JPS58137974A - Sodium-sulphur cell system - Google Patents

Sodium-sulphur cell system

Info

Publication number
JPS58137974A
JPS58137974A JP57019635A JP1963582A JPS58137974A JP S58137974 A JPS58137974 A JP S58137974A JP 57019635 A JP57019635 A JP 57019635A JP 1963582 A JP1963582 A JP 1963582A JP S58137974 A JPS58137974 A JP S58137974A
Authority
JP
Japan
Prior art keywords
sodium
active material
tank
sulphur
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57019635A
Other languages
Japanese (ja)
Inventor
Jun Kikuchi
菊池 恂
Fumio Kawamura
河村 文雄
Tatsuo Izumida
龍男 泉田
Koji Mikawa
広治 三河
Hideo Yusa
遊佐 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57019635A priority Critical patent/JPS58137974A/en
Publication of JPS58137974A publication Critical patent/JPS58137974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To facilitate taking out and cleaning of active masses in both electrodes by making a cell an a loop construction and transferring active masses by using an inactive gas, and installing cleaning systems in between. CONSTITUTION:When power is decreased during charge-discharge cycling, a valve 33 is opend, and argon gas is fed to a unit cell 35 from a bomb 31 to recover molten sodium 34 and a sulphur mixture 37 in a sodium tank 26 and a sulphur tank 30 respectively. Then the sodium tank 26 and the sulphur tank 30 are pressurized with argon gas 31 through a valve 32, and thereby impurities in molten sodium which is an anode active mass are removed with a cold trap 38 and the molten sodium is fed to the unit cell 35 again, and impurities in sulphur mixture which is a cathode active mass are removed with a zirconium filter 38 and the molten sulphur is returned to the unit cell 35. By this process, since active masses in both electrodes are purified, almost same electric power as an initial stage is obtained.

Description

【発明の詳細な説明】 本発明はナトリ9ムーイオウ電池を用いた電力貯蔵シス
テムに係シ1%に大容量貯蔵システムに好適な長寿命で
安全性の高いループ式ナトリウム−イオウ電池に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power storage system using a sodium sulfur battery, and relates to a loop type sodium-sulfur battery with a long life and high safety, which is suitable for a large capacity storage system of 1%.

ナトリウム−イオウ電池の具体的・な構造例を第1図に
示す、この電池は陰極活物質10として溶融ナトリウム
、陽極活物質12として溶融イオウと多硫化ナトリウム
を使用し、電解質としてはナトリウムイオレ電導性含有
する固体電解質14に用いたものである。この固体電解
質は、ガラスまたはセラiックスにより構成されている
が、脣にβ−アルミナ(N〜ム40.)はナトリウム−
イオンの伝導性が太き−ので、現在開発中の本電池の大
部分がこれを電解質として使用している。tたβ−アル
にすは電子伝導性を持たないため、陽極16と陰極18
とを分離するセパレータとしての役目も合せて果してい
る。多硫化ナトリウムは。
A specific structural example of a sodium-sulfur battery is shown in Figure 1. This battery uses molten sodium as the cathode active material 10, molten sulfur and sodium polysulfide as the anode active material 12, and sodium sulfur as the electrolyte. This was used for the solid electrolyte 14 containing the following properties. This solid electrolyte is composed of glass or ceramics, but β-alumina (N~40.) is made of sodium-
Because of its high ionic conductivity, most of the batteries currently under development use it as an electrolyte. Since β-Al has no electronic conductivity, the anode 16 and cathode 18
It also serves as a separator to separate the two. Sodium polysulfide.

イオン伝導性はあるが、電子伝導性がなく壕九イオウ4
電子伝導性がないため、電気化学反応に伴う電子の授受
を助ける目的で、陽極活物質は導電材に宮浸されている
。作動温度は陽極活物質の融点を考慮し、300〜50
0Cが有効である。
Although it has ionic conductivity, it has no electronic conductivity.
Since it has no electron conductivity, the anode active material is immersed in a conductive material to help transfer electrons during electrochemical reactions. The operating temperature is 300 to 50, considering the melting point of the anode active material.
0C is valid.

