JPS5814039A - Electronic beam microanalyzer unit - Google Patents

Electronic beam microanalyzer unit

Info

Publication number
JPS5814039A
JPS5814039A JP56112578A JP11257881A JPS5814039A JP S5814039 A JPS5814039 A JP S5814039A JP 56112578 A JP56112578 A JP 56112578A JP 11257881 A JP11257881 A JP 11257881A JP S5814039 A JPS5814039 A JP S5814039A
Authority
JP
Japan
Prior art keywords
rays
detector
spectral
sample
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56112578A
Other languages
Japanese (ja)
Other versions
JPH0332737B2 (en
Inventor
Mitsuyoshi Sato
佐藤 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Nippon Steel Corp
Original Assignee
Seiko Instruments Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc, Nippon Steel Corp filed Critical Seiko Instruments Inc
Priority to JP56112578A priority Critical patent/JPS5814039A/en
Publication of JPS5814039A publication Critical patent/JPS5814039A/en
Publication of JPH0332737B2 publication Critical patent/JPH0332737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To reliably detect a desired spectral X-rays and to enable to perform a high-precise analysis, by a method wherein each of a primary and a secondary component of spectral X-rays is detected, and an analysis of a sample is conducted based on the ratio of the size of the components to that of the other. CONSTITUTION:The analyzing surface 2a of a sample on a table 1 is scanned by electronic beam 6 from a generating unit 3, and fluoroescence X-rays, irradiated from a sample 2, are separated into spectral components by solar slits 9 and 11. Detectors 22 and 23 are located in series along an advancing direction of spectral X-rays 21 obtained through the slit 11, and a primary and a secondary component of X-rays 21 are individually and simultaneously detected. Detecting outputs D1 and D2 are inputted to crest light discriminating circuits 31 and 32, respectively, and detecting results N1 and N2 are found as N1/N2 by a computing circuit 33. According to the computing results, processing of desired data, such as mapping, on the analysis surfaces 2a takes place.

Description

【発明の詳細な説明】 本発明け、電子ビームマクロアナライザ製雪に関し、更
に詳細に述べると、試料の分析を高い測定精度で行なえ
るようにした電子ビームマクロアナライザ装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to snow making using an electron beam macro analyzer, and more specifically, to an electron beam macro analyzer device that can analyze a sample with high measurement accuracy.

例えば、鋼板等の含有元素のマツピングを行なうため、
従来から、試料を電子ビームにより走査することにより
得られた螢光X線を分光する分光結晶と、この分光結晶
により分テさ′i″したX線を検出するX線検出器とを
備えて成るマクロアナライザ装置が用いられている。
For example, to map the elements contained in steel plates, etc.
Conventionally, an X-ray detector has been equipped with a spectroscopic crystal that separates fluorescent X-rays obtained by scanning a sample with an electron beam, and an X-ray detector that detects the X-rays separated by the spectroscopic crystal. A macro analyzer device consisting of:

この種の従来のマクロアナライザ装置は、第1図に示さ
れるように、テーブル1上に載置された試料2の分析面
2aを電子ビームで走査する穴めの電子ビーム発生装置
3を備えている。電子ビーム発生装置3け、電子銃4か
ら出力される電子を電子レンズ5により集束し、この集
束された電子ビーム6を偏向コイル7に流す電流に従っ
て垂直及び水平走査を行なわせるように構成されている
As shown in FIG. 1, this type of conventional macro analyzer device includes a hole-shaped electron beam generator 3 that scans an analysis surface 2a of a sample 2 placed on a table 1 with an electron beam. There is. A three-piece electron beam generator is configured to focus electrons output from an electron gun 4 using an electron lens 5, and cause the focused electron beam 6 to perform vertical and horizontal scanning according to a current flowing through a deflection coil 7. There is.

