JPS58137423A - Filter apparatus for exhaust gas - Google Patents

Filter apparatus for exhaust gas

Info

Publication number
JPS58137423A
JPS58137423A JP57019417A JP1941782A JPS58137423A JP S58137423 A JPS58137423 A JP S58137423A JP 57019417 A JP57019417 A JP 57019417A JP 1941782 A JP1941782 A JP 1941782A JP S58137423 A JPS58137423 A JP S58137423A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
gas
porous
filter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57019417A
Other languages
Japanese (ja)
Other versions
JPH0211287B2 (en
Inventor
Mitsuyoshi Kawamura
川村 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP57019417A priority Critical patent/JPS58137423A/en
Publication of JPS58137423A publication Critical patent/JPS58137423A/en
Publication of JPH0211287B2 publication Critical patent/JPH0211287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0217Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements having the form of hollow cylindrical bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0211Arrangements for mounting filtering elements in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To remove combustible fine particles efficiently, by a method wherein a porous filter is formed from conductive ceramic and a metallic electrode means for heating the filter by passing a current therethrough is provided. CONSTITUTION:To respective filter end surfaces of a short cylindrical porous conductive ceramic filter 1 having a large mesh size and a short cylindrical porous conductive ceramic filter 2 having a fine mesh size, metallic electrodes are formed entirely or partially in a communicated form as metallized layers 4a, 4b, 5a, 5b. To the metallized layer 4a, a circular corrugated metal net 3c made of stainless steel is attached in a contacted state so as to overlap one surface thereof with said layer 4a each other. In addition, a circular corrugated metal net 3b made of stainless steel is provided so as to hold the front and the back surfaces thereof between the metallized layer 4b and the metallized layer 5a in a state contacted with said layers 4b, 5a.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス中に含まれる可燃f11重粒子、Flに自
り1車の排ガス中に含まれるカーボン等の可燃性微粒子
を除去Jるためのフィルタ装置に関りるらのであり、更
に詳しくはフィルタ自体に通電」ノ°(ブを熱させるこ
とににす□、高濾過性を保持1)た丁1こま、濾別した
可燃性微粒子を効率的に燃焼除去するフィルタ装置に関
するものである。 従来、例えば公害対策として自動車エンジンの耕ガス中
に含j;れるカーボン微粒子を除去りるために、IJI
気系または排気還流系に、フィルタを用いることが提案
されているが、長期の使用ではカーボンが堆積して目詰
りを起こし、圧力損失を生ずるという欠点があった。こ
の欠点を解消Jるものとシ゛(フィルタの微粒子捕捉部
位にニクロム線=  3 − ヒータあるいは5を熱金属層を組み合わせて通電加熱
The present invention relates to a filter device for removing combustible F11 heavy particles contained in gas and combustible fine particles such as carbon contained in the exhaust gas of a vehicle. This invention relates to a filter device that efficiently burns and removes filtered combustible particulates by heating the filter itself and maintaining high filtration performance. Conventionally, IJI has been used to remove carbon particles contained in the cultivated gas of automobile engines as a pollution control measure.
