JPS59154776A - Forming method of sodium sulfur battery and battery using this method - Google Patents

Forming method of sodium sulfur battery and battery using this method

Info

Publication number
JPS59154776A
JPS59154776A JP58028540A JP2854083A JPS59154776A JP S59154776 A JPS59154776 A JP S59154776A JP 58028540 A JP58028540 A JP 58028540A JP 2854083 A JP2854083 A JP 2854083A JP S59154776 A JPS59154776 A JP S59154776A
Authority
JP
Japan
Prior art keywords
battery
sodium
active material
solid electrolyte
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58028540A
Other languages
Japanese (ja)
Other versions
JPH0516149B2 (en
Inventor
Hiromi Tokoi
博見 床井
Tadashi Goto
忠 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58028540A priority Critical patent/JPS59154776A/en
Publication of JPS59154776A publication Critical patent/JPS59154776A/en
Publication of JPH0516149B2 publication Critical patent/JPH0516149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To reduce a heat loss as well as to form a sodium sulfur which checks corrosion or the like in a battery jar vessel, by making the volume of a reaction range smaller so as to feed a battery reaction range part with a necessary amount of active materials by slow degrees. CONSTITUTION:Bounding to a solid electrolyte 14 where sodium slufur passes through, a battery reaction range part 20 is formed by means of a negative pole active material 9 composed of sodium and a positive pole active material 19 comprising sulfur and sodium polysulfide as an indispensable component. At this time, a battery jar part 13 leading both these active materials 9 and 10 is installed, thereby making the volume of the reaction range part 20 smaller, and a necessary amount of both active materials 9 and 10 is fed by degrees. These active materials 9 and 10 being led into the battery jar part 13 make contact chemically with each other adjoining to the solid electrolyte 14, thus a battery is formed up. Owing to this battery, dangerousness by a sudden reaction between sodium and sulfur can be avoided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 電池に関する。この種の電池は、通常の電池として電源
用に用い得るのは勿論、電力不需要時に充電により電力
を貯え、需要時に放電させる電力貯蔵用としても好適に
利用できるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] Related to batteries. This type of battery can of course be used as a power source as a normal battery, and can also be suitably used for power storage by storing power by charging when power is not needed and discharging it when power is needed.

〔従来技術〕[Prior art]

従来のナトリウム−イオウ電池の具体的な構造例を第1
図に示す。この電池は陰極活物質1として溶融ナトリウ
ム、陽極活物質2として溶融イオウと多硫化ナトリウム
を使用し、電解質としてはナトリウムイオンの電導性を
有する固体電解質3を用いている。この固体電解質3は
、ガラスまたはセラミックスによシ構成できるが、酸化
アルミニウムと酸化ナトリウムが分子内に含まれる形の
所謂β−アルミナ(Na20・ktzos )が有効で
ある。
A specific structural example of a conventional sodium-sulfur battery is shown below.
As shown in the figure. This battery uses molten sodium as the cathode active material 1, molten sulfur and sodium polysulfide as the anode active material 2, and uses a solid electrolyte 3 having sodium ion conductivity as the electrolyte. The solid electrolyte 3 can be made of glass or ceramics, but so-called β-alumina (Na20.ktzos) containing aluminum oxide and sodium oxide in its molecules is effective.

これはβ−アルミナがナトリウムイオンの伝導性が太き
いからであシ、現在開発中のナトリウム−イオウ電池の
大部分はこれを電解質としていると言える。またβ−ア
ルミナは電子伝導性を持たないため、陽極4と陰極5と
を分離するセパレータとしての役目も合せて果している
This is because β-alumina has high sodium ion conductivity, and it can be said that most sodium-sulfur batteries currently under development use this as the electrolyte. Furthermore, since β-alumina does not have electron conductivity, it also serves as a separator that separates the anode 4 and the cathode 5.

陽極活物質をなす多硫化ナトリウムは、イオン伝導性は
あるが電子伝導性がなく、また同じく陽極活物質をなす
イオウも電子伝導性がないため、電気化学反応に伴う電
子の授受を助ける目的で、該陽極活物質2は導電材(例
えば繊維状にしたグラファイトなど)に含浸されている
。作動温度は陽極活物質の融点を考慮して、3000以
上が有効とされる。
Sodium polysulfide, which makes up the anode active material, has ionic conductivity but not electron conductivity, and sulfur, which also makes up the anode active material, also has no electron conductivity, so it is used to help transfer electrons during electrochemical reactions. , the anode active material 2 is impregnated with a conductive material (eg, fibrous graphite). Considering the melting point of the anode active material, an effective operating temperature is 3000 or higher.

更に第1図において、6は絶縁材をなすα−アルミナ(
A4203)板、7はモリブデン等の耐腐食性金属板、
8はステンレスのケーシングである。
Furthermore, in Fig. 1, 6 is α-alumina (
A4203) plate, 7 is a corrosion-resistant metal plate such as molybdenum,
8 is a stainless steel casing.