図において、20t;tα−アルミナリング、22はモ
リブデン等の耐腐食性金属板、24はステンレスのケー
シングである。
In the figure, 20t;tα-alumina ring, 22 is a corrosion-resistant metal plate made of molybdenum or the like, and 24 is a stainless steel casing.

光放電反応は。What is the photodischarge reaction?

電池全体としては 2Na+ 8− Na18 本電池は電解質が固体であり、陽極活物質が溶MIIl
液状であるため1%性的に以下のような特長がるる。
The battery as a whole is 2Na+ 8- Na18 In this battery, the electrolyte is solid, and the anode active material is molten MIIl.
Since it is in liquid form, it has the following characteristics.

尋 充放電時副反応がないので自己放電がなく光電され
た容量全部を光電することができる。
Since there are no side reactions during charging and discharging, there is no self-discharge and the entire photoelectric capacity can be photoelectrically charged.

b)高率放電時のyit減少が極めて少ない。b) The decrease in yit during high rate discharge is extremely small.

C)理論エネルギー密度が誦〈、従来の鉛蓄電池では3
0〜50Wb/Kf(理論値10Wh/時)であるのに
対し、その数倍の埴(理論1178G1W・h/Kf)
が可能と考えられる。
C) The theoretical energy density is 3 for conventional lead-acid batteries.
0 to 50Wb/Kf (theoretical value 10Wh/hour), but several times that amount (theoretical value 1178G1W・h/Kf)
is considered possible.

d)活物質として使用されるナトリウムとイオウは電気
化学当量が極めて小さく、かつ資源的にも豊富で安価で
あるため、省資源、省エネルギーに役立つ。
d) Sodium and sulfur, which are used as active materials, have extremely small electrochemical equivalents and are abundant and inexpensive resources, so they are useful for saving resources and energy.

このようにナトリウム−イオウ電池は多くの特長を有し
ているため将来の電力貯蔵システムとして有望視されて
いる。
As described above, sodium-sulfur batteries have many features and are therefore considered promising as future power storage systems.

しかしながら1本電池には以下のような問題点がある。However, single batteries have the following problems.

即ち (1)溶融ナトリウム、イオウ等の活性の強い物質をか
つ高温で用いるため、容器の腐食等により活物質の純度
が低下し、長時間、使用時に性能が低下する。
That is, (1) since highly active substances such as molten sodium and sulfur are used at high temperatures, the purity of the active material decreases due to corrosion of the container, etc., resulting in a decrease in performance during long-term use.

(2)β−アルミナ等の固体電解質が破損した場合等、
急激なナトリウムとイオウの反応がおこる危険性がある
が補修手段がない。
(2) If the solid electrolyte such as β-alumina is damaged, etc.
There is a risk of a rapid reaction between sodium and sulfur, but there is no repair method.

(3)いずれの活物質も空気に接すると酸化されて活性
を失うため、アルゴン等の不活性ガスと共に小型の電池
中に封じ込めるシールは容易なことではない。
(3) Since any active material is oxidized and loses its activity when exposed to air, it is not easy to seal it together with an inert gas such as argon in a small battery.

これらの間@を解決するため、活物質中の不純物除去が
可能で、かつ必要に応じて活物質の取シ出し封じ込めが
容易で、電池内部の補修が可能な長寿命で安全性の高い
電池システムの開発が望まれる。
In order to solve these issues, we have developed a long-life, highly safe battery that allows impurities to be removed from the active material, is easy to take out and contain the active material if necessary, and can be repaired inside the battery. Development of a system is desired.