It has been proposed to use a filter in the gas system or the exhaust gas recirculation system, but it has the drawback that carbon accumulates and causes clogging during long-term use, resulting in pressure loss. What can be done to eliminate this drawback? (Nichrome wire = 3-heater or 5 combined with a heating metal layer in the particulate-capturing part of the filter and electrically heated)


)I、二り、捕捉部位に燃料を噴射して燃料の燃焼熱で
加熱したり、高1「電極を設i−Jτ火花放電により加
熱したり、又、フrルタをカーボン繊維とし、イのカー
ボン#J&IIIに通電−4ることにより加熱して、カ
ーボン微粒子を焼Jirl L、、目詰まりを防ぐ方法
が考えられていた、。 しかし、ニクロム線を使用部る場合はR熱面積が少なく
てエネルギ効率が悪く、又、フ・Cルタヘの取りトロプ
も手間のかかるしのであり、光熱金属層を設りる場合は
濾過の障害にならないよ・うに細く小面積に段【ノイ丁
く(はならず、やはり、1ネルギ効率が悪く、取りイー
1U6手間がかかるものであり、排ガスににり昇温がう
まくゆかない場合は−[ンジンを止めてから、)Cルタ
にたまったカーボン微粒子を燃焼さt!なIIれぽイ丁
らないことも生じた、1又、燃料噴0・1およびにモF
1−放電方法は格別にamな装置を必要とし、−■−ネ
ルギを火剤に消費し、燃料による火災上の問題、導電に
よるフィルタの損傷を生じ、又、カーボン除去用を使用
したものは!lJI[l−4= 自体が燃焼にJ:り消失してしまう欠点を有し°Cいl
こ 。 一方、同様な用途にセラミックのハニカム構造フィルタ
が知られており、このものは一般のフィルタに比べ、目
を細かくしても圧力損失が少なくてすみ、しか6コンパ
クトであるので自動車のlitガス中のカーボン除去用
にU7適なものCあるが目詰りを生じた場合、濾過面が
広範囲にわたるので、フィルタを使用部イ☆より取りは
ずして全イホを加熱処理し、カーボン微粒子を燃焼消滅
さt!なくではならなかった。更に、目詰まり防11の
方法と1−7(は、ス″Iンレスウール、アルミナペレ
ット等のフィルタの目の細かさを段階的に変化さl、カ
ーボン微粒子を分散させて捕捉し、更に燃利噴q・lに
」、リカーボン微粒子を加熱燃焼させる方〃、も提案さ
れているが、カーボン微粒子捕捉が不十分であり又、排
ガスは低酸素状態であるので温度」−昇にも限界があり
速やかな焼却ができないのと、装置が?!雑になる欠点
を有していた。 以])ホベた従来技術の欠点に鑑み、本発明者ら=  
  5   − はJンジンを作動したままで、圧力損失を悪化さぜるこ
となく特に複雑へ設備を要せずに、効率的に可燃性微粒
子を除去することを目的として、鋭意研究の結果、孔径
の異なる多孔質導電性セラミックフィルタを1」[ガス
流動方向に配列したものを使用することにJ、す、現状
の装置を大ぎく変更することなく、効率的に速やかに可
燃性微粒子を取り除くことかできることを見い出し、本
発明を完成したのである。。 即ち本発明の要旨とJるところは、排ガスの流動方向に
孔口の(¥が減少するように変化さt!でなる多孔質フ
ィルタにa〕いで、フィルタを導電性レラミックで形成
すると共に、該フィルタを通電加熱りるための金属質電
極手段を設けてなる排ガス用フィルタ装置及び該フィル
タ装置の排ガス」二流側に排ガスとの接触面積の大きい
多孔構造をな1自己通電発熱型の加熱器を配設してなる
排ガスフィルタ装置にある。 次に、図を参照しつつ説明する。 第1図は自動車IJIガス用フィルタ装置に適用し−6
− た1番目の発明の第1実施例を示ツ4.ここにおいて、
1は孔口のイ¥が大きい短円筒形の多孔質轡電竹セラミ
ックノイルタ、2は孔口の仔が小さい短円筒形の多孔質
導電性セラミックフィルタを表し、それらの孔口の径の
大きさは、例えば、フィルタ1でLL約201?ル/′
インチ、フィルタ2ぐ(、(約4CVIX)し/・′イ
ンチを1中月1′?Jる。 この2つのフィルタの端面には各々金属質電極が全端面
にまたは部分的でか−)連通状にメタライズ層4a 、