充放電反応は、 であシ、従って電池全体としては次の如くになる。The charge/discharge reaction is So, the entire battery is as follows.

このようなナトリウム−イオウ電池は電解質が固体であ
り、陽極活物質が溶融液状であるため、特性的に以下の
ような特徴がちる。
Such sodium-sulfur batteries have the following characteristics because the electrolyte is solid and the positive electrode active material is molten liquid.

(1)充放電時に副反応がないので自己放電がなく、充
電された容量全部を放電することができる。
(1) Since there are no side reactions during charging and discharging, there is no self-discharge, and the entire charged capacity can be discharged.

(11)理論エネルギ密度が高く、従来の鉛蓄電池では
30〜50 wh/kg (理論値180 Wh 7k
g)であるのに対し、その数倍の値(理論値780wh
/kg)が可能と考えられる。
(11) High theoretical energy density, 30 to 50 wh/kg (theoretical value 180 Wh 7k) for conventional lead-acid batteries
g), whereas the value several times that (theoretical value 780wh)
/kg) is considered possible.

(il+ )活物質として使用されるナトリウムとイオ
ウは電気化学反応が極めて小さく、かつ資d0勺にも豊
富で安価であるため、省資源、省エネルギに役立つ。
(il+) Sodium and sulfur used as active materials have extremely small electrochemical reactions, are abundant in resources, and are inexpensive, so they are useful for resource and energy conservation.

以上のようにナトリウム−イオウ電池は多くの利点を有
するため、将来の電力貯蔵システムとして有望視されて
いる。
As described above, sodium-sulfur batteries have many advantages and are therefore considered promising as future power storage systems.

しかしながらこの電池にも、以下のような問題点がある
However, this battery also has the following problems.

(イ)電池活物質であるナトリウム、イオウ等を高温の
溶融状態で用いるので、作動温度維持のだめの熱損失が
太きい。現状では放電電力量の約30優に及ぶ。第2図
に略示する如く作動温度を高めると電圧特性は改善され
るが、現状では電池全体を外部電源力どを用いてのヒー
タ加熱ガス加熱等を行っているため、作動温度を上げる
と熱損失が極度に増加する。
(a) Since the battery active materials such as sodium and sulfur are used in a high-temperature molten state, heat loss is large in order to maintain the operating temperature. At present, it amounts to approximately 30% of the amount of discharged power. As shown schematically in Figure 2, increasing the operating temperature improves the voltage characteristics, but currently the entire battery is heated with heater gas using an external power source, etc. Heat loss increases significantly.

(β−アルミナの抵抗も損失に少し加わるが、温度維持
のための損失つまり放熱による損失が殆どである。) (ロ)溶融ナトリウムやイオウ、多硫化ナトリウム等の
活性の強い物質を、しかも高温で用いるだめ、容器の腐
食が起こることがある。かっこの腐食反応などによシ、
活物質たるイオウ等が消費され、活物質が減少して電池
容量が減少する。
(The resistance of β-alumina also adds a little to the loss, but most of the loss is due to heat radiation.) Corrosion of the container may occur if used. For corrosion reactions of brackets, etc.
The active material such as sulfur is consumed, the active material decreases, and the battery capacity decreases.

長時間使用時にこの傾向がみられる。This tendency is seen when used for a long time.

(ハ)β−アルミナ等から成る固体電解質が破損した場
合、その他ナトリウムとイオウとが接触することがある
と、急激なナトリウムとイオウの反応が起こる危険性が
ある。
(c) If the solid electrolyte made of β-alumina or the like is damaged, or if sodium and sulfur come into contact with each other, there is a risk that a rapid reaction between sodium and sulfur will occur.

上記のような事情のため、これらの問題を解決して、電
池作動に伴う熱損失が小さく、容器腐食も少なくて電池
容量減少の傾向も小さく、かつ安全性の高いナトリウム
−イオウ電池の開発が望まれている。
Due to the above-mentioned circumstances, it is necessary to solve these problems and develop a highly safe sodium-sulfur battery that has low heat loss during battery operation, less corrosion of the container, and less tendency to decrease battery capacity. desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来のナトリウム−イオウ電池の欠点
である電池作動に要する熱損失の問題。
The purpose of the present invention is to solve the problem of heat loss required for battery operation, which is a drawback of conventional sodium-sulfur batteries.