分析面2aを電子ビーム6により走査することに分析面
2aより放出された螢光X線8はソーラスリット9を介
して分光結晶10に入射し、ここで反射されて、別のソ
ーラスリット11を介してX線検出器12に入り、電気
パルス信号に変換される。そして、X線検出器12から
のパルス列信号FTは、増幅器13を介して波高分析器
14に入力されて波高弁別され、波高分析器14からの
波高弁別データDは演算回路15に2いて処理され、こ
れにより試料中の着目元素の分布状況に関する分析デー
タを得るように構成されている。
When the analysis surface 2a is scanned by the electron beam 6, the fluorescent X-rays 8 emitted from the analysis surface 2a enter the spectroscopic crystal 10 via the solar slit 9, are reflected there, and pass through another solar slit 11. It enters the X-ray detector 12 via the rays and is converted into an electrical pulse signal. The pulse train signal FT from the X-ray detector 12 is input to the pulse height analyzer 14 via the amplifier 13 and subjected to pulse height discrimination, and the pulse height discrimination data D from the pulse height analyzer 14 is sent to the arithmetic circuit 15 and processed. , thereby obtaining analytical data regarding the distribution of the element of interest in the sample.

ところで、このような構成の電子ビームマクロ。By the way, an electron beam macro with such a configuration.

アナライザ装置においては、ソーラスリット9゜11の
製作上の不完全性、即ち、スリット板の平行度の不完全
性及び積みむらに因2て、電子ビーム6を振った場合に
、Xm検出器12から得られる電気信号の振幅が変化し
てしまうのを避けることができないという問題点を有し
ている。この不具合いを解消するため、一般には、X線
検出器12から出力される着目螢光X線の分光後の一次
成分と二次成分との比はソーラスリットの上述の不完全
性に影響されないという性質を利用して、レシオ法と呼
ばれる方式で螢光xmの分析を行なっているが、従来か
ら用いられているガスフロー型Ar比例計数管による検
出器によっては、高エネルギーX線成分に対する検出効
率が低いので、二次成分の検出値が一次成分の検出値よ
り著しく小さくなり、両者の比の値の統計精度が著しく
低下し、この面から測定精度が低下するという問題点を
有していた。
In the analyzer device, when the electron beam 6 is swung, the Xm detector 12 The problem is that it is impossible to avoid variations in the amplitude of the electrical signal obtained from the In order to eliminate this problem, generally the ratio of the primary component to the secondary component after the spectroscopy of the fluorescent X-ray of interest output from the X-ray detector 12 is not affected by the above-mentioned imperfection of the solar slit. Taking advantage of this property, fluorescence xm is analyzed using a method called the ratio method. Since the efficiency is low, the detected value of the secondary component is significantly smaller than the detected value of the primary component, and the statistical accuracy of the ratio of the two is significantly lowered, resulting in a problem of lower measurement accuracy. Ta.

本発明の目的は、従って、従来技術の上述の欠点を除去
した、高精度で試料の分析を行なうことカテキる電子ビ
ームマクロアナライザ装置を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an electron beam macro analyzer device which eliminates the above-mentioned drawbacks of the prior art and is capable of analyzing samples with high precision.

上記目的を達成するための本発明の%徴は、試料より放
出される螢光X線を分光結晶により分光したのちX線検
出器により電気信号に変換するようにしり電子ビームマ
クロアナライザ装置において、分光されたX線の一次成
分を検出する第1検出器と二次成分を検出する第2検出
器とを、分光X線の入射方向に沿って直列に配設し、分
光結晶からの分光X線の一次成分と二次成分とを、各々
第1検出器と第2検出器とにより別個且つ同時に検出し
、検出された一次及び二次成分の大きさの比を基に試料
の分析を行なうようにした点にある。
A feature of the present invention for achieving the above object is that in an electron beam macro analyzer device, fluorescent X-rays emitted from a sample are separated by a spectroscopic crystal and then converted into electrical signals by an X-ray detector. A first detector that detects the primary component of the spectroscopic X-ray and a second detector that detects the secondary component are arranged in series along the incident direction of the spectroscopic X-ray, and the spectroscopic X-ray from the spectroscopic crystal is The primary component and the secondary component of the line are detected separately and simultaneously by a first detector and a second detector, respectively, and the sample is analyzed based on the ratio of the sizes of the detected primary and secondary components. This is what I did.