411.5a 、5bとして形成され−cいる1、そし
て、孔1−1の径の大きいフィルタ1のJ1ツノのメタ
ライズ層48に、ぞの−面が巾ンj′り合)ようにステ
ンレス等の円形波形金網3aが18触状態にあり、一方
孔口の径の小ざいフィルタ2の片方のメタライズ層51
1に一面が甲なり合うJ、うにステンレス等の円形波形
金網3Gが接触状態にあり、場合にJ、り金網3a、3
cは各々部分的にメタ1ノイズ層4.a、5bにろうf
at Gプにより接合され(いる。 更に、フィルタ1のもう 方のメタライス’V/4/l
−7− hどフィルタ2のbう 方のメタライズ層5aとに挾ま
れてステンレス等の円形波形金網3bの表裏が各々メタ
ライズ層4b、5aと接触状態1こあり、場合にJ、り
金網311)は部分的にメタライズ層4b、5aにろう
(=目1により接合されている5゜でして全体としC1
円円形波形金綱3a多孔質青電f1セラミックフィルタ
1、円形波形金網3b。 多孔質導電171セラミツクフイルタ2及び円形波形金
網3CBfI層し、 体の円筒体となって、tJ)ガス
用フィルタ装置を形成している。 この円筒体フィルタ装置はセラミックの絶縁筒9内(こ
納められて、外筒12に絶縁及び密着状態に挿入され、
円筒体フィルタKIWは、外筒12の鍔部16ど結合し
ている接合管14の鍔部17と絶縁環10との間に配設
されたバネ月11の押圧力により、絶縁環′10を介し
て、絶縁筒9の係止部9aに付設され、更に絶縁筒9が
外筒12の内部に付設された係1ト突条15方向に付勢
されることににす、支持びれている。 上記円筒体フィルタ装置の両端の金網3a13− 8 
− Cには各々導線6a、6bがろうイ」番1部分8a、8
bにて接合され、碍子13a、13bを介しく、絶縁的
に外筒12の外部へ導かれている。イし゛(導ll16
aは電源[二の一方の極ヘスイッ”f 7 (!g介し
て接続され、電源[どスイッチ7の間で中休に接地され
ている、1 方、導線5 bは電源Fの他方の極へ接続
され、前記円筒体フィルタ装置、導線6a 、6bスイ
ツチ7及び電源[全体で通電加熱回路を形成している。 1 双生の構成にa3いて、エンジンh臼うのカーボン微粒
子を含んだ排ガスはイグゾーストマニ小−ルドをイのま
ま通過して、点線で示1J、うに、上流方向Fより、フ
ィルタ装置へ流入Jるが、金網3a及びメタライズ層4
aをイのまま通り扱け、孔口の径が大きい多孔質導電性
セラミックフィルタ1に〒す、排ガス中に含まれるカー
ボン微粒子の内、比較的大きな粒子がフィルタに捕捉さ
れ(いる。 次いで、す1カスはメタライズ層41)、金網31】及
びメタライズ層5aを通り1%4j、孔口の行が小−9
− さい多孔質導電性セラミックフィルタ2に(iす、ここ
で排ガス中に残存している比較的小さく(カーボン粒子
がはどんど捕捉される。そしてiJl刀スはメタライズ
層5 b及σ金網3Cを通り扱(Jて、フィルタ装置P
t外へJJI出され、下流の排気管の方向[うに向かう
。この結果、カーボン微粒子は各フィルタ1.2中には
C3L均一に分散捕捉される。このとぎ、スイッチ7を
Aンにしてa3 <ことにより、金1!+38.3に間
に)11電されて、多孔IQ*電↑(1セラミツクフイ
ルタ1及び2が発熱し、フィルタ1.2内にほぼ均一に
捕捉されたカーボン微粒子4少ない電気エネルギーで9
)+牢的に速やかに燃焼消滅さゼることがでさる。 又、フィルタ装置の排ガス流入側の電極を1妄地霜伶と
1】ることにより、万一、流入側の、例えば、金網3a
にカーボンが1ft積し、絶縁筒9の係止部9aをカー
ボンが乗り越えることにより、フィルタ装置と外筒12
が通電状態になっても、短絡個所は接地側であるのて゛
、多孔質I!l電性セラミックフィルタ1.20電流吊
が低下することなくノf−10− ルタ1.2の湿度が低下せず、カーホンが燃A、残るこ
とがない。 次に第2図は1番目の発明の第2実施例を承り、1ここ
において、41は孔口の径の大ぎい多孔′fI轡霜竹セ
ラミックフィルタ、42は五目の径の小さい多孔質導電
性セラミックフィルタを示し、往1;1の径の大ぎさは
第1実施例と同様なものが使用され、両者は各々の一端
面で接合され、界面41を形成し、一体の構成をなして
いる。 そして、ノCルタ41のもう一方の端面は金属質電極が
メタライズ層43として形成され、史に他のフrルタ4
2のもう一方の端面(:)金属質電極がメタライズ層4
5として形成され、全体の構成がメタライズ層43、孔
口の径の大きい多孔質導電性セラミックフィルタ41、
接合界面47、孔口の径の小さい多孔質導電性セラミッ
