JPS58138445A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS58138445A
JPS58138445A JP2119882A JP2119882A JPS58138445A JP S58138445 A JPS58138445 A JP S58138445A JP 2119882 A JP2119882 A JP 2119882A JP 2119882 A JP2119882 A JP 2119882A JP S58138445 A JPS58138445 A JP S58138445A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducers
transducer
circuit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2119882A
Other languages
Japanese (ja)
Other versions
JPH0152021B2 (en
Inventor
弘道 菊地
高橋 邦広
那須 広三
村山 広志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2119882A priority Critical patent/JPS58138445A/en
Publication of JPS58138445A publication Critical patent/JPS58138445A/en
Publication of JPH0152021B2 publication Critical patent/JPH0152021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は超音波診断装置、特に配列された複数の超音波
振動子を有し振動子面から被検体に向は超廿波ビームを
送受信しかつこの送受信が振動子面とほぼ平行に移動す
る複数回の連続した走査となるよう電子走査制御される
超音波診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic diagnostic apparatus, and in particular, has a plurality of arranged ultrasonic transducers, and transmits and receives an ultrasonic beam from the transducer surface toward a subject, and this transmission and reception is carried out by the transducer. The present invention relates to an ultrasonic diagnostic apparatus that is electronically scan-controlled so as to perform multiple consecutive scans that move approximately parallel to a plane.

近年、超音波を利用して診断を行う超音波診断装置が広
く用いられている。この超音波診断装置は体内の組織や
臓器が異なる音響的特性を有することを利用している。
In recent years, ultrasonic diagnostic devices that perform diagnosis using ultrasound have been widely used. This ultrasonic diagnostic device utilizes the fact that tissues and organs within the body have different acoustic characteristics.

すなわち、超音波をごく短時間だけ体内に放射すると、
超音波が人体組織の中を伝搬する途中で異なった組織の
境界から一部分が反射して返ってくる。超音波が体内を
伝搬するのに時間がかかるから、超音波の発射点に近い
所からの反射波は早く、遠い所からの反射波は遅れて返
ってくる。超音波パルスの放射は一定周期で繰り返され
るが、超音波は波長が短いので一方向へ集中して放射す
ることができ、このように、超音波パルスが体内を伝搬
する途中で次々と発生する反射エコーを検出し、ブラウ
ン管などに表示すれば、体内組織の音響的特性の分布を
表示することができる。その際、健全な組織と腫瘍組織
等は音響的特性が異なるので、ブラウン管上に表示され
たパターンから、組織内に存在する異常の有無およびそ
の位置を知ることができる。
In other words, when ultrasonic waves are emitted into the body for a very short period of time,
As ultrasound waves propagate through human tissues, some of them are reflected back from the boundaries of different tissues. Because it takes time for ultrasound to propagate within the body, waves reflected from places close to the ultrasound emission point are returned quickly, and waves reflected from places far away are delayed. The emission of ultrasonic pulses is repeated at regular intervals, but since ultrasonic waves have short wavelengths, they can be concentrated and emitted in one direction, and in this way, ultrasonic pulses are generated one after another as they propagate through the body. By detecting reflected echoes and displaying them on a cathode ray tube, it is possible to display the distribution of acoustic characteristics in body tissues. At this time, since healthy tissue and tumor tissue have different acoustic characteristics, it is possible to know the presence or absence of an abnormality within the tissue and its location from the pattern displayed on the cathode ray tube.

第1図には、従来用いられていた電子走査型の超音波診
断装置が示されそおり、配列された複数個の振動子10
−1.10−2.・・・10−nを有するトランスデユ
ーサ12を備え、このトランスデユーサ12の撮動子1
0面から前述した超音波ビームの送受信を行う。このよ
うな超音波ビームの送受信は各振動子10−1.10−
2.・・10−nに対応して設けられた送受波器14−
1 、14−2.・・・14−nを送信トリガ制御回路
16または超音波信号制御回路18で電子走査制御する
ことにより行われる。第2図および第3図には、この電
子走査制御が示されている。
FIG. 1 shows a conventionally used electronic scanning type ultrasonic diagnostic device, in which a plurality of transducers 10 are arranged.
-1.10-2. ...10-n, and the camera element 1 of this transducer 12
Transmission and reception of the ultrasonic beam described above is performed from the zero plane. Transmission and reception of such ultrasonic beams is performed by each transducer 10-1.10-
2.・・Transducer/receiver 14- provided corresponding to 10-n
1, 14-2. ...14-n by electronic scanning control by the transmission trigger control circuit 16 or the ultrasonic signal control circuit 18. This electronic scanning control is illustrated in FIGS. 2 and 3.