活物質による電槽容器の腐食や電池容量減少の問題、固
体電解質の破損などに伴うナトリウムとイオウの急激な
反応の起こる危険性等の問題点を解決した、有利なナト
リウム−イオウ電池を提供することにある。
To provide an advantageous sodium-sulfur battery that solves problems such as corrosion of the battery container due to active materials, reduction in battery capacity, and danger of rapid reaction between sodium and sulfur due to damage to the solid electrolyte. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明者らは、電池反応領域に存在する両極活物質量を
可及的に減少させることにより、上記目的の達成の可能
性があることに着目して、本発明に至ったものである。
The present inventors have developed the present invention by focusing on the possibility of achieving the above object by reducing as much as possible the amount of bipolar active material present in the battery reaction region.

即ち本発明においては、陰極・陽極両活物質により構成
する電池反応領域部には必要量の画情物質を漸次供給す
る構成とすることによシ、電池反応領域部の体積を小な
らしめる形成方法をとる。
That is, in the present invention, the volume of the battery reaction area can be reduced by gradually supplying the required amount of image material to the battery reaction area formed of both cathode and anode active materials. take a method.

またこの方法を実施して、画情物質の量を電池の発電容
量に対して必要量確保し、かつ電池反応領域部における
画情物質が固体電解質に接する面積を発電容量に対して
必要面積確保しつつ、この電池反応領域部の体積を小な
らしめたナトリウム−イオウ電池を構成することができ
る。
In addition, by implementing this method, the amount of image material is secured as required for the power generation capacity of the battery, and the area where the image material is in contact with the solid electrolyte in the battery reaction area is secured as necessary for the power generation capacity. At the same time, it is possible to construct a sodium-sulfur battery in which the volume of the battery reaction area is reduced.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第3図によシ説明する。 An embodiment of the present invention will be explained below with reference to FIG.

図示のナトリウム−イオウ電池は次のような構成になっ
ている。ナトリウムイオンが通過可能な固体電解質14
を境にして、ナトリウムから成る陰極活物質9と、イオ
ウや多硫化ナトリウムを必須成分とする陽極活物質10
とにより、電池反応領域部20を構成する。この電池反
応領域部20には、必要量の画情物質を漸次供給するよ
うにして、該電池反応領域部20の体積を小さく構成す
る。
The illustrated sodium-sulfur battery has the following configuration. Solid electrolyte 14 through which sodium ions can pass
A cathode active material 9 consisting of sodium and an anode active material 10 containing sulfur and sodium polysulfide as essential components.
This constitutes the battery reaction area section 20. The battery reaction area 20 is configured to have a small volume by gradually supplying a necessary amount of image material to the battery reaction area 20.

上記のようにこのナトリウム−イオウ電池は、従来の電
池と異なシ、電池反応領域部20を小さくして、該電池
反応領域に存在する活物質は漸次供給するものとした。
As described above, this sodium-sulfur battery is different from conventional batteries in that the battery reaction area 20 is made small and the active material present in the battery reaction area is gradually supplied.

この結果、電池反応領域の熱容量は格段に小さくするこ
とができる。本実施例では、従来電池の1/10以下と
することができた。将来的には一層小さくすることもで
きると思われる。これにより、従来構造の電池では不可
能であった、作動温度維持に要する熱量の低減が可能に
なる。またこのため、電池反応領域部20を高温に維持
できることによって、電圧特性が良く、充放電容量の大
きな電池が得られる。更に、補給用の活物質を貯える電
槽11,12.15の方は低温に維持しておいてよいの
で、腐食性の強い多硫化ナトリウムなどを低温に維持す
ることができる。この結果、電槽材の腐食が防止され、
長時間使用時の電池容量低下の防止が可能となる。かつ
、活性なナトリウムとイオウの接触する電池反応領域部
20の容積を小さくしたことで、固体電解質14が破損
しても、ナトリウムとイオウの異常反応を最小限におさ
えることができる。
As a result, the heat capacity of the battery reaction region can be significantly reduced. In this example, it was possible to make it 1/10 or less of the conventional battery. It seems possible to make it even smaller in the future. This makes it possible to reduce the amount of heat required to maintain the operating temperature, which was not possible with batteries of conventional structure. Furthermore, since the battery reaction region 20 can be maintained at a high temperature, a battery with good voltage characteristics and a large charge/discharge capacity can be obtained. Furthermore, since the battery containers 11, 12, and 15 that store active materials for replenishment may be maintained at low temperatures, highly corrosive sodium polysulfide and the like can be maintained at low temperatures. As a result, corrosion of the battery case material is prevented,
It is possible to prevent battery capacity from decreasing during long-term use. Furthermore, by reducing the volume of the battery reaction region 20 where active sodium and sulfur come into contact, even if the solid electrolyte 14 is damaged, abnormal reactions between sodium and sulfur can be minimized.

本実施例の具体的な構造は次の如くである。本例におい
ては、陰極活物質9として300crrI3の溶融金属
ナトリウムを電槽11に充填し、陽極活物質10として
340 cm3の溶融硫黄10を電槽12に充填する。
The specific structure of this embodiment is as follows. In this example, a battery case 11 is filled with 300 crr I3 of molten metal sodium as the cathode active material 9, and a battery case 12 is filled with 340 cm3 of molten sulfur 10 as the anode active material 10.