ク″ノイルタ42及びメタライズ層45からなる排カス
用フィルタ装置をなしている。   。 上記フィルタ装置の両メタライズ層43.45には各々
ステンレス等の金網4’l、46が一部溶−11− 接された状態で接続し、更に金網44に導線48が溶接
され、該II線/181よスイッチ50を介して電源[
に接続されており一方金網46に導線49が溶接され電
IFに1秒続されている。ここで導線48の側で接地が
なされ、メタライズ層43の電極側が接地電位とな−)
でいる。 上記構成にJ:す、1」1ガス用フイルタ装置、導線4
9、スイッチE50、電源E及び導線49全体で通電加
熱回路を形成()(いる。 次に第3図は本光明の第3実施例を示す、1ここにおい
て、51は中空円筒体状の孔口の径の大ぎい多孔質導電
性セラミックフィルタ、52は中空円筒体状の孔「1の
径の小さい多孔質導電性セラミックフィルタを表わし、
孔口の1その大きさは第1実施例と同様<f’bのが使
用され、フィルタ52の外周面とフィルタ51の内周面
とは界面68にて結合して、二層フィルタを構成してい
る。 そして、フィルタ51の外周面には金属質電極がメタラ
イズ層53どして形成され、フィルタ52の内周面にも
金属質電極がメタライズ層54と−12− して形成されU JJす、全体の構成がメタライズ層5
3、孔口の径の大ぎい多孔質導電性セラミックフィルタ
51、w面68、孔[1の1¥の小さい多孔質導電性セ
ラミックフィルタ52及びメタライズ層54からなるυ
1ガス用フィルタHtFnをなしている。 上記メタライズ層53.54には各々導線63.64が
溶接その他の方法で接続され、各々碍子66.67を介
して絶縁状態に外部へ導かれて、該導線63はスイッチ
65を介して電源[に接続されており、他の11 ta
l 6 /lは電源Fの他の極へ直接接続されている。 ここで導線63側で接地がイrされ、メタライズW45
3の電極側が接地型(&どな・)でいる。 上記構成にj;す、刊ガス用フィルタ装置、導線63、
スイッチ65、電it EE及び4線64全体−C通電
加熱回路を形成している。 」−記二層フィルタの円形の端面の一方に4.L、Ir
’i+径の非多孔質絶縁11セラミック円形板55が密
着状態に結合されている。一方、二層フrルtの他−1
3一 端面にもli’il t¥の非多孔質絶縁性ヒラミック
円形板57が密着状態に結合されているが、該円形板5
7はイの中心に円形穴及び該穴に適合された円筒管57
aが酸4フられ、二層フィルタの中心穴部56とほぼ同
形の流出1’l 57 hを形成している。 59はフィルタを収納するための外筒であり、その排ガ
ス上流側に端面壁69を有し、その端面壁には流入+1
598が、端面壁69の周縁に適当な個数穿設され、端
面壁69の中心部にも端面壁69と同心円状に穴部59
0が穿設されている。 ただし、穴部590はN量化のために設けられた6ので
あり、穿設しなくてbよい。 上記流入口59 aと穴部59cとの間の端面壁69に
直角に、での内周が上記二層フィルタの」−゛流側端部
に適合するような環状突条62bが設けられ、該環状突
条621+とその内側の端面壁69とて一二層フィルタ
の十流側端部に結合しCいる円形板55を密着状態に支
持し、FM密状態を保っている。 外筒59の上流端面全体は短円筒形の接続蓋体−14− 58にJ:す、各々の周縁鍔部70.71が互いに結合
して、気密状態に覆われている。そして該蓋体58の一
部に排ガス唐人1−.158 aをイ]4る管体58c
が伺設され、該管体cO58cは、イグゾース[・マニ
ホールドに接続され′でいる、。 方、外筒59の下流端面全体4;L、?1111月状接
続蓋体60により、各々の周縁の鍔部72.73がηい
に結合し)て、気密状態に覆われている1、そ1ノて該
漏刈状蓋体60 );I:、イの排ガス流入I−1の内
周面に突出しCいる係止突条61a及びぞの内周面が上
記二層フィルタの下流側の端面及び外周面端部に適合す
るような環状突条6 l bが設番゛」られており、蓋
体60を外筒59に取りイ;目プた際、1−記係止突条
61a及び環状突条611)が二層フィルタの下流側端
部を密着状態に支持し、気密状態を保持する。無体60
の下流側には小径の1」1出ロ60(lを有し、図示し
ない排気管に接続されでいる。 以−にの構成にit5いて、Jンジンからの力・−ボン
微粒子を含/vだ排ガスは、イブジ−ストマニホールド
をそのまま通過しく、点線でしめ寸ように、1−− 1
5 − 流方向]:より接続品体58の導入ITI 58aに流
入する。更に、蓋体5 (3中で分流して、外筒59の