すなわち、第2図に示すように、振動子10面から選択
された複数の振動子に対し遅延量の異なる適当な励振制
御を行い、励振される振動子10の中心の遅延値を大き
くすることにより、振動子lOから送信する音波の音波
曲を凹面状とし、その結果、所定焦点位置に集束する合
成超音波ビームを送信することができる。そして、超音
波ビームの送信に同期して振動子10を制御して反射エ
コーの受信を行い、これを遅延加算回路20に入力する
。ここで送信と同じ遅延量を各振動子を介して得られる
反射エコーに加え、これを加算して受信信号を演算し、
これにより得られる受信信号を高周波増幅器22を介し
てTVモニタ等に出力する。そして、このような動作を
第3図に示すように、振動子を−素子分ずつずらして複
数回連続して行い、振動子10面とほぼ平行に移動する
複数本の超音波ビームの送受波をもって、ブラウン管上
に断層像をほぼリアルタイムで表示する。
That is, as shown in FIG. 2, appropriate excitation control with different delay amounts is performed on a plurality of vibrators selected from the 10 planes of vibrators, and the delay value at the center of the vibrator 10 being excited is increased. As a result, the sound wave curve of the sound wave transmitted from the transducer 10 is made concave, and as a result, a composite ultrasound beam that is focused at a predetermined focal position can be transmitted. Then, in synchronization with the transmission of the ultrasound beam, the transducer 10 is controlled to receive reflected echoes, which are input to the delay addition circuit 20. Here, the same amount of delay as for transmission is added to the reflected echo obtained via each transducer, and the received signal is calculated by adding these together.
The received signal thus obtained is outputted to a TV monitor or the like via the high frequency amplifier 22. Then, as shown in FIG. 3, this operation is performed multiple times in succession by shifting the transducer by -element, thereby transmitting and receiving multiple ultrasonic beams that move approximately parallel to the 10 planes of the transducer. With this, tomographic images are displayed on a cathode ray tube in almost real time.

ここにおいて、振動子10の配列枚数をn、]回の超音
波ビームの送受波に際し制御される振動子制御枚数をm
とすると、扱動子面10とほぼ平行に移動する超音波ビ
ームの走査線数Nは、N=n−m+l    ・・・・
・・・・・(1)の式で表わされ、ブラウン管上の画像
はこのN本の超音波ビーム反射波に基づき表示される。
Here, the number of arrayed transducers 10 is n, and the number of transducers controlled when transmitting and receiving ultrasonic beams is m.
Then, the number N of scanning lines of the ultrasonic beam moving almost parallel to the handler surface 10 is N=n-m+l...
... is expressed by the equation (1), and the image on the cathode ray tube is displayed based on the reflected waves of these N ultrasonic beams.

従って、ブラウン管上に表示される画像の分解能を高め
るだめには、超音波ビームの走査線数Nを増加すればよ
い。しかし、超音波の音響特性から単位長当たりの配列
振動子数n、振動子の送受信制御枚数mに制限があシ、
第1式で示す走査線数Nには限度がある。このため、従
来の超音波診断装置では、超音波ビームの走査線数Nの
密度が粗く、その結果、第5図(5)に示すように、ブ
ラウン管上に表示される画像も粗いものとなり、診断に
必要な十分な分解能が得られない欠点があった。
Therefore, in order to increase the resolution of the image displayed on the cathode ray tube, the number N of scanning lines of the ultrasonic beam should be increased. However, due to the acoustic characteristics of ultrasonic waves, there are limits to the number of arrayed transducers n per unit length and the number m of transducers to control transmission and reception.
There is a limit to the number N of scanning lines expressed by the first equation. For this reason, in conventional ultrasound diagnostic equipment, the density of the number of scanning lines N of the ultrasound beam is coarse, and as a result, the image displayed on the cathode ray tube is also coarse, as shown in FIG. 5 (5). The drawback was that sufficient resolution required for diagnosis could not be obtained.

このような欠点を改良するため、従来の超音波診断装置
は超音波ビームの中心軸がこれを送受信する振動子の中
心軸に一致することを利用し、超音波ビームの走査線数
密度を2倍としたものが用いられていた。すなわち、振
動子10の制御枚数を偶数枚と奇数枚とに分けることに
より、第4図に示すように、振動子の配列間隔のμ間隔
おきに超音波ビームを作り出し、2N本の超音波ビーム
を走査していた。これにより、第5図(B)に示すよう
に、前述した従来の装置に比し、2倍の分解能を有する
画像をブラウン管上に表示することができA 、 しかし、これでは超音波走査線数は2Nに制限されてし
まう。このため、ブラウン管上にこれ以上の分解能およ
び画質を備えた画像を表示させようとする場合には、同
一受信信号を2回表示する方法か、または、いったん受
信信号を記憶し隣り同士の線を重みをつけて加算する等
の手段により表示する方法が採用されていた。しかし、
前者の方法では、ブラウン管上に同一線を表示するため
、モザイク調の強い画質となる欠点があった。また後者
の方法では、コンピュータによる複雑な演算処理が必要
となり、更にリアルタイムで表示する必要性から非常に
速い演算速度が要求される。このため、実際に行われる
演算は十分なものではなく、ブラウン管上に表示される
画像は、第5図(C)に示すように、目的とする部位の
輪郭は強調されるが、分解能が悪化し画像がぼけるとい
う欠点があった。
In order to improve these drawbacks, conventional ultrasound diagnostic equipment takes advantage of the fact that the central axis of the ultrasound beam coincides with the central axis of the transducer that transmits and receives it, and increases the scanning line number density of the ultrasound beam by 2. A double version was used. That is, by dividing the controlled number of transducers 10 into an even number and an odd number, ultrasonic beams are created at every μ interval of the transducer arrangement interval, as shown in FIG. 4, and 2N ultrasonic beams are generated. was scanning. As a result, as shown in Fig. 5(B), it is possible to display an image on a cathode ray tube with twice the resolution compared to the conventional device described above. is limited to 2N. Therefore, if you want to display an image with higher resolution and image quality on a cathode ray tube, you can display the same received signal twice, or you can memorize the received signal and then connect adjacent lines. A method of displaying by adding weights and other means was adopted. but,
The former method has the drawback of displaying the same line on the cathode ray tube, resulting in a strong mosaic-like image quality. In addition, the latter method requires complicated calculation processing by a computer, and also requires extremely high calculation speed due to the need for real-time display. For this reason, the calculations actually performed are not sufficient, and the image displayed on the cathode ray tube, as shown in Figure 5 (C), emphasizes the outline of the target area, but the resolution deteriorates. However, there was a drawback that the image was blurred.

