JPS58140398A - Vapor growth device for group 3-5 compound semiconductor - Google Patents
Vapor growth device for group 3-5 compound semiconductorInfo
- Publication number
- JPS58140398A JPS58140398A JP1910982A JP1910982A JPS58140398A JP S58140398 A JPS58140398 A JP S58140398A JP 1910982 A JP1910982 A JP 1910982A JP 1910982 A JP1910982 A JP 1910982A JP S58140398 A JPS58140398 A JP S58140398A
- Authority
- JP
- Japan
- Prior art keywords
- raw materials
- valve
- chamber
- gaseous
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/08—Reaction chambers; Selection of materials therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は厘−V族化合物半導体の多層構造の気相成長に
有効な気相成長装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus that is effective for vapor phase growth of a multilayer structure of Rin-V group compound semiconductors.
曹−V族化合物半導体あるいはその混晶半導体はマイク
ロ波デバイスやオプトエレクトシエクスデバイス用の材
料として重at位置を占めている。BACKGROUND ART Carbon-V group compound semiconductors or their mixed crystal semiconductors are playing an important role as materials for microwave devices and optoelectronic devices.
これらの材料は基板結晶の上に液相成長あるいは気相成
長によってエピタキシャル成長されるが、その成長法は
デバイス作成の上で障害とならぬように1成長速度や結
晶組成などの各パラメタを再現性良く実現できるもので
なければなら表い。また、生産性の高い気相成長によっ
てデバイスの要求する多層構造を作るためには、層と層
の間に存在する組成や不純物濃度の変化する11移層を
薄くする必要がある。These materials are epitaxially grown on a substrate crystal by liquid phase growth or vapor phase growth, but the growth method requires reproducibility of each parameter such as growth rate and crystal composition so that it does not interfere with device creation. If it is something that can be well realized. In addition, in order to create a multilayer structure required by a device by highly productive vapor phase growth, it is necessary to reduce the thickness of the 11 transition layers that exist between layers and whose composition and impurity concentration vary.
上記目的のために多層構造の気相成長法として■ガス組
成が変化する間、基板結晶を原料ガスから隔離する方法
、\、■複数の成長室を備える反応管内おいて、基板結
晶をひとつの成長室から他の成゛長室に移動させる方法
、が用いられてきた。亀1の方法は基板結晶を隔離して
いる間に成長層が劣化する欠点があった。第2の方法は
定常状態となったII数の成長室間を基板結晶が移動す
るので。For the above purpose, as a vapor phase growth method for a multilayer structure, ■ a method of isolating the substrate crystal from the source gas while the gas composition changes, ■ a method of separating the substrate crystal from the source gas in a reaction tube equipped with multiple growth chambers. Transfer from one growth chamber to another has been used. Kame 1's method had the drawback that the grown layer deteriorated while the substrate crystal was isolated. In the second method, the substrate crystal moves between II number of growth chambers in a steady state.
成長を中断することなく多層構造を成長させることがで
きる。そのため成長層の劣化がなく、デバイスにした時
に動作層となる層をただちに他の成長層で被うため、ク
リーンな界面が得られ、また崖移層も充分薄くできる。Multilayer structures can be grown without interrupting growth. Therefore, there is no deterioration of the grown layer, and the layer that becomes the active layer is immediately covered with another grown layer when it is made into a device, so a clean interface can be obtained and the cliff transition layer can be made sufficiently thin.
しかし、基板結晶の直径の少なくとも2倍以上の直径の
反応管が必要となる欠点があった。たとえば、2インチ
のウェハを取扱う場合反応管直径は105+以上となり
、気相成長のために必要な温度プロファイルを得ること
が非常に困−になったり、温度の断面内不均−畔が発生
しやすくなる等の欠点があった。However, there is a drawback that a reaction tube with a diameter at least twice the diameter of the substrate crystal is required. For example, when dealing with 2-inch wafers, the diameter of the reaction tube is 105+ or more, which makes it extremely difficult to obtain the temperature profile necessary for vapor phase growth, and temperature unevenness within the cross section may occur. There were drawbacks such as making it easier.