端面壁69に開[−1している流入口59aから、外筒
59の内部へ流入Jる11次いで、排ガスは外筒59内
部に露出(〕Cいる円筒形の排ガス用フィルタ装置の外
周面、」、リメタライズ層53を通過してその多孔質の
内部へ浸入Jる。ここにおいて、最初に排ガスが侵入り
る孔口の径の大きい多孔質導1’ll?ラミックフィル
タ51において、比較的大径のカーボン微粒子が捕捉さ
れ、次に排ガスが浸入する孔口の径の小さい多孔質導電
性セラミックフィルタ52において、比較的小径のカー
ボン微粒子が捕捉され、1」1ガスは、もう一方のメタ
ライズ層54を通過して中心穴部56へ流出する。この
時点でカーボン微粒子はフィルタ51.52全体に分散
して捕捉されており、排ガス中にはほとんど認められ4
cい、。 次にJJIガスは中心穴部56から非多孔質絶縁性セラ
ミック円形板57の流出口57bJ:り外筒59内部か
ら漏S1状蓋体fi Oへ流出し、次いで焦熱−16一 体60の排11目160dより排気管へJll +I 
′?Jる。 このとき、110熱回路のスイッチ65がAンしていて
、金属質電極であるメタライズ層53.54間に通電が
行われていると、フィルタ51.52中に分散し゛て捕
捉されている、カーボン微粒子がフィルタ51..52
自体の発熱により、速やかに燃焼消滅づる。 次に第4図は1番目の発明の第4実施例を示1゜ここに
おいて、81は中空円筒体状の孔Hの径の大ぎい多孔質
導電性セラミックフィルタ、82は中空円筒体状の孔H
の径の小さい多孔質IP電v1セラミックフィルタを示
し、孔1」の(¥は第1実施例と同様なものが使用され
、両フィルタ81.82はその端面の形状が同一の中抜
ぎ円形甲面4(I:し、界面86にて円筒体の軸方向に
結合され、。 種のフィルタが連続した中空円筒体状フィル996を構
成している、1 」−記フィルタ96の外周面及び内周面に各々金属質電
極としてのメタライズ層83.84が設けられ、内周面
のメタライズ層84に密着し、ノイー    17  
 − ルタ96の中心穴F3:)の、1ニ流側を閉鎖りるため
の非多孔質耐熱性の閉′I!1管97が中心穴85に挿
入されている。 これら、フィルタ96、メタライズ層83.84及び閉
鎖管97全体から排ガス用フィルタ装置が構成されてい
る。 」〕記フィルタ装買は子の外周面が外筒内周面に密着す
るように、外筒88の中に納められ、外筒88の内部に
突出し1.:係l:突条88aにJ、す111ガス]−
流側で係止され、更に外筒88と漏斗状接続管89が各
々の鍔部88b、89aにて結合し、漏斗状接続管89
の他の鍔部89dにて上記フィルタ装置はぞのJJIガ
ス下流側で係11されて、その位置を保持している。。 又、フィルタ装置の内周面のメタライズ層84の 端9
5に導線91が溶接等により接続され、一方、フィルタ
装置の外周面のメタライズ層83が直接接触してメタラ
イズ層と通電状態にある外筒88の一部94に導線90
が溶接等により接続されている。 −18− 導線91は漏用状接続管89に設りられIこiI!l 
ノ”93を介して外部へ導出され、スイッチ92を介し
て電源1−に接続され、一方、導KA90は電源1の反
対の極に接続され、導線90側CI鮫地されてい信 り記の171刀゛ス川ノイルタ装置、外筒88、凋1粍
)90.91、スイッチ92及び電源F全体C′通電加
熱回路を形成している。 以j−の構成において、」−ンジンからのカーボン微粒
子を含んだIIガスは、イグゾース1〜マニホールドを
そのまま通過しC1外商88に争り、点線で示づ如< 
JJI刀ス土流り向F J、す、まず孔1−1の径の大
きいフrルタ81へ浸入する。Cのと(\゛、−フィル
タ81の中心穴85へは閉鎖管がrs、23い(・いる
ので、す1ガスがそのまま排気管側Bへ索通りJること
はない、。 IIガスがフィルタ81の孔l\浸入1Jるど、JJ1
ガス中のカーボン微粒子の内比較的大t¥の11(t 
rがフィルタ81の全体に分散して捕捉され、次いで界
面86を通過して、排ガスがフィルタ82へ浸入−19
−− Jると残りの比較的小径の粒子がフィルタ82の全体に
分散して捕捉され、排ガスはフィルタ82の下流側より
浸出(ッ、fit 31状接続管を通過し、て、下流側
B方向の図示しイにい排気管にり排出される。 このとき、加熱l111路のスーrツヂ92がAンして
いて金属質電極であるメタライズ層83.84間に通電
が行われくいイ)ど、フィルタ81 、82 Il+に
分散して捕捉されCいるカーボン微粒子がフィルタ81
.82内体の発熱により、速やかに燃焼消滅する。 次に第5図に2番1−1の発明の実施例を示1゜ここに