画情物質9,10は、しぼられた電槽部13に導入され
、ここで固体電解質14を境にして、電気化学的に接し
、電池を形成する。
The image materials 9 and 10 are introduced into the squeezed battery case 13, where they come into electrochemical contact with the solid electrolyte 14 as a boundary to form a battery.

このようにしぼられた電槽部工3により電池反応領域部
20が画成されて、その体積が小ならしめられているも
のである。固体電解質14と、電槽部13との間は狭い
ギャップ部になっておシ、このギャップ部は本例では2
配とした。本例の電池反応領域部20の中央部、つ−ま
り固体電解質14の中心部は真空構造部21となってい
る。これは電池反応領域部20の熱容量を小さくするノ
ζめである。本例ではこの真空構造部21も固体電解質
から成る内筒21′によシ画成し、との内筒21′を外
筒をなす固体電解質14で囲い、更にこれを電槽部13
で囲って反応領域部20を構成したが、内筒21′を金
属などの別材料で形成して真空構造部21とするのでも
よい。
The battery reaction area 20 is defined by the battery case part 3 thus narrowed, and its volume is reduced. There is a narrow gap between the solid electrolyte 14 and the battery case 13, and in this example, this gap is 2
It was arranged. In this example, the central portion of the battery reaction area 20, that is, the central portion of the solid electrolyte 14, is a vacuum structure portion 21. This is to reduce the heat capacity of the battery reaction area 20. In this example, this vacuum structure part 21 is also defined by an inner cylinder 21' made of a solid electrolyte, and the inner cylinder 21' is surrounded by a solid electrolyte 14 forming an outer cylinder, and this is further connected to the battery case part 13.
Although the reaction region section 20 is constructed by surrounding the inner tube 21' with a metal, the vacuum structure section 21 may be formed by forming the inner cylinder 21' from another material such as metal.

本例における電池反応領域部2oへの活物質9゜10の
漸次の供給は次のように行う。上下部各電槽11,12
.15には予め調整弁19を介してガス圧調節器16を
接続しておく。よってこれにより、このガス圧調節器1
6と調整弁19の操作によシ差圧を与えて、放電反応の
進行に従って生成された多硫化ナトリウムを丁部電槽1
5側に押出し、同時に上部電槽12から溶融金満ナトリ
ウムを補充する。
In this example, the active material 9.degree. 10 is gradually supplied to the battery reaction region 2o as follows. Upper and lower battery containers 11, 12
.. 15 is connected in advance to a gas pressure regulator 16 via a regulating valve 19. Therefore, this gas pressure regulator 1
6 and the regulating valve 19 to apply a differential pressure to the sodium polysulfide produced as the discharge reaction progresses
5 side, and at the same time, molten gold-rich sodium is replenished from the upper battery container 12.

本電池の作動時の温度分布は、電池反応領域部20で3
75 C,その他の各電槽11,12゜15は275C
になるように維持した。この結果、電極17.18間に
約200 A、 hの出力が得られた。
The temperature distribution during operation of this battery is 3.
75C, each other battery case 11, 12゜15 is 275C
maintained so that As a result, an output of about 200 A, h was obtained between the electrodes 17 and 18.

なお充電時においては、多硫化ナトリウムが貯められた
下部槽15を加圧して、電池反応領域部20で、放電時
とは逆にこれをナトリウムとイオウとに分解し、それぞ
れ電槽11.12に戻した。
In addition, during charging, the lower tank 15 in which sodium polysulfide is stored is pressurized, and in the battery reaction area 20, it is decomposed into sodium and sulfur, contrary to the discharging process, and the sodium polysulfide is decomposed into sodium and sulfur, respectively. I returned it to .

本電池の充放′屯特性を第4図に示す。この図は容量@
)に対する、電流密度(出力電流を固体電解質の面積で
割ったもの) 100 Ill A /cmsの放電時
の電圧特性をグラフにて示したものである。この図から
、作動温度が375Cの場合(グラフ■)には275C
の時(グラフ■)と比べて端子電圧が高く、かつ放電深
度が深くなっても(つまシ容量が高くなって100慢に
近くなっても)端子電圧は安定していることがわかる。
Figure 4 shows the charging and discharging characteristics of this battery. This figure shows the capacity @
) is a graph showing the voltage characteristics during discharge at a current density (output current divided by the area of the solid electrolyte) of 100 Ill A /cms. From this figure, when the operating temperature is 375C (graph ■), 275C
It can be seen that the terminal voltage is higher than in the case of (graph ■), and the terminal voltage is stable even if the depth of discharge becomes deeper (even if the capacitance increases and becomes close to 100%).