本発明の目的は、従来電池の欠点である。活物質の純良
低下による電池の短寿命化、活物質のぬき田し、封じ込
めが不苛能であるため補修が不可能等の問題点を解決す
るため、ループ式構造とし、活物質を不活性ガスを用い
て移送しかつ途中に浄化糸を設置し7’C倉ナトリウム
−イオウ電池システムを提供することにある。
The object of the invention is the drawbacks of conventional batteries. In order to solve problems such as shortened battery life due to deterioration of the purity of the active material, removal of the active material, and impossibility of repair due to the incorrosiveness of the containment, a loop type structure is used to make the active material inert. The object of the present invention is to provide a 7'C sodium-sulfur battery system using gas for transport and installing a purification thread in the middle.

従来の電池と異なる点は不活性ガスの圧力により必要に
応じて電池内の活物質をそれぞれタンク内に移送できる
ループ構造とした点にある。この結果、従来電池では不
可能であったβ−アルミナ等の固体電解質破損等の緊急
時は活物質の緊急ぬき取りが可能とな#)s補修点検等
が可能となる。
The difference from conventional batteries is that the battery has a loop structure that allows the active materials in the battery to be transferred into tanks as needed using the pressure of inert gas. As a result, in an emergency such as damage to a solid electrolyte such as β-alumina, the active material can be removed in an emergency, which has not been possible in conventional batteries.

更に本システムではループ内にトラップ(不純物浄化系
)を設けることに活物質の純化が可能とした点に%像が
ある。従って後述するように電池の長寿命化が図れる利
点がある。更にループ式として不活性ガス封じこめとし
た九め従来電池のネックであったシール法が容易となっ
た点も特徴である。
Furthermore, this system is notable in that it is possible to purify the active material by providing a trap (impurity purification system) within the loop. Therefore, as will be described later, there is an advantage that the battery life can be extended. Another feature is that the loop-type battery simplifies the sealing method, which was a problem with conventional batteries that sealed inert gas.

以下1本発明の一実施例を第2図によりg明する。陰極
として350画1の溶融金属ナトリウム34t−陽極に
200 crll”の多硫化ナトリウム、(Na、8 
m )と硫黄とカーボンフェルトの混合物3りを用い1
両者を隔離する隔膜36としてβ−アルミナを用いた単
電池35′t−300〜350Cに加熱し、この温度に
保つ友。単電池はモリブデン鋼を内張りし九ステンレス
銅製容器内に入れ陰、陽極活物質の漏洩を防止した。本
電池により初期に約aoowhの電力が得られた。充放
電’Iso回繰p返した時点で電力が290 Wh程度
に低下したため、パルプ33t−4けアルゴンガス會ポ
ンベ31から単電池35へ送ることによシ溶融金属すト
リウム34および硫、黄混合物′37をそれぞれナトリ
ウム受はタンク26および硫黄受は夕/り30へ回収し
、その後、パルプ32t−かいしてアルゴンカス31に
よジナトリウム受はタンク26および硫黄受はタンク3
0を加圧することによシ。
An embodiment of the present invention will be explained below with reference to FIG. 350 x 1 molten metal sodium 34t as cathode - 200 crll'' sodium polysulfide, (Na, 8
m) and a mixture of sulfur and carbon felt.
A single cell 35' using β-alumina as a diaphragm 36 separating the two is heated to 300 to 350C and kept at this temperature. The cell was placed in a stainless steel container lined with molybdenum steel to prevent leakage of negative and anode active materials. This battery initially provided approximately aoowh of power. After repeated charging and discharging times, the power decreased to about 290 Wh, so the molten metal sodium 34 and the sulfur and yellow mixture were sent from the argon gas pump 31 with 33 tons of pulp to the cell 35. '37 are collected into tank 26 for the sodium receiver and tank 30 for the sulfur receiver, and then 32 tons of pulp are passed through the argon gas 31 into the tank 26 for the disodium receiver and the tank 3 for the sulfur receiver.
By pressurizing 0.