a3い−(,21は孔Hの径が大ぎい短円筒形の多孔質
導電11セラミツクフイルタ、22は孔口の径が小さい
短円筒形の多孔質導電性セラミックフィルタを示し孔口
の径は1番目の発明の第1実施例と同様なりのが使用さ
れ、24は断面正方形の多数の貫通孔からにするハニ7
Jム椙造体はラミック加熱器を示し息いる。。 この2つのフィルタ21.22の端面と1つの加熱器2
4の格子状端面には各々金属?を電極がメー  20 
− タライズ層29+1,29b 、30a 、30b 、
28a、2811として形成されている。 フィルタ2101つのメタライズ層291)とノイルり
22の1つのメタライズ層30aとに1火、1、れてス
テンレス等の円形波形金網23bの表爽か各々メタライ
ズ層29h、、30aと接触状8k(6つ、場合により
金網23bは部分的にメタライズ層29b、30aにろ
う付りにより電気的に接続されている。 又、フィルタ21のもう一方のメタライズ層29aと加
熱器24の1つのメタライズ層28bとに挾j:れてス
テンレス等の円形波形金網23aの表裏が各々メタライ
ズ層29a 、28bと接触状態にあり、場合により金
網23aは部分的にメタライズ層29a 、28bに、
ろう付けににり電気的に接続されCいる。 フィルタ22のもう一方の端面のメタライズ層30bに
、その−面が重なり合うようにス)ンレス等の円形波形
金網230が接触状態にあり、鴨合にJ:り金網23C
は部分的にメタライズIIM :10〜 21 − すに、ろう(=jlプにより電気的に接続されている。 同様に加熱器のbう一方の格子状端面のメタライズ層2
88に、その−面が重なり合うようにステンレス等の円
形波形金網27が接触状態にあり、場合ににり金網27
部分的にメタライズ層28aに、ろう付
[
) I, II, inject fuel into the capture site and heat it with the combustion heat of the fuel, or heat it by installing a high 1" electrode and using i-Jτ spark discharge, or use carbon fiber as the filter and A method was considered to prevent clogging by heating the carbon particles by applying electricity to the carbon #J&III.However, when using nichrome wire, the heating area is small. In addition, the energy efficiency is poor, and the removal of the filter to the filter is time-consuming.If a photothermal metal layer is provided, it should be placed in a thin and small area so that it does not interfere with filtration. However, the energy efficiency is poor and it takes a lot of effort to remove it, and if the temperature rise does not go well due to exhaust gas, - [after stopping the engine] carbon particles accumulated in the filter. It also occurred that the engine was not burned, and the fuel injection was 0.1 and 1.
1-Discharging method requires special equipment, -■- Energy is consumed in the fire, causing fire problems due to fuel, damage to filters due to conduction, and method using carbon removal ! lJI[l-4= It has the drawback that J: itself disappears during combustion.