本発明はこのような従来の課題に鑑みなされたもので、
その目的は1回の超音波ビームの送信に対する反射波の
受信から同時に2系列の受信情報を得ることにより、受
信信号に重みづけや同一信号の複数回表示をすることな
く画1家表示することができ、しかも、この際得られる
画像を十分高い分解能および優れた画質を有するものと
することができる超音波診断装置を提供することにある
The present invention was made in view of such conventional problems,
The purpose of this is to simultaneously obtain two series of received information from the reception of the reflected wave for one ultrasound beam transmission, and to display a single image without weighting the received signal or displaying the same signal multiple times. It is an object of the present invention to provide an ultrasonic diagnostic apparatus which is capable of providing images with sufficiently high resolution and excellent image quality.

この目的を達成するため、本発明の装置は配列された複
数の超音波振動子を有し振動子面から被検体に向は超音
波ビームを送受信しかつこの送受信が振動子面とほぼ平
行に移動する複数回の連続した走査となるよう電子走査
制御される超音波診断装置において、1回の超音波ビー
ムの送受信に対する反射エコーの受信を異なる組合せの
2組の振動子群で行い、1回の超音波ビームの送信につ
き2系列の受信信号を得ることを特徴とする。
In order to achieve this object, the device of the present invention has a plurality of ultrasonic transducers arranged in an array, and transmits and receives ultrasound beams from the transducer surface toward the subject, and this transmission and reception is approximately parallel to the transducer surface. In an ultrasonic diagnostic device that is electronically controlled to perform multiple consecutive scanning scans, two sets of transducer groups in different combinations receive reflected echoes for one ultrasound beam transmission and reception. It is characterized in that two series of received signals are obtained for each transmission of an ultrasonic beam.

次に本発明の好適な実施例を図面に基づき説明する。な
お前述した装置と対応する部材には同一41号を付し、
その説明を省略する。
Next, preferred embodiments of the present invention will be described based on the drawings. In addition, the same number 41 is attached to the parts corresponding to the above-mentioned device,
The explanation will be omitted.

第6図には、本発明の超音波診断装置の好適な丸施クリ
が示されておシ、従来i置と同様に配列さJtだ複数の
振動子10を有するトランスデユーサ12と、送受信器
14と、この送受信器14を制御する送信トリガ制御回
路16および超音波信号制御回路18を備える。
FIG. 6 shows a preferred embodiment of the ultrasonic diagnostic apparatus of the present invention, which includes a transducer 12 having a plurality of transducers 10 arranged in the same manner as the conventional arrangement, and a transducer 12 having a plurality of transducers 10 for transmitting and receiving. 14, and a transmission trigger control circuit 16 and an ultrasonic signal control circuit 18 that control the transceiver 14.