陽極活物質の溶融金属ナトリウムはコールドトラップ3
8により不純物を除去し再び単電池35へ、また陽極活
物質の硫黄混合物はジルコニウム金属フィルター28に
よシネ納物除去を行ない単電池35へもどす、この様に
して両極の活物質を浄化精製することKよシ、はぼ初期
と同じ電力がえられた。
The molten metal sodium of the anode active material is placed in cold trap 3.
8, impurities are removed and returned to the cell 35, and the sulfur mixture of the anode active material is removed by the zirconium metal filter 28 and returned to the cell 35. In this way, the active materials of both electrodes are purified and purified. KotoK, I was able to get the same amount of power as I did in the early days.

以上のように本実施例によnば1両極の活物質をぬき出
し精製することができるため電池の能力低下全防止でき
るとともに長痔命化をはか詐る効果がある。
As described above, according to this embodiment, it is possible to extract and purify the active material of the n-by-one polarity, which has the effect of completely preventing a decrease in the battery's performance and also reducing the risk of long-term hemorrhoids.

上記実施例では活物質の抜取りにアルゴンガスを用いて
いるが、当然のことながら不活性ガスであn1z使用可
能である。ヘリウム、窒素ガス等でも可でおるが、コス
トの点では窒素が適当である。
In the above embodiment, argon gas is used to extract the active material, but it is of course possible to use an inert gas. Helium, nitrogen gas, etc. can also be used, but nitrogen is suitable in terms of cost.

とも当然可能である。Of course both are possible.

本発明によれば、両極の活物質の抜取りおよびその浄化
ができるので、電池の長寿命化がはかられ、かつ異常時
の活物質緊急抜取りや隔膜のβ−アルミナ等の部品交換
が容易とな9安全性がきわめて向上するという効果があ
る。
According to the present invention, since the active material of both electrodes can be extracted and purified, the life of the battery can be extended, and emergency extraction of the active material in the event of an abnormality and replacement of parts such as β-alumina of the diaphragm are facilitated. This has the effect of significantly improving safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のナトリウムーイオウ電池の縦断面図、第
2図は本発明のナトリクムーイオウ電池のシステムフロ
ー図でアル。 35               !:L6I・・・
ナトリウム−イオウ単電池、4・・・溶融金属す30 
             38トリウム受け、H・・
・硫黄混合物受け、ギ・・・コ−0
FIG. 1 is a longitudinal cross-sectional view of a conventional sodium-sulfur battery, and FIG. 2 is a system flow diagram of the sodium-sulfur battery of the present invention. 35! :L6I...
Sodium-sulfur cell, 4...molten metal 30
38 thorium receiver, H...
・Sulfur mixture receiver, Giko-0

Claims (1)

【特許請求の範囲】 1、llアルミナ等の固体電解質を境にして溶融ナトリ
ウム等の陰極活物質と溶融イオウ等の陽極活智質が接す
るナトリウム−イオウ電池において。 それぞれの活物質貯蔵タンクを外部に設け、不活性ガス
の加圧操作で電池とタンク間の活物質移送を可能とする
こと1に%黴とするナトリウム−イオウ電池システム。 2、特許請求の範囲第1項記載のナトリウム−イオウ電
池システムにおいて、11送途中罠活物質中の不純物を
除去する浄化装置を設けたことを特徴とするナトリウム
−イオウ電池システム。 3、%許請求の範囲[2項記載のナトリウム−イオウ電
池システムの活物質浄化装置として、高温)1ルタ、及
びコールドトラップのうちの−っ又は両を會組み合わ−
を九浄化装置を用いることt−特許としたナトリウム−
イオウ電池システム。
[Claims] 1. In a sodium-sulfur battery in which a cathode active material such as molten sodium and an anode active material such as molten sulfur are in contact with each other with a solid electrolyte such as alumina as the boundary. A sodium-sulfur battery system in which each active material storage tank is provided externally and the active material can be transferred between the battery and the tank by pressurizing an inert gas. 2. The sodium-sulfur battery system according to claim 1, characterized in that it is provided with a purification device for removing impurities from the trapped active material during transport. 3.% Claims [As an active material purification device for a sodium-sulfur battery system according to item 2, a combination of one or both of a high temperature) 1 ruta and a cold trap]
Patented use of nine purifying devices for sodium
Sulfur battery system.
JP57019635A 1982-02-12 1982-02-12 Sodium-sulphur cell system Pending JPS58137974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019635A JPS58137974A (en) 1982-02-12 1982-02-12 Sodium-sulphur cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019635A JPS58137974A (en) 1982-02-12 1982-02-12 Sodium-sulphur cell system