これは、作動温度が上昇すると陽極での放電反応および
反応生成物の対流・拡散が効果的となシ、かつ固体電解
質14を形成するβ−アルミナの比抵抗が温度上昇とと
もに低下するため電圧特性が改善され、放電容量も増加
するからと考えられる。
This is because as the operating temperature rises, the discharge reaction at the anode and the convection and diffusion of the reaction products become more effective, and the specific resistance of β-alumina that forms the solid electrolyte 14 decreases as the temperature rises, resulting in voltage characteristics. This is thought to be because the discharge capacity is improved and the discharge capacity is also increased.

本実施例においては、電池反応領域部20の温度維持は
、外部加熱がなくても達成できる。即ち本電池の反応領
域部20の温度は375Cに維持するが、昇温に当たっ
ては、電池放電時のジュール熱と電池反応に伴う生成熱
によって、外部からの加熱は不要である。275Cから
375Cへの昇温に要する時間は20分以内であった。
In this embodiment, temperature maintenance of the battery reaction area 20 can be achieved without external heating. That is, the temperature of the reaction region 20 of this battery is maintained at 375C, but external heating is not necessary when raising the temperature due to Joule heat during battery discharge and heat generated due to battery reaction. The time required to raise the temperature from 275C to 375C was within 20 minutes.

昇温速度が速いのは、本電池が、従来電池に比べ反応領
域の熱容量を1/10以下におさえたためである。
The reason why the temperature rise rate is so fast is that this battery has a heat capacity of the reaction region less than 1/10 of that of conventional batteries.

この昇温時間20分というのは、活物質の反応領域部2
0への補給速度が約0.2 cm /miAと遅いのに
対して、また活物質の反応領域滞在時間がほぼ2.5時
間であるのと比較して、充分速い。
This heating time of 20 minutes means that the reaction area 2 of the active material
Although the replenishment rate to 0.0 is slow at about 0.2 cm 2 /miA, and the residence time of the active material in the reaction region is approximately 2.5 hours, this is sufficiently fast.

甘た本電池は、反応領域部20に対する特別の加熱は喪
さないので、結局本電池の外部加熱は、反応領域部3を
含めた全領域を275Cに加熱するのみでよい。このた
め従来電池のように375Cにナトリウム−イオウ電池
全体を加熱する場合に比し、熱損失を1/2以下におさ
えることができた。
Since this battery does not require special heating for the reaction area 20, the external heating of the battery only requires heating the entire area including the reaction area 3 to 275C. Therefore, heat loss could be reduced to less than 1/2 compared to the case where the entire sodium-sulfur battery is heated to 375C as in conventional batteries.

以上説明したように本実施例によれば、電池反応領域部
2oの体積を小さくして、反応領域に存在する活物質量
を減少させることにより、この部分の熱容量を小さくし
たので、電池反応領域部20の作動温度維持のため生じ
る熱損失を小さくする効果がある。特に本例の場合、反
応領域部20の昇温や、その温度維持に特別外部加熱を
要さないという利点がある。また、従来電池の如く電池
全体を高温にしておくことは要さず、活物質貯蔵領域に
比べて反応領域の方だけの温度を高くしておくこと、っ
まシミ池反応領域部2oを高温にし補給用の活物質を貯
える電槽11,12を低温にでき、この結果加熱エネル
ギを小さくでき、かつ容易に反応領域の高温化を達成で
きるので電圧特性が良く充放電容量の大きな電池が得ら
れる。
As explained above, according to this embodiment, the volume of the battery reaction area 2o is reduced to reduce the amount of active material present in the reaction area, thereby reducing the heat capacity of this part. This has the effect of reducing heat loss caused to maintain the operating temperature of the section 20. Particularly in the case of this example, there is an advantage that no special external heating is required to raise the temperature of the reaction region 20 or to maintain the temperature. In addition, unlike conventional batteries, it is not necessary to keep the entire battery at a high temperature, but only the reaction area is kept at a higher temperature than the active material storage area. The battery containers 11 and 12 that store the active material for replenishment can be kept at a low temperature, and as a result, the heating energy can be reduced and the temperature of the reaction region can be easily raised, resulting in a battery with good voltage characteristics and a large charge/discharge capacity. It will be done.

更に、活性なナトリウムとイオウの接触する電池反応領
域部20の容積を小さくしたことで、固体電解質破損時
のナトリウムとイオウの異常反応の危険性を最小限にお
さえる効果がある。
Furthermore, by reducing the volume of the battery reaction region 20 where active sodium and sulfur come into contact, there is an effect of minimizing the risk of abnormal reaction between sodium and sulfur when the solid electrolyte is damaged.