第1検出器としてガスフロー型Ar比例計数管を用い、
一方、第2検出器として封入型Xs比例計数管を用いる
ことができ、ガスフロー型Ar比例計数管の一対のマイ
ラ窓を貫通するようにしてガスフロー型Ar比例計数管
を通過した分光X線を、封入型Xs比例計数管にも入射
させることにより、各比例計数管から、各々、分光X線
の一次成分及び二次成分に関する情報を取出すことがで
きる。
Using a gas flow type Ar proportional counter as the first detector,
On the other hand, an enclosed type Xs proportional counter can be used as the second detector, and the spectral X-rays pass through the gas flow type Ar proportional counter by penetrating a pair of mylar windows in the gas flow type Ar proportional counter. By inputting the information into the enclosed Xs proportional counter tube, information regarding the primary component and the secondary component of the spectral X-ray can be extracted from each proportional counter tube.

以下、図示の実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第2図には、本発明による電子ビームマクロアナライザ
装置の一実施例が示されている。この電子ビームマクロ
アナライザ装置20は、電子ビーム発生装置3からの電
子ビーム6により、テーブル1上に載置された試料2の
分析面2aを走査し= 5− これにより、試料2から放射される螢光Xmsをソーラ
スリツ)9.11及び分光結晶板10により分光する点
については、第1図に示しt従来の装置と同一である。
FIG. 2 shows an embodiment of an electron beam macro analyzer device according to the present invention. This electron beam macro analyzer device 20 scans the analysis surface 2a of the sample 2 placed on the table 1 with the electron beam 6 from the electron beam generator 3. The point that the fluorescent light Xms is separated by the solar filter 9.11 and the spectroscopic crystal plate 10 is the same as the conventional apparatus shown in FIG.

従って、第2図中、第1図の各部に対応する部分には同
一の符号を付して説明を省略する。
Therefore, in FIG. 2, the parts corresponding to those in FIG. 1 are given the same reference numerals and their explanations will be omitted.

電子ビームマクロアナライザ装置20は、ソーラスリッ
ト11を介して得られた分光X線21の一次成分と二次
成分とを別個且つ同時に検出するため、分光X線21の
一次成分を検出する第1X線検出器22と分光X線21
の二次成分を検出する第2xm検出器23とが、分光X
線21の進行方向に沿って直列に配設されている。
The electron beam macro analyzer device 20 separately and simultaneously detects the primary component and the secondary component of the spectroscopic X-ray 21 obtained through the solar slit 11. Detector 22 and spectroscopic X-ray 21
The second xm detector 23 detects the secondary component of the spectroscopic
They are arranged in series along the traveling direction of the line 21.

第3図には、第1及び第2Xm検出器22.23の直列
配設状態が詳細に示されている。第1X線検出器22は
、ガスフロー型Ar比例計数管であり、その円筒状ケー
シング24の周壁には各々が厚さ1711rl程度のマ
イラからなる一対の窓25゜26が形成されている。こ
の一対の窓25.26は、ケーシング24の周壁に、中
心軸線をはさん 6− で相対するように形成されており、これらの窓25.2
6は、分光X線21の進行方向に対して直角の向きに配
置されている。従って、分光X線21は、窓25を介し
て一旦第1X線検出器22内に進入した後、窓26を介
して第1X線検出器22の外に抜けることができる。第
1X線検出器22の後側には、第2X線検出器23が、
分光X線21の進行方向に沿って第1X線検出器22と
直列に配設されており、第2X線検出器23の円筒状ケ
ーシング27の周壁に形成されたベリリウム窓28が、
第1X線検出器22の窓26に対向するように設けられ
ている。このため、上述の如くして第1xm検出器22
を貫通した分光X線21は、このベリリウム窓28を介
して第2X線検出器23内に進入することができる。
FIG. 3 shows in detail the serial arrangement of the first and second Xm detectors 22,23. The first X-ray detector 22 is a gas flow type Ar proportional counter tube, and a pair of windows 25 and 26 each made of mylar and having a thickness of about 1711 rl are formed in the peripheral wall of its cylindrical casing 24. The pair of windows 25.26 are formed in the peripheral wall of the casing 24 so as to face each other across the central axis.
6 is arranged perpendicular to the traveling direction of the spectral X-rays 21. Therefore, the spectral X-rays 21 can once enter the first X-ray detector 22 through the window 25 and then escape to the outside of the first X-ray detector 22 through the window 26. A second X-ray detector 23 is located behind the first X-ray detector 22.
A beryllium window 28 is disposed in series with the first X-ray detector 22 along the traveling direction of the spectral X-rays 21, and is formed in the peripheral wall of the cylindrical casing 27 of the second X-ray detector 23.
It is provided so as to face the window 26 of the first X-ray detector 22 . Therefore, as described above, the first xm detector 22
The spectral X-rays 21 that have passed through can enter the second X-ray detector 23 via this beryllium window 28 .

