between the scrubber (2) and the phosphate treatment tank.
and a cooling device (32) to perform rapid heating. The laser heating device (31) is installed on the upper and lower surfaces of the IT steel strip .

電気亜鉛メッキ鋼板の場合、溶融亜鉛メッキ鋼板に比べ
てメッキ層中に合金化を抑制するAlなどを含まない危
め、合金化速jl!がヤや速い。このヒとはインライン
での短時間合金′化に対しては有利で、とくに室温から
の加熱を要する電気亜鉛メッキ鋼板忙ついては加熱時間
が処理時間を規制するから、レーザ加熱によって加熱時
間を短縮した場合、550℃以上に3〜4秒−’−音、
L 員えよっ、所定。
In the case of electrogalvanized steel sheets, compared to hot-dip galvanized steel sheets, the plating layer does not contain Al, which suppresses alloying, and the alloying speed is slower. It's really fast. This method is advantageous for short-time in-line alloying, and the heating time limits the processing time, especially when electrogalvanized steel sheets require heating from room temperature, so laser heating can shorten the heating time. If the temperature exceeds 550°C for 3 to 4 seconds - '- sound,
L: Let's have some members.

合金化を達成することが可能である。このことは第4E
に示す所と何ら変わるものではなく1本発明は電気亜鉛
メッキ鋼板のインライン合金化に有効に適用し得ること
を示しているO 次に本発明方法を実現するためのレーザ加熱による合金
化装置の具体的一実施例を示す。
It is possible to achieve alloying. This is the 4th E.
This shows that the present invention can be effectively applied to in-line alloying of electrogalvanized steel sheets. A specific example will be shown.

第7図はこの合金化装置を溶融亜鉛ライン用のレーザ加
熱式ガルバニール炉として具体化し次ものを示しており
、電気亜鉛メツキラインにおける上記レーザ加熱装置(
31)も基本的な構造は同じである。
Fig. 7 shows the embodiment of this alloying apparatus as a laser-heated galvaneal furnace for a molten zinc line, and shows the following:
31) also has the same basic structure.

図中CF)は炉体であり、この炉体(F)K一対のレー
ザ加熱装置(L)が鋼帯(X)の両側から互い違いに対
向して設置されている・(OSC)はレーザ発振器で6
9、これはコンピュータ(C) Kよ多制御されている
。ま次レーザ加熱装置(L)の近傍には輻射温度計(0
)が備えられてお9、この出力はアンプ(A)を介して
コンピュータ(C) K入力されている・コンピュータ
(C)は温度計(0)からの温度信号のフィードバック
をうけて、鋼帯(X)を所定の設定温度まで加熱するよ
うにレーザ発振@ (OSC)を制御する・レーザ加熱
装置(L)は1台以上何台設けて1良く、また上記構成
の1単位を必要に応じて複数単位設けても良い。
In the figure, CF) is a furnace body, and a pair of laser heating devices (L) are installed alternately facing each other from both sides of the steel strip (X). (OSC) is a laser oscillator. So 6
9. This is controlled by a computer (C). A radiation thermometer (0
) is provided, and this output is input to the computer (C) K via the amplifier (A).The computer (C) receives the feedback of the temperature signal from the thermometer (0), and calculates the temperature of the steel strip. Control the laser oscillation @ (OSC) so as to heat (X) to a predetermined set temperature. ・One or more laser heating devices (L) may be installed, and one unit of the above configuration may be used as needed. A plurality of units may be provided.

なお第8WJは第7図におけるH−m線断面図を示すも
ので、レーザ加熱装置(L) Fiレーザ光を銅帯幅方
向に走査する方法で鋼帯を一禄に加熱する。その場合、
レーザ光照射平面についてはレーザ光0熱エネルギーを
有効に利用するため、レーザ光入射範囲以外を反射鏡C
M)で囲うことが好ましい・ なお、本発明法を実ラインに適用する上で考慮すべき重
畳な点として鋼¥#O輻方向に均′−な合金層を形成せ
しめることがある・とくに広巾の銅帯を46理すること
を前提とすると。
Note that the 8th WJ shows a sectional view taken along the line H-m in FIG. 7, and a laser heating device (L) heats the steel strip to a temperature of 1 yen by scanning an Fi laser beam in the width direction of the copper strip. In that case,
Regarding the laser beam irradiation plane, in order to effectively utilize the zero thermal energy of the laser beam, the area other than the laser beam incident area is covered with a reflecting mirror C.
M) is preferable. When applying the method of the present invention to an actual production line, an additional point that should be taken into account is the formation of a uniform alloy layer in the direction of the steel radius.Especially in wide areas. Assuming that 46 copper strips are to be processed.