Publications (1)

Publication Number Publication Date
JPS58137974A true JPS58137974A (en) 1983-08-16

Family

ID=12004664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019635A Pending JPS58137974A (en) 1982-02-12 1982-02-12 Sodium-sulphur cell system

Country Status (1)

Country Link
JP (1) JPS58137974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202865A (en) * 1987-02-18 1988-08-22 Hitachi Ltd Sodium-sulfur cell system
JPH03236172A (en) * 1990-02-13 1991-10-22 Hughes Aircraft Co Sodium sulfur cell for agravity space
US5538808A (en) * 1989-07-21 1996-07-23 The Tokyo Electric Power Co., Inc. Sodium sulfur cell and process of manufacturing the same
JP5869477B2 (en) * 2010-05-31 2016-02-24 大川 宏 Solid electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830730A (en) * 1971-08-23 1973-04-23
JPS50125227A (en) * 1974-03-20 1975-10-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830730A (en) * 1971-08-23 1973-04-23
JPS50125227A (en) * 1974-03-20 1975-10-02

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202865A (en) * 1987-02-18 1988-08-22 Hitachi Ltd Sodium-sulfur cell system
US5538808A (en) * 1989-07-21 1996-07-23 The Tokyo Electric Power Co., Inc. Sodium sulfur cell and process of manufacturing the same
JPH03236172A (en) * 1990-02-13 1991-10-22 Hughes Aircraft Co Sodium sulfur cell for agravity space
JP5869477B2 (en) * 2010-05-31 2016-02-24 大川 宏 Solid electrolyte secondary battery
US9300012B2 (en) 2010-05-31 2016-03-29 Hiroshi Ohkawa Solid electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US4833046A (en) Metal-hydrogen secondary battery
US4894299A (en) Cell having a dome-shaped solid ceramic electrolyte
US3847667A (en) Alkali metal-porous conductive carbon battery having a molten alkali metal chloraluminate electrolyte
EP0116960A1 (en) Sodium-sulphur batteries and power storage devices
EP3044824B1 (en) High temperature sodium battery with high energy efficiency
CN106784766B (en) A kind of preparation method and application of the porous negative electrode material for lithium ion battery
JPS58137974A (en) Sodium-sulphur cell system
JPH02309568A (en) Lithium secondary battery
EP0233210B1 (en) Alkali metal electro-chemical storage cell
CA1305755C (en) Charge balancing of rechargeable batteries
JPS6156291A (en) Electrochemical refining method of liquid sodium
DEJONGHE Improved beta-alumina electrolytes for advanced storage batteries[Progress Report, 1 Sep. 1978- 31 Sep. 1980]
CN216958172U (en) Liquid metal battery for industrial application
JPS61230275A (en) Manufacture of sodium-sulfur battery
CN218867186U (en) Lithium battery for beauty instrument
Marinčić Materials balance in primary batteries. I. Lithium inorganic cells at low discharge rates
JPH0430716B2 (en)
King Sulfur cell construction and method.[carbon mesh wrapping between. beta.-alumina and polysulfide electrolytes]
TWM629458U (en) Aluminum cathode secondary battery structure
JPS61502714A (en) Sealed lead-acid battery for oxygen gas recombination
JPS5931010Y2 (en) sodium-sulfur battery
Nuttall Water electrolysis using solid polymer electrolytes
JPS59154776A (en) Forming method of sodium sulfur battery and battery using this method
JPH05144465A (en) Sealed type lead-acid battery
of Tennessee High energy cathodes and anodes for molten salt batteries