そして、通常の電子走査と同様に第2図に示す如き超音
波ビームの送信を行い、このような走査を複数回連続し
て繰り返しトランスデユーサ12の振動子10面とほぼ
平行に移動する複数本の超音波ビームを得る。本実施例
においては、以上の走査を行うに当たり、2N本の超音
波ビームを走査するため、次のような制御を行っている
。すなわち、超音波ビームの中心軸が励振制御する配列
振動子10の中心軸と一致することを利用して、第7図
に示すように、トランスデユーサ12の振動子10群か
ら偶数枚と奇数枚の振動子を交互に選択し、これを励振
制御することにょシ、トランスデユーサ12の振動子1
0面とほぼ平行に、しかも各振動子の配列間隔の捧間隔
おきに移動する2N本の超音波ビームを得る。第8図囚
はこのようにして送信された超音波ビームを示しておシ
、実線は偶数枚の振動子を、破線は奇数枚の振動子を励
振制御して送信した超音波ビームを示している。実施例
においては、振動子lOの総数n=64枚、励振制御す
る偶数枚。振。子数。=8に設定され、す儂たゎ、超音
波ビームの走査線数2Nは前記第(1)式から2N=2
(64−8+1)=114 2N=114本となる〇 本発明の特徴は、1回の超音波ビームの送信に対する反
射エコーの受信を、異なる組合せの2組の振動子10群
で行い、1回の超音波ビームの送信で同時に2系列の受
信信号を形成することにあるOこれKより、受信信号に
重み付は等の演算を施して表示したり、または同一信号
の2回表示等の処理を施さなくても、分解能が高くしか
も画質がよい画像をブラウン管に表示できる0例えば、
実施例においてu、2N本の超音波ビームが走査される
が、本発明によれば、1本の超音波ビームにつき2系列
の受信信号が得られるため、走査線密度を2倍にしたと
同様に考えることができる0この結果、ブラウン管上に
は4N本の超音波ビームの走査に基づいて画像を表示し
たと同様の分解能および画質の画像を表示することがで
きる。
Then, in the same way as normal electronic scanning, an ultrasonic beam as shown in FIG. Get a book ultrasound beam. In this embodiment, in performing the above scanning, the following control is performed in order to scan with 2N ultrasonic beams. That is, by utilizing the fact that the central axis of the ultrasonic beam coincides with the central axis of the arrayed transducers 10 to be excited and controlled, even and odd numbers are selected from the 10 groups of transducers of the transducer 12, as shown in FIG. The transducer 1 of the transducer 12 is designed to alternately select two transducers and control their excitation.
2N ultrasonic beams are obtained that move approximately parallel to the 0 plane and at intervals equal to the arrangement interval of each transducer. Figure 8 shows the ultrasonic beam transmitted in this way.The solid line shows the ultrasonic beam transmitted by controlling the excitation of even number of transducers, and the broken line shows the ultrasonic beam transmitted by controlling the excitation of odd number of transducers. There is. In the embodiment, the total number of oscillators IO is n=64, and an even number of oscillators are subjected to excitation control. Shake. Number of children. = 8, and the number of scanning lines 2N of the ultrasonic beam is calculated from the above equation (1) as 2N = 2.
(64-8+1) = 114 2N = 114 〇The feature of the present invention is that the reception of reflected echoes for one transmission of an ultrasound beam is performed by two sets of 10 groups of transducers in different combinations. Since two series of received signals are simultaneously formed by transmitting an ultrasound beam, it is possible to perform calculations such as weighting on the received signals and display them, or to display the same signal twice. For example, images with high resolution and high quality can be displayed on a cathode ray tube without the need for
In the embodiment, u, 2N ultrasonic beams are scanned, but according to the present invention, two series of received signals are obtained for one ultrasonic beam, so it is the same as doubling the scanning line density. As a result, it is possible to display an image on a cathode ray tube with the same resolution and quality as an image displayed based on scanning of 4N ultrasonic beams.

このように、1回の超音波ビームの送信に対し同時に2
系列の受信信号を得るため、本実施例の装置は、2系列
の受信回路30.32を設けている。
In this way, two ultrasound beams are transmitted simultaneously for one ultrasound beam transmission.
In order to obtain a series of received signals, the apparatus of this embodiment is provided with two series of receiving circuits 30 and 32.

そして、前述の超音波ビームの送信に同期して送受信器
14を制御し、超音波ビームの反射波を受信するため選
択された複数の振動子10を受信状態にセットする。実
施例においては、8枚の振動子を用い、超音波ビームを
送信した時には、その8枚の振動子をそのまま受信用に
セットし、7枚の振動子を用いて超音波ビームを送信し
た時には、その7枚の振動子とこれに隣接する他の1枚
の振動子の計8枚の振動子を受信用にセットする。この
ようにして受信状態にセットされた8枚の振動子10で
受信された反射エコーは、超音波信号制御回路18を介
して2系列の受信回路30 、32にそれぞれ入力され
、次のようにして、2系列の受信信号が得られる。
Then, the transmitter/receiver 14 is controlled in synchronization with the transmission of the ultrasonic beam, and the plurality of transducers 10 selected to receive the reflected waves of the ultrasonic beam are set to a receiving state. In the example, when eight transducers are used to transmit an ultrasonic beam, the eight transducers are set as they are for reception, and when seven transducers are used to transmit an ultrasonic beam. , these seven transducers and one other transducer adjacent thereto, a total of eight transducers, are set for reception. The reflected echoes received by the eight transducers 10 set in the receiving state in this manner are input to two series of receiving circuits 30 and 32 via the ultrasonic signal control circuit 18, respectively, and are processed as follows. Thus, two series of received signals are obtained.

まず一方の受信回路30は、入力される8つの反射エコ
ー乞そのまま利用して、1系列の受信信号を得る。この
。ため、予め8枚の振動子で各反射エコーの位相量が計
算しである遅延加算回路40−1を設け、入力される8
つの反射エコーに上記位相iに基づく遅延加算を施し1
系列の受信信号を演算し、尚周波増幅回路42−1を介
して出力する。
First, one receiving circuit 30 uses the eight input reflected echoes as they are to obtain one series of received signals. this. Therefore, a delay adder circuit 40-1 is provided in which the phase amount of each reflected echo is calculated in advance using eight transducers.
Delay addition is applied to the two reflected echoes based on the above phase i.
The series of received signals are calculated and outputted via the frequency amplification circuit 42-1.