本発明は以上の従来の気相成長装置の持つ欠点を除去す
るためになされたものであって、■成長した結晶を高品
質とするため、成長を中断することなく多層構造を気相
成長させることができ、■従来の複数の成長室を持つ方
法に比べて、基板結・晶の直径を少なくとも2倍に大面
積化できるという長所を持つ。このため、高品質の結晶
を生産性良く成長させることができるものである。The present invention has been made to eliminate the above-mentioned drawbacks of conventional vapor phase growth apparatuses, and includes: 1. In order to improve the quality of the grown crystal, a multilayer structure can be grown in vapor phase without interrupting the growth; 1) It has the advantage that the diameter of the substrate crystal can be at least twice as large as the conventional method using multiple growth chambers. Therefore, high quality crystals can be grown with good productivity.
本発明によれば、複数の原料ガス合成室と単一の成長室
と廃ガスの排出管とを備えた反応管において、原料ガス
合成室と成長室とを隔てる弁を持つことを特徴とする一
−V族化合物牛導体の気相成長装置が得られる。According to the present invention, a reaction tube including a plurality of raw material gas synthesis chambers, a single growth chamber, and a waste gas discharge pipe is characterized by having a valve separating the raw material gas synthesis chamber and the growth chamber. A device for vapor phase growth of a 1-V group compound conductor is obtained.
以下本発明について、その概念を示す図面を参照して説
明する。The present invention will be described below with reference to the drawings illustrating its concept.
第1図は本発明の基本的な概念を説明するための図であ
る。反応管は第1の原料ガス合成室lと第2の原料ガス
合成室2とを備え、単一の成長室3には基板ホルダー4
に設置された基板結晶5が置かれる。それぞれの原料ガ
ス合成室と成長室の間には弁6があり、棒7によって弁
の開閉が行なわれる。FIG. 1 is a diagram for explaining the basic concept of the present invention. The reaction tube is equipped with a first raw material gas synthesis chamber 1 and a second raw material gas synthesis chamber 2, and a single growth chamber 3 has a substrate holder 4.
A substrate crystal 5 installed on the substrate is placed. There is a valve 6 between each raw material gas synthesis chamber and growth chamber, and the valve is opened and closed by a rod 7.
それぞれの原料ガス合成室内のガス組成が安定するまで
は弁6を閉め、バルブ8を開けることによって、核原料
ガスを基板結晶に接触させることなく、原料ガス排気管
9より排気する。原料ガス組成が安定するのを待って、
2つの弁と2つのパルプを同時に操作することにより、
第1の原料ガス合成室のガスを停止(あるいは供給)シ
、同時に第2の原料ガス合成室のガスを供給(あるいは
停止)することによって基板結晶に接触する原料ガスは
速やかに切替えられる。弁と基板結晶の間にある空間で
の、2つの原料ガスの混合によって形成される遡移層の
厚さは該空間を流れるガス流速と弁−結晶間の距離によ
って決定される。一般に用いられる流速として10m/
mの場合、この距離が5倒程度ならば、ガス組成は1秒
程度で安定状態に達し、l!移層の厚さとして100〜
200X程度の極めて薄いものが可能である。By closing the valve 6 and opening the valve 8 until the gas composition in each source gas synthesis chamber is stabilized, the nuclear source gas is exhausted from the source gas exhaust pipe 9 without contacting the substrate crystal. Wait until the raw material gas composition stabilizes,
By operating two valves and two pulps at the same time,
By stopping (or supplying) the gas in the first raw material gas synthesis chamber and simultaneously supplying (or stopping) the gas in the second raw material gas synthesis chamber, the raw material gas in contact with the substrate crystal can be quickly switched. The thickness of the retrograde layer formed by mixing the two source gases in the space between the valve and the substrate crystal is determined by the gas flow rate flowing through the space and the distance between the valve and the crystal. Generally used flow velocity is 10m/
In the case of m, if this distance is about 5 degrees, the gas composition will reach a stable state in about 1 second, and l! 100~ as thickness of transfer layer
An extremely thin one of about 200X is possible.
成長を終了したガスはガスの排気管10より反応管外へ
排出される。The gas that has completed growth is exhausted from the reaction tube through the gas exhaust pipe 10.
弁と棒は高純度を要求されるため反応管と同一材質の高
純度の石英製を用いることが望ましいが弁の加工がより
容易な高純度のカーボン製を用いても良い。カーボン製
の弁の場合には操作が滑らかとなる利点もある。Since the valve and rod are required to have high purity, it is desirable to use high-purity quartz, which is the same material as the reaction tube, but the valve may also be made of high-purity carbon, which is easier to process. Carbon valves also have the advantage of smooth operation.