ガスフロー型Ar比例計数管及び封入型Xθ比例計数管
の特性は、第4図に示す通りであり、前者は低エネルギ
ーX線に対して効率が高く、後者は高エネルギX線に対
して効率が高くなっている。
The characteristics of the gas flow type Ar proportional counter tube and the enclosed type Xθ proportional counter tube are as shown in Figure 4. The former has high efficiency against low-energy X-rays, and the latter has high efficiency against high-energy X-rays. Is high.

従って、例えば鋼板中のマンガン、元素の分析を行なう
場合の例を考えると、そのX線強度の分布は第5図に示
す如くなるので、比較的低エネルギーの一次成分をガス
フロー型Ar比例計数管である第1xff)検出器22
により検出し、一方、比較的高エネルギーの二次成分を
封入型X8比例計撒管である第2)l検出器23により
検出することにより、各々の成分を高効率で検出するこ
とができる。
Therefore, for example, if we consider the case of analyzing elements such as manganese in steel sheets, the distribution of X-ray intensity will be as shown in Figure 5. 1st xff) detector 22 which is a tube
On the other hand, each component can be detected with high efficiency by detecting the relatively high-energy secondary components with the second) l detector 23, which is an enclosed X8 proportional meter tube.

従って、各X線検出器22.23からの出力り、 、 
D、は、第6図0 、 (b)に示すようになる。ここ
では、分析すべき元素がMnである場合を例にとって説
明したが、他や元素の場合でも全く同様であり、螢光X
線の一次成分と二次成分とけ波長が倍異なるので、着目
した元素に応じて、各成分に対して有効なXm検出器を
各々選べばよい。
Therefore, the output from each X-ray detector 22, 23 is:
D is as shown in FIG. 6, 0, (b). Here, we have explained the case where the element to be analyzed is Mn, but the same applies to other elements as well.
Since the wavelengths of the primary and secondary components of the line are twice as different, it is sufficient to select an effective Xm detector for each component depending on the element of interest.

82図に戻ると、このようにして各Xm検出器22.2
3から出力された信号り8.込は対応して設けられた増
幅器29.30により増幅された後波高弁別回路31.
32に各々入力され、ここでMn−にα(n=1 )の
強度と、Mn−Ka (n=2 )の強度とが各々検出
される。この検出結果N1. N、は演算回路33に入
力され、ここで、従来と同じようにして両人力Nl *
 Nl+の比が演算され、この演算結果に従って、分析
面2aのマツピング等、所要のデータ処理を行なうこと
ができる。
Returning to Figure 82, in this way each Xm detector 22.2
8. The signal output from 3. After being amplified by the correspondingly provided amplifiers 29 and 30, the wave height discrimination circuit 31.
32, where the intensity of α (n=1) and the intensity of Mn-Ka (n=2) are respectively detected for Mn-. This detection result N1. N, is input to the arithmetic circuit 33, where, in the same way as in the conventional case, both human forces Nl *
The ratio of Nl+ is calculated, and necessary data processing such as mapping of the analysis surface 2a can be performed according to the calculation result.