なお上記実施例では活物質の移送にアルゴンガスを用い
た。但し当然のことながら不活性ガスであれば使用可能
であp1ヘリウム、窒素ガス等でも可能である。コスト
の点では窒素が適当である。
In the above example, argon gas was used to transfer the active material. However, as a matter of course, any inert gas can be used, such as p1 helium, nitrogen gas, etc. Nitrogen is suitable in terms of cost.

第5図には、本発明の他の実施例を示す。本例において
は、反応領域部20における固体電解質14を細径の管
状にし、数本並列に配置して構成する。この細管状の固
体電解質14の内部には、上部電槽11から、陰極活物
質9であるナトリウム9を導入する。また細管同士のギ
ャップは可及的に狭くシ、上部電槽12から陽極活物質
10でおる硫黄を導入する。ギャップをなるべく小さく
するのは、熱容量をできるだけ小ならしめるためである
FIG. 5 shows another embodiment of the invention. In this example, the solid electrolyte 14 in the reaction area section 20 is formed into a small diameter tube and is configured by arranging several tubes in parallel. Sodium 9, which is the cathode active material 9, is introduced into the tubular solid electrolyte 14 from the upper battery case 11. Further, the gap between the capillaries is made as narrow as possible, and sulfur is introduced from the upper battery case 12 through the anode active material 10. The purpose of making the gap as small as possible is to make the heat capacity as small as possible.

上記のように固体電解質14を細径管状にして並列し、
該管内に陰極活物質、細管間のギャップに陽極活物質1
0を各々導入することによシ、画情物質9,10が電解
質14を介して接触する面積が大きくなる。この結果、
反応領域部20に存在する画情物質の体積に比べ、両者
の接触面積は大きくとれる。従って、反応領域部20は
しほられた電槽13により狭く形成されているに拘らず
、十分な電池性能を発揮することができる。
As described above, the solid electrolyte 14 is formed into a small diameter tube and arranged in parallel,
A cathode active material is placed inside the tube, and an anode active material 1 is placed in the gap between the tubes.
By introducing 0, the area in which the image-sensitive substances 9 and 10 come into contact with each other via the electrolyte 14 increases. As a result,
Compared to the volume of the image material present in the reaction area section 20, the contact area between the two can be large. Therefore, even though the reaction area portion 20 is formed narrowly by the collapsed battery case 13, sufficient battery performance can be exhibited.

本例の他の部分の構成は、第3図で説明した例と同様で
ある。
The configuration of other parts of this example is similar to the example described in FIG. 3.

本実施例も先の例と同様、電池反応領域部20の熱容量
を小さくしたので、熱損失を小さくできる。また、反応
領域部20の昇温や温度維持も、外部加熱を必要としな
いで済む。全体の加熱エネルギも小さくてよく、それで
sbながら電池反応領域部20の高温維持ができ、よっ
て電圧特性が良く、充放電容量も犬になし得る。固体電
解質14破損時の危険性も小さい。
In this example, as in the previous example, the heat capacity of the battery reaction area section 20 is reduced, so that heat loss can be reduced. Further, raising the temperature of the reaction region 20 and maintaining the temperature do not require external heating. The overall heating energy is also small, and the battery reaction area 20 can be maintained at a high temperature even though it is SB.Therefore, the voltage characteristics are good, and the charging and discharging capacity can be maintained as well. The risk of damage to the solid electrolyte 14 is also small.