第1図においては弁の操作法として1式のものを説明し
たが%@2図で示すようなスライド式の弁を用いて効果
の本質においては何等変るところはない。In Fig. 1, one type of valve operation method was explained, but the essence of the effect is not changed in any way by using a slide type valve as shown in Fig. %@2.
次に本発明について、実施例を示す図面を用いて説明す
る。第3図は本発明をInGaAsP/ImPのDH構
造の成長に応用した例である。原料ガスの合成方法はハ
イドライド法を用いた。すなわち画線原料のInl 1
とGa12はそれぞれソース反応室13内の石英製ポー
)14に収納された。HClガスの導入管15より水素
ガスで希釈されたHClガスを導入し、800℃で反応
させて%Ga1jあるいはIn0nとして下流へ輸率し
た。上段の第1の原料ガス合成室にはバイパス管16よ
り水素で希釈されたPR,ガスとム畠H,ガスを導入し
た。Next, the present invention will be explained using drawings showing examples. FIG. 3 shows an example in which the present invention is applied to the growth of a DH structure of InGaAsP/ImP. The hydride method was used to synthesize the raw material gas. In other words, Inl 1 of the drawing raw material
and Ga12 were each housed in a quartz port 14 in the source reaction chamber 13. HCl gas diluted with hydrogen gas was introduced through the HCl gas introduction pipe 15, reacted at 800° C., and transferred downstream as % Ga1j or In0n. PR, gas diluted with hydrogen, and Muhata H, gas were introduced into the first raw material gas synthesis chamber in the upper stage through the bypass pipe 16.
下段の第2の原料ガス合成室にはバイパス管16より水
素で希釈されたPH,ガスを導入した。また、原料ガス
合成室内の流れを調節するために水素の導入管17より
水素ガスを導入した。高純度カーボン製の弁6は高純度
石英製の俸7に連結され、棒はゴム製蛇腹18によって
完全にシールされた。PH and gas diluted with hydrogen were introduced from the bypass pipe 16 into the second raw material gas synthesis chamber in the lower stage. Further, hydrogen gas was introduced from the hydrogen introduction pipe 17 in order to adjust the flow in the raw material gas synthesis chamber. A valve 6 made of high purity carbon was connected to a bale 7 made of high purity quartz, and the rod was completely sealed by a rubber bellows 18.
DH構造の成長は次のようにして行なった。The DH structure was grown as follows.
InP基板結晶を基板ホルダーにセットする。弁とバル
ブの操作によって第1の原料ガス合成室から水素ガス総
流量1800cc/min+ PHsガス5cc/m
inのガスを送り、基板結晶表面の熱分解を抑制しなが
ら成長温度680℃まで昇温する。この間、第2の原料
ガス合成室では、水素ガス総流量1800cc/min
、HCl(In)ガス5 cc/min+PH,ガス5
ee/min を流しInP 気相成長に必要な合成
ガスを準備する。ただし、合成されたガスは原料ガスの
排気管を通して排気する。第2の原料ガス合成室のIn
P成長用ガス組威が安定した時点で弁とバルブを操作し
、ガスの流れを切替えてInPを成長させる。通常この
過程には15〜20分間が必要である。成長室でInP
の成長が進行している間、@1の原料ガス合成室ではH
O/(In)を6.0 cc/min、H(J(Ga)
を0.35ec/min、 AsH3を1.8 cc/
min、 PH3を4.0cc/winとし、水素ガス
総流量を1800cc/minとしてIIlIGmAs
F の成長の原料ガス組成とする。Set the InP substrate crystal on the substrate holder. By operating the valves, the total flow rate of hydrogen gas from the first raw material gas synthesis chamber is 1800cc/min + PHs gas 5cc/m
The temperature is increased to a growth temperature of 680° C. while suppressing thermal decomposition of the substrate crystal surface. During this time, in the second raw material gas synthesis chamber, the total flow rate of hydrogen gas was 1800 cc/min.