このような構成によると、分光X線の各次数の成分を検
出するのに、夫々専用のX線検出器を設けて高効率で検
出することができるので、N+/Ntの値をほどよい値
とすることができ、従来のようにN、の値が極めて小さ
くなってしまうのを有効に防止することができる。この
結果、N、/’tkの値の統計誤差が小さくなり、高い
測定精度で試料の元素分析を行なうことができ、信頼性
の高いデータを提供することができる。
According to this configuration, each order of the component of the spectral X-ray can be detected with a dedicated X-ray detector and can be detected with high efficiency, so that the value of N+/Nt can be set to an appropriate value. Therefore, it is possible to effectively prevent the value of N from becoming extremely small as in the conventional case. As a result, statistical errors in the values of N and /'tk are reduced, elemental analysis of the sample can be performed with high measurement accuracy, and highly reliable data can be provided.

上記笑施例では、ガスフロー型Ar比例計数管と封入型
Xθ比例計数管との組合せにより、広範囲の波長に亘っ
て高効率で目的のX線を検出することができるようにし
たが、本発明はこの組合せに限定されるものではなく、
例えば、第1及び第2X線検出器を夫々1j1m箱とし
てもよく、分析の 9− 目的に応じて適宜の組合せを定めることができる。
In the above example, the target X-rays can be detected with high efficiency over a wide range of wavelengths by combining a gas flow type Ar proportional counter tube and an enclosed type Xθ proportional counter tube. The invention is not limited to this combination;
For example, the first and second X-ray detectors may each be a 1m box, and an appropriate combination can be determined depending on the purpose of analysis.

本発明によれば、上述の如く、所望の分光X線を確実に
検出し、高測定精耽で試料の分析を行なうことができる
優f″LfC効果を奏する。
According to the present invention, as described above, desired spectral X-rays can be reliably detected and a sample can be analyzed with high precision, resulting in excellent f''LfC effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電子ビームマクロアナライザ装置の概略
構成図、第2図は本発明による電子ビームマクロアナラ
イザ装置の概略構成図、第3図は第2図に示し′fcX
線検出器の配設状態を示す拡大斜視図、第4図は第2図
のXm検出器の特性を示すグラフ、第5図はマンガンの
螢光X線の分光スペクトラムを示すグラフ、第6南(a
) *第6図(b)は第2図のX線検出器の出力を夫々
示すグラフである。 1・・・テーブル 2・・・試料 6・・・電子ビーム 8・・・螢光X線 1ω・・・分光結晶板 10− 20・・・’F14子ビー広ビームマクロアナライザ装
置21分光Xm 22・・・第1X線検出器 23・・・第2X線検出器 31.52・・・波高弁別回路 33・・・演算回路 以   上 11−
FIG. 1 is a schematic diagram of a conventional electron beam macro analyzer device, FIG. 2 is a schematic diagram of an electron beam macro analyzer device according to the present invention, and FIG. 3 is a schematic diagram of a conventional electron beam macro analyzer device.
Fig. 4 is a graph showing the characteristics of the Xm detector shown in Fig. 2, Fig. 5 is a graph showing the spectroscopic spectrum of fluorescent X-rays from manganese, (a
) *Figure 6(b) is a graph showing the outputs of the X-ray detectors in Figure 2. 1...Table 2...Sample 6...Electron beam 8...Fluorescent X-ray 1ω...Spectroscopic crystal plate 10-20...'F14 Baby wide beam macro analyzer device 21 Spectral Xm 22 ...First X-ray detector 23 ... Second X-ray detector 31.52 ... Wave height discrimination circuit 33 ... Arithmetic circuit Above 11-

Claims (1)