また他方の受信回路32は、入力される反射エコーから
切替回路44により7つの反射エコーを選択し、この7
つの反射エコーに基づき、もう一方の系列の受信信号を
得る。このため、予め7枚の振動子で各反射エコーの位
相量が計算しである遅延加算回路=10−2を設け、切
替回路44を介して入力される7つの反射エコーに上記
位相量に基づく遅延加算を施して、もう一方の系列の受
信信号を演算し、尚周波増幅回路42−2を介して出力
する。
The other receiving circuit 32 selects seven reflected echoes from the input reflected echoes by a switching circuit 44, and selects seven reflected echoes from the input reflected echoes.
Based on one reflected echo, the other series of received signals is obtained. For this reason, a delay adder circuit = 10-2 is provided in which the phase amount of each reflected echo is calculated in advance using seven transducers, and the seven reflected echoes inputted via the switching circuit 44 are calculated based on the above phase amount. The received signal of the other series is calculated by performing delay addition and is outputted via the frequency amplification circuit 42-2.

以上のような各受信回路30.32における2系列の受
信信号の演算は同時に行われる。
The calculations of the two series of received signals in each of the receiving circuits 30 and 32 as described above are performed simultaneously.

実施例においては、前述したように、8枚の振動子1゛
による超音波ビームの送信と、7枚の振動子1rによる
超音波ビームの送信とが繰シ返し行わJ【る。このため
、まず8枚の振動子Tによる超音波ビームの送信がある
と、遅延加算回路4o−1には、第9図(a)に示す8
枚の振動子Rを介して反射エコーが入力され、他の遅延
加算回路4o−2には第9図(b)に示す7枚の振動子
Rを介して反射エコーが入力される。そして、これら遅
延加算回路40−1.40−2は各々に入力される反射
エコーに基づき第10図のAODD * BODDに示
す受信信号a、bを演算し、各記憶回路46−1,46
−2にそれぞれ入力する。次に7枚の振動子Tによる超
音波ビームの送信があると、遅延加算回路4o−1には
、第9図(d)に示す8枚の振動子Rを介して反射エコ
ーが入力され、他の遅延回路40−2には、第9図(C
)に示す7枚の振動子Rを介して反射エコーが入力され
る。そして、これら遅延加算回路40−1.40−2は
各々に入力される反射エコーに基づき、第10図のI)
ooo l coonに示す受信信号d、 cを演算し
、記憶回路48−1.48−2にそれぞれ入力する。
In the embodiment, as described above, the transmission of ultrasonic beams by the eight transducers 1' and the transmission of the ultrasonic beams by the seven transducers 1r are repeatedly performed. Therefore, when ultrasonic beams are first transmitted by eight transducers T, the delay adder circuit 4o-1 receives the eight transducers shown in FIG. 9(a).
The reflected echoes are inputted through the seven transducers R, and the reflected echoes are inputted into the other delay adder circuit 4o-2 via the seven transducers R shown in FIG. 9(b). These delay adder circuits 40-1 and 40-2 calculate received signals a and b shown as AODD * BODD in FIG.
-2 respectively. Next, when ultrasonic beams are transmitted by the seven transducers T, reflected echoes are input to the delay addition circuit 4o-1 via the eight transducers R shown in FIG. 9(d). The other delay circuit 40-2 includes FIG.
) Reflected echoes are input via seven transducers R shown in FIG. These delay adder circuits 40-1 and 40-2 are configured based on the reflected echoes inputted to each of the delay adder circuits 40-1 and 40-2.
The received signals d and c shown in ooo l coon are calculated and input to the memory circuits 48-1 and 48-2, respectively.

これら各記憶回路46−1.46−2.48−1.48
−2は、既知のラインメモリによる超音波受信信号のT
V走査線変換方法を用いて、入力記憶した各受信信号I
ll l)l J cを圧縮率4で時間圧縮して、表示
信号選択回路50を弁してTVモニタに出力し、第10
図のl’JODDに示すように、奇数フィールドの■、
■に受信信号a、bを表示し、奇数フィールドの■。
Each of these memory circuits 46-1.46-2.48-1.48
-2 is the T of the ultrasonic reception signal by the known line memory.
Using the V scan line conversion method, each input and stored received signal I
ll l) l J c is time-compressed at a compression rate of 4, the display signal selection circuit 50 is operated, the signal is output to the TV monitor, and the 10th
As shown in l'JODD in the figure, the odd field ■,
The received signals a and b are displayed in ■, and the odd field ■.

(6)に受1に信号c、dを表示する。なお記憶回路=
18−1.48−2への受信信号d、cの入力は、記憶
回路46−1.46−2がフィールドの■、■、■、■
に信号表示を行っている間に竹われる。このような動作
を繰り返して命数フィールドのM=4n+1゜M = 
4n+2 (n=o、 1.2− )に、第10図のB
ODDに示す受信信号を順次表示する。そして、奇数フ
ィールドにおける受信信号の表示が終了すると、次に同
様な表示方法により、標準TV同期信号の等1曲パルス
コントロールによりノーインpv−ス走合する′1゛■
信号の偶数フィールドのM = 4n+3゜八I = 
4n+4 (li=’Q、 L 21−)に、第10図
のEIIVINに示す受信信号を順次表示する。このよ
うにして、ブラウン管上には、第8図(13)に示すよ
うに、走査線審1f4Nの画像が表示される。
(6) Display signals c and d on receiver 1. Note that the memory circuit =
The input of the received signals d and c to the storage circuit 46-1.48-2 is performed by the storage circuit 46-1.46-2 in the fields ■, ■, ■, ■.
Bamboo is destroyed while displaying a signal. By repeating this operation, the life number field M=4n+1゜M=
4n+2 (n=o, 1.2-), B in Figure 10
The received signals shown in ODD are sequentially displayed. When the display of the received signal in the odd field is completed, the same display method is used to perform no-in pv-scanning by pulse control of the standard TV synchronization signal.
M of even field of signal = 4n+3°8I =
4n+4 (li='Q, L21-), the received signals shown at EIIVIN in FIG. 10 are sequentially displayed. In this way, the image of the scanning line 1f4N is displayed on the cathode ray tube, as shown in FIG. 8 (13).