, HCl(In) gas 5 cc/min+PH, gas 5
ee/min is supplied to prepare the synthesis gas necessary for InP vapor phase growth. However, the synthesized gas is exhausted through the raw material gas exhaust pipe. In of the second raw material gas synthesis chamber
When the P growth gas composition becomes stable, the valves are operated to switch the gas flow and grow InP. This process usually requires 15-20 minutes. InP in the growth chamber
While the growth of
O/(In) at 6.0 cc/min, H(J(Ga)
0.35ec/min, AsH3 1.8cc/
min, PH3 is 4.0cc/win, hydrogen gas total flow rate is 1800cc/min, IIIlIGmAs
The raw material gas composition for the growth of F.
上記原料ガスは原料ガス排気管より排気して原料ガス組
成が安定化するのを待つ。所望の厚さのInPを成長さ
せ、かつs InGaAsF の原料ガス組成が安定
した後、弁とバルブの操作によってInP成長の原料ガ
スをInGaAaP成長の原料ガスに切替える。200
0 Xの厚さのInGaAsPが成長した後、再び弁と
バルブの操作によってInPを成長させる。このように
してInGaAaPをInPで挾んだDH構造が成長し
た。The raw material gas is exhausted from the raw material gas exhaust pipe and waits until the raw material gas composition is stabilized. After growing InP to a desired thickness and stabilizing the source gas composition of s InGaAsF , the source gas for InP growth is switched to the source gas for InGaAaP growth by operating the valves. 200
After InGaAsP is grown to a thickness of 0.times., InP is grown again by operating the valve. In this way, a DH structure in which InGaAaP was sandwiched between InP was grown.
このようにして作成したDH構造からレーザ・ダイオー
ドを試作したところ1発振しきい値電流150mA、
外部微分量子効率40%の良好なものが得られた。ま
た、成長室の外径80■φの反応管を用いることによっ
て、2インチの径の基板結晶まで扱うことができ、本発
明の効果は明らかであった。When a laser diode was prototyped from the DH structure created in this way, the threshold current for one oscillation was 150 mA.
A good external differential quantum efficiency of 40% was obtained. Furthermore, by using a reaction tube with an outer diameter of 80 .phi. for the growth chamber, it was possible to handle substrate crystals up to a diameter of 2 inches, and the effects of the present invention were clear.
原料ガスの合成法は上で説明したようなハイド・ライド
法だけでなく、Ga/AsCJ’、/H,のような原料
とガスの組合せによって行なうハライド法を用イても良
い。ハライド法は原料純度の高いものが使用できるので
、高純度結晶を必要とする受光素子用の結晶の成長に用
いることができる。The method for synthesizing the raw material gas is not limited to the hydride-ride method as explained above, but may also be a halide method using a combination of raw materials and gases such as Ga/AsCJ', /H. Since the halide method can use raw materials with high purity, it can be used to grow crystals for light-receiving elements that require high-purity crystals.
第1図は本発明の詳細な説明するための図で弁に1式の
ものを用いた場合を示す、第2図は弁をスライド式とし
た場合を示す、第3図は本発明をInGaAsP/In
P DH構造の成長に応用した実施例を説明するための
図である。
図において
1・・・・・・第1の原料ガス合成室
2・・・・・第2の原料ガス合成室
3・・・・・・成長室
4・・・・・・基板ホルダー
5・・・・・・基板結晶
6・・・・・・弁
7・・・・・・欅
8・・・・・・バルブ
9・・・・・・原料ガス排気管
10・°°ガスの排気管
11・・・In
12・・・G&
13゛・・ソース反応室
14・・・石英製ボート
15・・・Holガスの導入管
16・・・バイパス管
17・・・水素の導入管
18・・・ゴム製蛇腹
オ 1 ロ
才3図Fig. 1 is a diagram for explaining the present invention in detail, and shows the case where one type of valve is used. Fig. 2 shows the case where the valve is a sliding type. Fig. 3 shows the case where the valve is a sliding type. /In
FIG. 3 is a diagram for explaining an example applied to the growth of a PDH structure. In the figure, 1...First source gas synthesis chamber 2...Second source gas synthesis chamber 3...Growth chamber 4...Substrate holder 5... ... Substrate crystal 6 ... Valve 7 ... Keyaki 8 ... Valve 9 ... Raw material gas exhaust pipe 10 - °° gas exhaust pipe 11 ...In 12...G & 13゛...Source reaction chamber 14...Quartz boat 15...Hol gas introduction pipe 16...Bypass pipe 17...Hydrogen introduction pipe 18... Rubber bellows size 1 size 3 figures
Claims (5)
ガスの排出管とを備えた反応管において、原料ガス合成
室と成長室とを隔てる弁を持つことを特徴とする璽−V
族化合物半導体の気相成長装置。(1) A seal characterized by having a valve separating the raw material gas synthesis chamber and the growth chamber in a reaction tube equipped with eleven raw material gas synthesis chambers, a single growth chamber, and a waste gas discharge pipe. V
Vapor phase growth equipment for group compound semiconductors.