レーザ発生部の配置が重要となる・ 第9図はラインにおけるレーず発生部の配列を示したも
Oであるe (AXB)は狭巾鋼帯に対する配列例を、
(C)〜(F)は広巾鋼帯に対する配列例を示す。いず
れも銅帯全WJKおいて均一かつ曳好な合金層を形成さ
せることを狙いとし次もので、本発Wi4においてはい
ずれの方法をも採用出来るものである。を光複数配列の
場合は鋼帯幅に応じて二列以上の任意とする。第9図中
−(4)は銅帯上面加熱用レーザー (tl)は銅帯下
面加熱用レーザである。
The arrangement of the laser generating part is important. Figure 9 shows the arrangement of the laser generating part in the line. (AXB) is an example of the arrangement for a narrow steel strip.
(C) to (F) show examples of arrangement for wide steel strips. All of these methods aim to form a uniform and smooth alloy layer over the entire copper strip WJK, and either method can be adopted in the present Wi4. In the case of multiple light arrays, two or more rows can be used depending on the width of the steel strip. In FIG. 9, (4) is a laser for heating the top surface of the copper strip (tl) is a laser for heating the bottom surface of the copper strip.

なおレーザ発光装置のタイプとしては41に規定はない
が大出力レーザ発光装置としてCOlレーザが好tしい
Although there is no regulation in 41 regarding the type of laser emitting device, a COI laser is preferable as a high output laser emitting device.

以上説明し次ように本発明方法はメッキ面にレーザ光を
照射して短時間加熱処理で合金化処理を行なう九め、溶
融亜鉛メツキラインにおける縦パス長の短縮を可能KL
、ラインのコンパクト化に寄与することはもちろんのこ
と、通板の高速化に対しても有効であり、工業的に極め
て価値の高いものである8
As explained above, the method of the present invention performs alloying treatment by irradiating the plated surface with laser light and heat treatment for a short time, making it possible to shorten the vertical path length in the hot-dip galvanizing line.
Not only does it contribute to making the line more compact, but it is also effective in increasing the speed of sheet threading, making it extremely valuable from an industrial perspective8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の溶融岸鉛メツキラインの構成図、第2図
は本発明方法を適用し九場合の溶融亜鉛メツキラインの
構成図、第3111は合金化処理時間と銅帯温度との関
係を示すグラフ、第4図は会食化温度での保持時間と合
金化温縦との関係を示すグラフ、第*図は直火加熱方式
Oガルバニール炉およびレーザ加熱方式のガルバニール
炉における合金化処理時間とメッキ層中のF・含有量で
評価した合金化率の関係を示すグラフ、第6図は本発明
方法を電気亜鉛メツキラインに適用した場合のライン構
成図、第7図は合金化装置の一実施例を示す概略図、g
sm#:を第7図におけるH−d線断WJ図、第9図は
レーザ発生部の配置例の説明図である。 (転)・・・V−ftJullk万式011ルバ二−ル
F、(31)′・・・レーザ加熱装置。 %軒出願人 日本銅管株式会社 発 明 者   下   村   隆   良問   
      阿   部   雅   樹間     
    細   谷   倫   弘第3図 今慣しに痕吟藺(狭) 第4図 d4eAI−7:−488−TJ’rk’((抄)第5
Figure 1 is a diagram showing the configuration of a conventional molten galvanized line, Figure 2 is a diagram of a molten galvanized line in nine cases applying the method of the present invention, and Figure 3111 shows the relationship between alloying treatment time and copper strip temperature. Graph, Figure 4 is a graph showing the relationship between the holding time at the alloying temperature and the alloying temperature, and Figure * is the graph showing the relationship between the alloying treatment time and the alloying temperature in the direct-fired O-galvaneal furnace and the laser-heated galvaneal furnace. A graph showing the relationship between the alloying rate evaluated by the F content in the layer. Figure 6 is a line configuration diagram when the method of the present invention is applied to an electrolytic galvanizing line. Figure 7 is an example of an alloying device. Schematic diagram showing g
sm#: is a WJ diagram taken along the H-d line in FIG. 7, and FIG. 9 is an explanatory diagram of an example of the arrangement of the laser generating section. (Rotation)...V-ftJullk Manshiki 011 Rubanir F, (31)'...Laser heating device. Applicant: Nippon Doppan Co., Ltd. Inventor: Takashi Shimomura
Masa Abe Kima
Michihiro Hosoya Figure 3. Now customary traces (narrow) Figure 4 d4eAI-7: -488-TJ'rk' ((excerpt) No. 5
figure