本究明は以上の構成から成り、次にその作用を説明する
This research consists of the above structure, and its operation will be explained next.

まず振動子10−1.〜10−8が励振制御され超音波
ビームが送信されると、その反射エコーは振動子10−
1〜10−8を介して各受信回路30.32に入力され
る。そして、受信回路30の遅延加算回路40−1は振
動子10−1〜10−8を介して入力される反射エコー
から第10図のAODDに示す1系列の受信信号aを演
算し、これを記憶回路46−1に記憶させる0これと同
時に、もう一方の受信回路32の遅延加算回路40−2
は、振動子10−2〜10−8を介して入力される反射
エコーから第10図のB。DDに示すもう一方の受信信
号すを演算し、これを記憶回路46−2に記憶させる。
First, the vibrator 10-1. When ~10-8 is excited and controlled and an ultrasonic beam is transmitted, the reflected echo is transmitted to the transducer 10-8.
1 to 10-8 to each receiving circuit 30.32. The delay addition circuit 40-1 of the receiving circuit 30 calculates one series of received signals a shown in AODD in FIG. 10 from the reflected echoes inputted via the transducers 10-1 to 10-8, and At the same time, the delay addition circuit 40-2 of the other receiving circuit 32 is stored in the storage circuit 46-1.
is B in FIG. 10 from reflected echoes input via the transducers 10-2 to 10-8. The other received signal indicated by DD is calculated and stored in the storage circuit 46-2.

そして、記憶回路46−1 、46−2は、既知のライ
ンメモリによる超音波受信信号のTV走査線方式を用い
て、第1θ図のBODDに示すように、受信信号a、b
を圧縮率4で時間圧縮して、奇数フィールドの■、■に
表示する0 次に振動子10−2〜10−8が励振制御され超音波ビ
ームが送信されると、その反射エコーは振動子10−2
〜10−9を介して各受信回路30 、32に入力され
る。そして%受信回路30の遅延加算回路4o−1は振
動子10−2〜10−9を介して入力される反射エコー
から第10図の1)。DDに示す受信信号dを演算し、
これを記憶回路48−1に記憶させる。これと同時に、
受信回路32の遅延加算回路40−2には、切替回路4
4の動作により、振動子10−2〜10−8を介して反
射エコーが入力され、遅延加算回路40−2はこれら反
射エコーから第1θ図のCoooに示す受信信号Cを演
算し、これを記憶回路48−2に記憶させる。
Then, the storage circuits 46-1 and 46-2 use the TV scanning line system for ultrasonic reception signals using a known line memory to store received signals a and b as shown in BODD in FIG. 1θ.
is compressed in time with a compression ratio of 4 and displayed in the odd fields ■ and ■. 10-2
~10-9 to each receiving circuit 30, 32. The delay addition circuit 4o-1 of the % receiving circuit 30 receives the reflected echoes input via the transducers 10-2 to 10-9 as shown in FIG. 10. Calculate the received signal d shown in DD,
This is stored in the storage circuit 48-1. At the same time,
The delay addition circuit 40-2 of the receiving circuit 32 includes a switching circuit 4.
4, reflected echoes are inputted via the transducers 10-2 to 10-8, and the delay addition circuit 40-2 calculates a received signal C shown at Cooo in FIG. The data is stored in the memory circuit 48-2.

そして、これらdピ憶回路48−1.48−2は、前述
と同様のi’ V走査線方式を用いて、第10図のE。
These d-pin memory circuits 48-1 and 48-2 use the same i'V scanning line system as described above, as shown in E of FIG.

DDに不すように、圧縮率4で時間圧縮された受信信号
を奇数フィールドの■、■に表示する。
The received signal time-compressed at a compression rate of 4 is displayed in the odd fields (■) and (2) so as not to be displayed on the DD.

以上の動作を繰り返して、奇数フィールドのM = 4
n+1 、M= 4n+2(n=0.1.2− )に第
10図のEoonに示す受信信号を1−次表示していく
Repeat the above operation until M = 4 for the odd field.
The received signal shown at Eoon in FIG. 10 is displayed in the first order at n+1 and M=4n+2 (n=0.1.2-).

そして、この奇数フィールド上における受信信号の表示
が終ると、次には、同様にして偶数フィールトノM =
 4n+3. M = 4n+4.、(n =帆1,2
.・)に第10図のEBnp+に示す受信信号を順次表
示する。
After the received signal has been displayed on the odd field, the even field M =
4n+3. M=4n+4. , (n = sail 1, 2
..・) The received signals shown in EBnp+ in FIG. 10 are sequentially displayed.