なお上記各実施例では、電槽11,12,13゜15や
固体電解質14を円筒形としたが、長方形やその他の形
状であっても、本発明の効果を損なうものではない。そ
の細形状・構造的にも、使用する活物質やその使用時の
物理条件等についても、適宜具体的な構成を採用できる
ことは勿論である。
In each of the above embodiments, the battery containers 11, 12, 13° 15 and the solid electrolyte 14 are cylindrical, but even if they are rectangular or other shapes, the effects of the present invention will not be impaired. It goes without saying that a specific configuration can be adopted as appropriate in terms of its thin shape and structure, the active material used, the physical conditions during its use, and the like.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明のナトリウム−イオウ電池は、電池
作動に要する熱損失が小さく、従って効率がきわめて良
く、活物質による電槽容器の腐食や電池容量減少という
問題も解決でき、更に固体電解質の破損などに伴うナト
リウムとイオウの急激な反応による危険性も解決したも
のである。従って、本発明は、従来のナトリウム−イオ
ウ電池の欠点を一掃した、きわめて有利なものというこ
とができる。通常の電池として有効に使用できるのは勿
論、夜間などの余剰電力貯蔵用としても有利に用いるこ
とができる。
As mentioned above, the sodium-sulfur battery of the present invention has low heat loss required for battery operation, and therefore has extremely high efficiency, and can solve the problems of corrosion of the battery container and decrease in battery capacity due to the active material. This also eliminates the risk of rapid reaction between sodium and sulfur due to breakage. Therefore, the present invention can be said to be extremely advantageous in that it eliminates the drawbacks of conventional sodium-sulfur batteries. Not only can it be effectively used as a normal battery, but it can also be advantageously used to store surplus power at night.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のナトリウム−イオウ電池の断面図である
。第2図はその特性を説明するだめのグラフである。第
3図は本発明のナトリウム−イオウ電池の一実施例の断
面図である。第4図は被測の電池の特性図である。第5
図は本発明の他の実施の一例を示す断面図である。 9・・・陰極活物質、10・・・陽極活物質、20・・
・電池反応領域部、13・・・電槽部、14・・・固体
電解質、16・・・ガス圧調節器(移動手段)、17・
・・陰極、18・・・陽極、19・・・調整弁(移動手
段)、21・・・真空構造部、21′・・・内筒。 代理人 弁理士 秋本正実 の2−図 容量(γ・2 弔40 容量(:/−)
FIG. 1 is a cross-sectional view of a conventional sodium-sulfur battery. FIG. 2 is a graph useful for explaining its characteristics. FIG. 3 is a cross-sectional view of one embodiment of the sodium-sulfur battery of the present invention. FIG. 4 is a characteristic diagram of the battery under test. Fifth
The figure is a sectional view showing an example of another embodiment of the present invention. 9... Cathode active material, 10... Anode active material, 20...
・Battery reaction area section, 13... Battery container section, 14... Solid electrolyte, 16... Gas pressure regulator (transfer means), 17.
...Cathode, 18...Anode, 19...Adjusting valve (moving means), 21...Vacuum structure section, 21'...Inner cylinder. Agent Patent Attorney Masami Akimoto's 2-diagram capacity (γ・2 40 capacity (:/-)

Claims (1)

【特許請求の範囲】 1、ナトリウムイオンが通過可能な固体電解質を境にし
て、ナトリウムから成る陰極活物質と、イオウまたは多
硫化すl−’Jウムを必須成分とする陽極活物質とによ
シミ池反応領域部を構成し、該電池反応領域部には必要
量の画情物質を漸次供給し、これによシ該電池反応領域
部の体積を小ならしめて構成することを特徴とするナト
リウム−イオウ電池の形成方法。 2、活物質の漸次供給は、供給用の移動手段を用いて行
うことを特徴とする特許請求の範囲第1項に記載のす)
−1Jウムーイオウ電池の形成方法。 3、ナトリウムイオンが通過可能な固体電解質を境にし
て、ナトリウムから成る陰極活物質と、イオウまたは多
硫化ナトリウムを必須成分とする陽極活物質とが接して
電池反応領域部を構成するナトリクムーイオf7電池に
おいて、画情物質の量を電池の発電容量に対して必要量
確保するとともに、前記電池反応領域部において画情物
質が固体電解質に接する面積を発電容量に対して必要面
積確保しつつ、該電池反応領域部の体積を小ならしめて
形成したことを特徴とするナトリウム−イオウ電池。 4、電池反応領域部には、該領域部に活物質を漸次供給
する移動手段を具備させたことを特徴とする特許請求の
範囲第3項に記載のナトリウム−イオウ電池。 5、電池反応領域部は、内部を真空に保った金属または
固体電解質から成る内筒と、該内筒を囲む固体電解質の
外筒と、更に外筒を囲む電槽部とを備えて構成し、内筒
と外筒とのギャップは可及的に狭く構成し、かつ外筒と
電槽とのギャップも可及的に狭く構成し、各ギャップに
よシ活物質の流路を形成したことを特徴とする特許請求
の範囲第3項または第4項に記載のナトリウム−イオウ
電池。 6、電池反応領域部は、細径の管状にして並列した固体
電解質と、該固体電解質を囲む電槽とを備えて構成し、
該固体電解質の細管同士のギャップは可及的に狭く構成
し、該ギャップと固体電解質の細管とを活物質の流路と
したことを特徴とする特許請求の範囲第3項または第4
項に記載のナトリウム−イオウ電池。
[Claims] 1. A cathode active material consisting of sodium and an anode active material containing sulfur or l-'Jium polysulfide as an essential component, with a solid electrolyte through which sodium ions can pass as a boundary. A sodium hydroxide solution comprising a stain pond reaction area, and a necessary amount of an image substance is gradually supplied to the battery reaction area, thereby reducing the volume of the battery reaction area. - A method of forming a sulfur battery. 2. The active material is gradually supplied using a transportation means for supplying the active material according to claim 1).
- A method for forming a 1J sulfur battery. 3. A sodium ion F7 battery in which a cathode active material made of sodium and a cathode active material whose essential component is sulfur or sodium polysulfide are in contact with each other, with a solid electrolyte through which sodium ions can pass, forming a battery reaction region. In the battery, the amount of the image material is secured as required for the power generation capacity of the battery, and the area in which the image material is in contact with the solid electrolyte in the battery reaction area is secured as necessary for the power generation capacity. A sodium-sulfur battery characterized by being formed by reducing the volume of a reaction region. 4. The sodium-sulfur battery according to claim 3, wherein the battery reaction region is provided with a moving means for gradually supplying the active material to the region. 5. The battery reaction area includes an inner cylinder made of metal or solid electrolyte whose interior is kept in vacuum, an outer cylinder made of solid electrolyte surrounding the inner cylinder, and a battery container further surrounding the outer cylinder. The gap between the inner cylinder and the outer cylinder is configured as narrow as possible, and the gap between the outer cylinder and the battery case is also configured as narrow as possible, and a flow path for the active material is formed in each gap. A sodium-sulfur battery according to claim 3 or 4, characterized in that: 6. The battery reaction area includes a solid electrolyte arranged in a thin tubular shape in parallel, and a battery container surrounding the solid electrolyte,
Claim 3 or 4, characterized in that the gap between the solid electrolyte thin tubes is configured to be as narrow as possible, and the gap and the solid electrolyte thin tube are used as a flow path for the active material.
The sodium-sulfur battery described in .
JP58028540A 1983-02-24 1983-02-24 Forming method of sodium sulfur battery and battery using this method Granted JPS59154776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028540A JPS59154776A (en) 1983-02-24 1983-02-24 Forming method of sodium sulfur battery and battery using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028540A JPS59154776A (en) 1983-02-24 1983-02-24 Forming method of sodium sulfur battery and battery using this method