Claims (1)

【特許請求の範囲】[Claims] 連続的に鋼帯函に亜鉛メッキを行vh、ついで該メッキ
面にレーず光を履射して急速加熱を行い、骸メツ*im
を会食化処理することを特徴とする亜鉛メッキ鋼板の合
金化処理方法・
Continuously galvanize the steel strip box, then irradiate the plated surface with laser light to rapidly heat it.
An alloying treatment method for galvanized steel sheet, characterized by subjecting it to a galvanizing treatment.
JP1954282A 1982-02-12 1982-02-12 Alloying treatment of galvanized steel plate Pending JPS58141370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1954282A JPS58141370A (en) 1982-02-12 1982-02-12 Alloying treatment of galvanized steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1954282A JPS58141370A (en) 1982-02-12 1982-02-12 Alloying treatment of galvanized steel plate

Publications (1)

Publication Number Publication Date
JPS58141370A true JPS58141370A (en) 1983-08-22

Family

ID=12002196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1954282A Pending JPS58141370A (en) 1982-02-12 1982-02-12 Alloying treatment of galvanized steel plate

Country Status (1)

Country Link
JP (1) JPS58141370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134400A1 (en) * 2006-05-24 2007-11-29 Bluescope Steel Limited Treating al/zn-based alloy coated products
KR100830116B1 (en) * 2001-12-21 2008-05-20 주식회사 포스코 Manufacturing method of galvanized sheet steels with high strength

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830116B1 (en) * 2001-12-21 2008-05-20 주식회사 포스코 Manufacturing method of galvanized sheet steels with high strength
WO2007134400A1 (en) * 2006-05-24 2007-11-29 Bluescope Steel Limited Treating al/zn-based alloy coated products
JP2009537701A (en) * 2006-05-24 2009-10-29 ブルースコープ・スティール・リミテッド Treatment of Al / Zn based alloy coated products
US8475609B2 (en) 2006-05-24 2013-07-02 Bluescope Steel Limited Treating Al/Zn-based alloy coated products

Similar Documents

Publication Publication Date Title
US9115428B2 (en) Method for enhancing corrosion resistance of a metallic coating on a steel strip or plate
EP1359230A1 (en) Production method for steel plate and equipment therefor
JPS62202029A (en) Method and apparatus for treating steel wire
JP6584439B2 (en) Multipurpose processing line for heat treatment and hot dipping of steel strip
JPS58141370A (en) Alloying treatment of galvanized steel plate
JP2022508499A (en) Surface treatment method for electric matte tin-plated products
US2797177A (en) Method of and apparatus for annealing strip steel
GB1260659A (en) Process and apparatus for the production of cold-workable steel
US2172933A (en) Galvanizing process
US2300329A (en) Method of heat treating steel wire and apparatus therefor
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
CN110468436A (en) Surface processing device
US4168995A (en) Steel wire patenting process
JPH08511064A (en) Method and apparatus for continuous treatment of galvanized strip steel
JPH0215156A (en) Alloying treatment for metal hot dipped steel sheet
Tiziani et al. Laser Surface Treatment by Rapid Solidification.(Retroactive Coverage)
JPS5554522A (en) Manufacture of hot dipped steel sheet with superior workability
JP2644513B2 (en) Method for controlling the degree of alloying of galvannealed steel sheet
JP3073629B2 (en) How to strengthen steel
JPH06228790A (en) Method for reflowing thin coating surface density tin electroplated steel strip
JPS61207564A (en) Galvannealing device
RU2055916C1 (en) Method for making zinc-plated metal strips
JPH05156491A (en) Reflow control method for continuous tin plating equipment
JPS62205262A (en) Manufacture of alloyed steel sheet
JPS60145326A (en) Method and installation for continuous annealing of cold rolled steel sheet