の範囲第1項記載の■−v族化合物半導体の気相成長装
置。(2) The vapor phase growth apparatus for a -V group compound semiconductor according to claim 1, wherein the valve is made of quartz.
請求の範囲第1項記載の■−v族化合物半導体の気相成
長装置。(3) The vapor phase growth apparatus for group (1)-v compound semiconductors as set forth in claim 1, wherein the valve is made of carbon.
請求の範囲第1項記載の曹−V族化合物半導体の気相成
長装置。(4) The vapor phase growth apparatus for a carbonate-V group compound semiconductor according to claim 1, wherein the valve is of a sliding type.
求の範囲第1項記載のm−v族化合物半導体の気相成長
装置。(5) The vapor phase growth apparatus for an m-v group compound semiconductor according to claim 1, wherein the valve is a funeral valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1910982A JPS58140398A (en) | 1982-02-09 | 1982-02-09 | Vapor growth device for group 3-5 compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1910982A JPS58140398A (en) | 1982-02-09 | 1982-02-09 | Vapor growth device for group 3-5 compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58140398A true JPS58140398A (en) | 1983-08-20 |
Family
ID=11990305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1910982A Pending JPS58140398A (en) | 1982-02-09 | 1982-02-09 | Vapor growth device for group 3-5 compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58140398A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6135498A (en) * | 1984-07-27 | 1986-02-19 | 松下電器産業株式会社 | Voice recognition equipment |
CN105908254A (en) * | 2016-06-12 | 2016-08-31 | 中国科学院上海技术物理研究所 | Casing pipe type cavity structure for preparing semiconductor material |
-
1982
- 1982-02-09 JP JP1910982A patent/JPS58140398A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6135498A (en) * | 1984-07-27 | 1986-02-19 | 松下電器産業株式会社 | Voice recognition equipment |
CN105908254A (en) * | 2016-06-12 | 2016-08-31 | 中国科学院上海技术物理研究所 | Casing pipe type cavity structure for preparing semiconductor material |
CN105908254B (en) * | 2016-06-12 | 2018-07-06 | 中国科学院上海技术物理研究所 | A kind of bushing type cavity body structure for being used to prepare semi-conducting material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4368098A (en) | Epitaxial composite and method of making | |
US5348911A (en) | Material-saving process for fabricating mixed crystals | |
US4404265A (en) | Epitaxial composite and method of making | |
JPH0691020B2 (en) | Vapor growth method and apparatus | |
US5817538A (en) | Method of making quantum box semiconductor device | |
JPH0429313A (en) | Device for producing semiconductor crystal | |
KR100497262B1 (en) | Epitaxy Method on Vapor Phase of Compound Semiconductor | |
CA2285788C (en) | Method of fabricating film for solar cells | |
Reep et al. | Morphology of organometallic CVD grown GaAs epitaxial layers | |
JPS634625A (en) | Low temperature chemical evaporation of metal organic material of group ii-vi | |
JPS58140398A (en) | Vapor growth device for group 3-5 compound semiconductor | |
JPS63112A (en) | Semiconductor manufacture device | |
US3518115A (en) | Method of producing homogeneous oxide layers on semiconductor crystals | |
US4945857A (en) | Plasma formation of hydride compounds | |
JPS6344988Y2 (en) | ||
JPH0323624A (en) | Method and apparatus for vapor growth | |
JPH0758693B2 (en) | Molecular beam crystal growth method | |
JPS5984417A (en) | Iii-v family mixed crystalline semiconductor device | |
JPH0418655Y2 (en) | ||
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JPH02184019A (en) | Vapor growth device | |
JPS61111518A (en) | Vapor phase epitaxial growth equipment | |
JPH0222814A (en) | Manufacture of compound semiconductor device | |
JPS59170000A (en) | Device for crystal growth | |
JPS61151093A (en) | Vapor-phase epitaxial growth of semiconductor of group iii-v compound |