Publications (2)

Publication Number Publication Date
JPS59154776A true JPS59154776A (en) 1984-09-03
JPH0516149B2 JPH0516149B2 (en) 1993-03-03

Family

ID=12251494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028540A Granted JPS59154776A (en) 1983-02-24 1983-02-24 Forming method of sodium sulfur battery and battery using this method

Country Status (1)

Country Link
JP (1) JPS59154776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531207A (en) * 1991-08-01 1993-02-09 Ngk Insulators Ltd Fire extinguisher in sodium-sulfur battery
KR20180119594A (en) * 2016-03-08 2018-11-02 바스프 에스이 Electrical energy storage and how it works

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830730A (en) * 1971-08-23 1973-04-23
JPS5128326A (en) * 1974-09-02 1976-03-10 Yukio Ogawa DOROKUKA KUSENSAITOSOSOCHI
JPS5260941A (en) * 1975-11-11 1977-05-19 Ford Motor Co Sodiummsulfur battery or cell having external storage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830730A (en) * 1971-08-23 1973-04-23
JPS5128326A (en) * 1974-09-02 1976-03-10 Yukio Ogawa DOROKUKA KUSENSAITOSOSOCHI
JPS5260941A (en) * 1975-11-11 1977-05-19 Ford Motor Co Sodiummsulfur battery or cell having external storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531207A (en) * 1991-08-01 1993-02-09 Ngk Insulators Ltd Fire extinguisher in sodium-sulfur battery
KR20180119594A (en) * 2016-03-08 2018-11-02 바스프 에스이 Electrical energy storage and how it works
JP2019507946A (en) * 2016-03-08 2019-03-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Device for storage of electrical energy and method of operating the device

Also Published As

Publication number Publication date
JPH0516149B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US3837918A (en) Sodium sulfur storage battery
US3833420A (en) Battery casing and regenerative metal-water battery
US3679480A (en) Electrical cell assembly
US3833422A (en) Regenerative metal-water battery
US3775181A (en) Lithium storage cells with a fused electrolyte
US4945012A (en) Copper chloride cathode for a secondary battery
US4018969A (en) Electrochemical storage cell
KR100250163B1 (en) Lead battery
US4064325A (en) Electric storage batteries
US4310607A (en) Battery cell construction
US4020246A (en) Low temperature primary electrolyte cell
JPS5825086A (en) Electrochemical storage battery
JPS59154776A (en) Forming method of sodium sulfur battery and battery using this method
US4403020A (en) Electrochemical cell
JPS6460971A (en) Cylindrical sealed type lead storage battery
US3261714A (en) Sealed dry cells having an ionization catalyst in the depolarizer
US4966823A (en) Organic cathode for a secondary battery
JPS61271754A (en) Supplying method of electrolyte for fused carbonate type fuel cell
JP2002184456A (en) Sodium-sulfur battery
US4563401A (en) Electrochemical cell with adjustable step-like output voltage
US3459596A (en) Battery including fluoride electrolyte and sulfur hexafluoride
US20200006813A1 (en) High temperature batteries
US4945013A (en) Capillary mixing of immiscible liquids in a battery cell
US4952464A (en) Sodium sulfur cell for weightless environments
US3560265A (en) Galvanic cell with a materix electrode