【特許請求の範囲】[Claims] 試料より放出される螢光X線を分光結晶により分光した
のち、Xa検出器により電気信号に変換するようにしり
電子ビームマクロアナライザ装置において、分光された
Xaの一次成分を検出する第1検出器と二次成分を検出
する第2検出器とが分光xmの入射方向に沿って直列に
配設され、分光結晶により分光されxxgの一次成分と
二次成分とを、夫々、第1検出器と第2検出器とにより
別個且つ同時に検出し、検出された一次及び二次成分の
大きさの比を基に試料の分析を行なうようにしたことを
f¥j徴とする電子ビームマクロアナライザ装装置。
A first detector that detects the primary component of Xa that has been spectrally separated in an electron beam macro analyzer device in which fluorescent X-rays emitted from a sample are spectrally separated by a spectroscopic crystal and then converted into electrical signals by an Xa detector. and a second detector for detecting the secondary component are arranged in series along the incident direction of the spectrum xm, and the primary component and the secondary component of xxg, which are separated by the spectroscopic crystal, are detected by the first detector and the secondary component, respectively. An electron beam macro analyzer equipment characterized by detecting the components separately and simultaneously with a second detector and analyzing the sample based on the ratio of the sizes of the detected primary and secondary components. .
JP56112578A 1981-07-17 1981-07-17 Electronic beam microanalyzer unit Granted JPS5814039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112578A JPS5814039A (en) 1981-07-17 1981-07-17 Electronic beam microanalyzer unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112578A JPS5814039A (en) 1981-07-17 1981-07-17 Electronic beam microanalyzer unit

Publications (2)

Publication Number Publication Date
JPS5814039A true JPS5814039A (en) 1983-01-26
JPH0332737B2 JPH0332737B2 (en) 1991-05-14

Family

ID=14590222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112578A Granted JPS5814039A (en) 1981-07-17 1981-07-17 Electronic beam microanalyzer unit

Country Status (1)

Country Link
JP (1) JPS5814039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135850A (en) * 1983-12-26 1985-07-19 Shimadzu Corp Method and apparatus for state mapping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610237A (en) * 1979-07-04 1981-02-02 Seiko Instr & Electronics Ltd Track element analyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610237A (en) * 1979-07-04 1981-02-02 Seiko Instr & Electronics Ltd Track element analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135850A (en) * 1983-12-26 1985-07-19 Shimadzu Corp Method and apparatus for state mapping
JPH0247698B2 (en) * 1983-12-26 1990-10-22 Shimadzu Corp

Also Published As

Publication number Publication date
JPH0332737B2 (en) 1991-05-14

Similar Documents

Publication Publication Date Title
JP5320807B2 (en) Wavelength dispersive X-ray spectrometer
US5598451A (en) Apparatus for measuring the sulfur component contained in oil
GB1525488A (en) Method and apparatus for spectrometric analysis of fine grained minerals and other substances using an electron bea
KR970000785B1 (en) X-ray spectrometer
US5430786A (en) Element analyzing method
US5050991A (en) High optical density measuring spectrometer
US6310935B1 (en) Fluorescent x-ray analyzer
US2908821A (en) Apparatus for spectrochemical analysis and structural analysis of solids, fluids andgases by means of x-rays
EP0088092B1 (en) Methods and apparatus for x-ray analysis of rapidly moving multicomponent materials
US3397312A (en) Laminated X-ray analyzing crystal wherein the respective laminations have different lattice spacings
JPH10206356A (en) Fluorescent x-ray analysis device
JP2002189004A (en) X-ray analyzer
JPS5814039A (en) Electronic beam microanalyzer unit
DE2849379A1 (en) Acousto=optical gas analyser - having black body source, chopper, absorption chamber with gas sample, filter and microphone signal detector
US3376415A (en) X-ray spectrometer with means to vary the spacing of the atomic planes in the analyzing piezoelectric crystal
JP2688349B2 (en) Spectrum display device for X-ray microanalyzer etc.
KR0172623B1 (en) Method and apparatus for analyzing contaminative element concentrations
US3102155A (en) Background compensation for spectrometers used in quantitative spectrochemical studies
Lifshin et al. X-ray spectral measurement and interpretation
JPH0921766A (en) X-ray analyzing method
CN208063139U (en) A kind of solar cell test sub-ray spectrometer
WO2022162975A1 (en) X-ray fluorescence analysis device
JPS5814038A (en) Analalyzer for steel plate employing electronic beam microanalyzer
USH922H (en) Method for analyzing materials using x-ray fluorescence
JPH0238851A (en) Qualitative analysis for x-ray microanalyzer of the like