これによシ、ブラウン管上には第8図に)に示すような
画像がリアルタイムで表示される。
As a result, an image as shown in FIG. 8) is displayed on the cathode ray tube in real time.

なお本発明はデジタルスキャンコンバータ等の1フレ一
ム分の記憶容量をもつ超音波TV走査変換装置またはX
Yモニタにも適用できる。第11図には、このような場
合に用い、る超音波診断装置が示されている。この装置
においては、遅延加算回路40−1で演算される受信信
号は高周波増幅回路42−1を介して直接に表示信号選
択回路50に入力され、他の遅延加算回路40−2″T
:演算される受信信号は高周波増幅回路42−2を介し
て記憶回路46に入力され、ここにおいて、所定の遅延
が施されて表示信号選択回路50に入力される。従って
、フレーム上には、第12図に示す受信信号が表示され
ることとなる。
Note that the present invention is applicable to an ultrasonic TV scan converter such as a digital scan converter or an X
It can also be applied to Y monitors. FIG. 11 shows an ultrasonic diagnostic apparatus used in such cases. In this device, the received signal calculated by the delay adder circuit 40-1 is directly input to the display signal selection circuit 50 via the high frequency amplifier circuit 42-1, and the received signal calculated by the delay adder circuit 40-2''T
: The received signal to be calculated is inputted to the storage circuit 46 via the high frequency amplification circuit 42-2, where it is subjected to a predetermined delay and inputted to the display signal selection circuit 50. Therefore, the received signal shown in FIG. 12 will be displayed on the frame.

) しかし、このままでは、フレーム数が半分に低下してし
まう。従って、このような用途に本発明の装置を用いる
場合には、第6図に示す回路を用い、第13図に示すよ
うに、圧縮率を2倍にしてフレーム上に表示すればよい
) However, if this continues, the number of frames will be reduced by half. Therefore, when the apparatus of the present invention is used for such purposes, it is sufficient to use the circuit shown in FIG. 6 and display the image on a frame with the compression ratio doubled as shown in FIG. 13.

また本発明はリニアスキャン型の超音波診断装置のみな
らず、他の種類の超音波診断装置、例えばセクタスキャ
ン型の超音波診断装置にも用いることができる。
Further, the present invention can be used not only in a linear scan type ultrasonic diagnostic apparatus but also in other types of ultrasonic diagnostic apparatuses, such as sector scan type ultrasonic diagnostic apparatuses.

以りのように、本発明によれば、1回の超音波ビームの
送信に対する反射エコーの受信を、異なる組合せの2組
の振動子で行い、1回の超音波ビームの送信で同時に2
系列の受信信号を得ることにより、受信信号に重み付け
や同一受信信号の複数回表示をすることなく、分解能が
高くかつ画質のよい画像を表示することができる。
As described above, according to the present invention, two sets of transducers in different combinations receive reflected echoes for one transmission of an ultrasound beam, and two sets of transducers are received at the same time by one transmission of an ultrasound beam.
By obtaining a series of received signals, an image with high resolution and high quality can be displayed without weighting the received signals or displaying the same received signal multiple times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波診断装置のブロック図、第2図は
超音波ビームを送信する振動子群の動作説明図、第3図
は超音波ビームを振動子面に沿って複数回連続走査する
際に行われる振動子に対する励振制御の説明図、第4図
は振動子の配列間隔の棒間隔おきに超音波ビームを走査
する場合における振動子の励振制御の説明図、第5図は
ブラウン管上に表示される被検体断層面の画像、第6図
は本発明に係る超音波診断装置の好適な実施例を示すブ
ロック図、第7図は振動子に対する励振制御の説明図、
第8図は超音波ビームの走査密度とブラウン管上に表示
される画像との説明図、第9図は超音波ビームの送信を
行う振動子と反射エコーの受信を行う振動子との関係を
示す説明図、第10図は受信信号を圧縮率4で′vV表
示線に変換する場合の説明図、第11図は本発明の装置
め他の実施例を示すブロック図、第12図は第11図の
装置の受信信号をTV表示線などに変換する場合の説明
図、第13図は受信信号を圧縮率2でTV表示線などに
変換する場谷の説明図である・ lO・・・振動子。 出願人 アロカ株式会社 才4図 才5 図 (A)         (B) T&R(θ狡送受制御) T&R(7&送受りhり御) (C) 才8図 (A) オフ図 区 励ALL<1zFt(ちLない羽[初子(B) 才9場 R:受信躍動子
Figure 1 is a block diagram of a conventional ultrasound diagnostic device, Figure 2 is an explanatory diagram of the operation of a group of transducers that transmit ultrasound beams, and Figure 3 is an ultrasound beam that is continuously scanned multiple times along the transducer surface. Fig. 4 is an explanatory diagram of excitation control of the transducer when scanning the ultrasonic beam at every bar interval of the transducer arrangement interval, and Fig. 5 is an explanatory diagram of the excitation control of the transducer when scanning the transducer at every bar interval of the transducer arrangement interval. 6 is a block diagram showing a preferred embodiment of the ultrasonic diagnostic apparatus according to the present invention; FIG. 7 is an explanatory diagram of excitation control for the transducer;
Fig. 8 is an explanatory diagram of the scanning density of the ultrasonic beam and the image displayed on the cathode ray tube, and Fig. 9 shows the relationship between the transducer that transmits the ultrasonic beam and the transducer that receives the reflected echo. 10 is an explanatory diagram for converting a received signal into a 'vV display line with a compression rate of 4. FIG. 11 is a block diagram showing another embodiment of the apparatus of the present invention, and FIG. An explanatory diagram of the case where the received signal of the device shown in the figure is converted into a TV display line, etc., and Fig. 13 is an explanatory diagram of the case where the received signal is converted into a TV display line, etc. with a compression ratio of 2. Child. Applicant: Aloka Co., Ltd. Figure 4 (A) (B) T&R (θ cunning transmission/reception control) T&R (7 & transmission/reception h control) (C) Figure 8 (A) Off diagram section Excitation ALL < 1zFt ( ChiL Naiha [first born (B) 9 years old R: receiving dynamic child

Claims (1)

【特許請求の範囲】 i11配列された複数の超音波振動子を有し振動子面か
ら被検体に向は超音波ビームを送受信しかつこの送受信
が振動子面とほぼ平行に移動する複数回の連続した走査
となるよう電子走査制御される超音波診断装置において
、1回の超音波ビームの送信に対する反射エコーの受信
を異なる組合せの2組の振動子群で行い、1回の超音波
ビームの送信につき2系列の受信信号を得ることを特徴
とする超音波診断装置。 (2、特許請求の範囲(1)記載の装置において、1回
の超音波ビームの送信に対する反射エコーの受信を偶数
枚と奇数枚の2組の振動子群で行うことを特徴とする超
音波診断装置。
[Claims] A plurality of ultrasonic transducers are arranged in i11, and an ultrasonic beam is transmitted and received from the transducer surface toward the subject, and this transmission and reception is performed several times in a direction substantially parallel to the transducer surface. In ultrasonic diagnostic equipment that is electronically controlled to perform continuous scanning, two sets of transducers in different combinations receive reflected echoes for one ultrasound beam transmission. An ultrasonic diagnostic apparatus characterized in that two series of received signals are obtained for each transmission. (2. The ultrasonic device according to claim (1), characterized in that two sets of even-numbered transducers and odd-numbered transducer groups receive reflected echoes for one ultrasound beam transmission. Diagnostic equipment.
JP2119882A 1982-02-15 1982-02-15 Ultrasonic diagnostic apparatus Granted JPS58138445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119882A JPS58138445A (en) 1982-02-15 1982-02-15 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119882A JPS58138445A (en) 1982-02-15 1982-02-15 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS58138445A true JPS58138445A (en) 1983-08-17
JPH0152021B2 JPH0152021B2 (en) 1989-11-07

Family

ID=12048267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119882A Granted JPS58138445A (en) 1982-02-15 1982-02-15 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS58138445A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438693A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave diagnosing device
JPS5552746A (en) * 1978-10-16 1980-04-17 Aloka Co Ltd Electronic scanning signal processor in ultrasoniccwave disgnosis device
JPS56164975A (en) * 1980-05-22 1981-12-18 Yokogawa Hokushin Electric Corp Tomographic video display system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438693A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave diagnosing device
JPS5552746A (en) * 1978-10-16 1980-04-17 Aloka Co Ltd Electronic scanning signal processor in ultrasoniccwave disgnosis device
JPS56164975A (en) * 1980-05-22 1981-12-18 Yokogawa Hokushin Electric Corp Tomographic video display system

Also Published As

Publication number Publication date
JPH0152021B2 (en) 1989-11-07

Similar Documents

Publication Publication Date Title
CN104783835B (en) Diagnostic ultrasound equipment and method of generating ultrasonic image
US5329930A (en) Phased array sector scanner with multiplexed acoustic transducer elements
US4159462A (en) Ultrasonic multi-sector scanner
US20100022883A1 (en) Ultrasonic diagnostic apparatus
JPS63125243A (en) Ultrasonic diagnostic apparatus
US6258030B1 (en) Ultrasonic diagnostic apparatus
JP2002336246A (en) Ultrasonic imaging method and ultrasonic imaging device
JPS5816673B2 (en) Ultrasonic imaging method and device
JPH02206445A (en) Ultrasonic diagnostic apparatus
JPH0254096B2 (en)
JPS58138445A (en) Ultrasonic diagnostic apparatus
JP2831719B2 (en) Ultrasound diagnostic equipment
JPH08173431A (en) Ultrasonic diagnostic device
JPH06339479A (en) Ultrasonic diagnostic device
JP2004223109A (en) Apparatus and method for picking up ultrasonic image
JPH02147052A (en) Electronic scanning type ultrasonic diagnosing device
CA1137211A (en) Variable delay system
JP2000312676A (en) Ultrasonic diagnostic system
JPH08131444A (en) Ultrasonic diagnostic device
JPS60261443A (en) Ultrasonic diagnostic apparatus
JPS6399848A (en) Electronic focus controlled ultrasonic diagnostic apparatus
JPH0288047A (en) Electronic scanning type ultrasonic tomography device
JPS62236534A (en) Ultrasonic imaging apparatus
JPS59225043A (en) Ultrasonic diagnostic apparatus
JPS61238235A (en) Ultrasonic diagnostic apparatus