child . On the other hand, ceramic honeycomb structure filters are known for similar applications, and compared to general filters, these filters have less pressure loss even when the mesh is finely woven, and because they are compact, they can be used in lit gas in automobiles. There is a U7 suitable for removing carbon, but if it becomes clogged, the filtration surface will cover a wide area, so remove the filter from the used part and heat it to burn off the carbon particles. I couldn't do without it. In addition, method 1-7 (method 1-7) for clogging prevention involves stepwise changing the fineness of the filter, such as stainless wool or alumina pellets, to disperse and capture carbon particles, and further improve fuel efficiency. It has also been proposed to heat and combust recarbon particles in the injection q/l, but there is a limit to the temperature increase because the capture of carbon particles is insufficient and the exhaust gas is in a low oxygen state. In view of the drawbacks of the conventional technology, the present inventors
5 - As a result of intensive research, we have developed a method to efficiently remove flammable particulates without worsening pressure loss and without requiring particularly complex equipment while the engine is still operating. By using porous conductive ceramic filters of different sizes arranged in the direction of gas flow, it is possible to efficiently and quickly remove combustible particulates without making major changes to the current equipment. They discovered that this could be done and completed the present invention. . That is, the gist of the present invention is to form a porous filter with pores (a) whose openings are changed in the flow direction of exhaust gas (t!) in the flow direction of exhaust gas, and to form the filter with conductive reramic. A filter device for exhaust gas provided with a metal electrode means for heating the filter with electricity; The exhaust gas filter device is provided with an exhaust gas filter device.Next, it will be explained with reference to the figures.Figure 1 shows the exhaust gas filter device which is applied to an automobile IJI gas filter device.
- Showing the first embodiment of the first invention 4. put it here,
1 represents a short cylindrical porous electrically conductive ceramic filter with large pore diameters, and 2 represents a short cylindrical porous conductive ceramic filter with small pore diameters. For example, the size of filter 1 is about LL201? le/′
Inch, filter 2 lengths (approximately 4 CVIX) / 1 inch in 1 month 1? metallized layer 4a,
411.5a, 5b, and the metallized layer 48 of the J1 horn of the filter 1, which has a large diameter hole 1-1, is made of stainless steel, etc. The circular corrugated wire mesh 3a is in an 18-touch state, while the metallized layer 51 on one side of the filter 2 with a small hole diameter
J, circular corrugated wire mesh 3G made of stainless steel, etc. are in contact with J, one side of which is in contact with J, wire mesh 3a, 3
c are each partially meta1 noise layer 4. a, 5b nirou f
At
-7- The front and back sides of the circular corrugated wire mesh 3b made of stainless steel or the like are in contact with the metallized layers 4b and 5a, respectively, sandwiched between the metallized layer 5a on the lower side of the filter 2, and in the case of J, the wire mesh 311 ) is partially soldered to the metallized layers 4b and 5a (= 5° joined by eye 1, and the whole is C1
Circular corrugated metal wire 3a porous blue electric f1 ceramic filter 1, circular corrugated wire mesh 3b. A porous conductive 171 ceramic filter 2 and a circular corrugated wire mesh 3CBfI are layered to form a cylindrical body to form a gas filter device. This cylindrical filter device is housed in a ceramic insulating cylinder 9, and inserted into an outer cylinder 12 in an insulated and tightly sealed state.
In the cylindrical filter KIW, the insulating ring '10 is moved by the pressing force of the spring 11 disposed between the insulating ring 10 and the flange 17 of the joint pipe 14 which is connected to the flange 16 of the outer cylinder 12. A support fin is attached to the locking portion 9a of the insulating tube 9 through the support fin, and the insulating tube 9 is further biased in the direction of the locking protrusion 15 attached to the inside of the outer tube 12. . Wire mesh 3a13-8 at both ends of the cylindrical filter device
- Conductors 6a and 6b are connected to C, respectively.
b, and are insulatively led to the outside of the outer cylinder 12 via insulators 13a and 13b. Ishii (guill16)
a is connected to one pole of the power supply [2] through switch 7 (!g), and conductor 5 is connected to the other pole of the power supply F; The cylindrical filter device, the conductors 6a, 6b, the switch 7, and the power supply form an energized heating circuit. It passes through the exhaust manifold as it is, and flows into the filter device from the upstream direction F, indicated by the dotted line, but the wire mesh 3a and the metallized layer 4
A is applied to a porous conductive ceramic filter 1 with a large pore diameter, so that relatively large particles among the carbon particles contained in the exhaust gas are captured by the filter. 1% of the waste passes through the metallized layer 41), the wire mesh 31] and the metallized layer 5a, and the hole row is small -9.
- The relatively small carbon particles remaining in the exhaust gas are increasingly captured in the porous conductive ceramic filter 2.The metallized layer 5b and the wire mesh 3C are Treated as usual (J, filter device P
The JJI is taken out of the t, and heads toward the downstream exhaust pipe. As a result, carbon particles are uniformly dispersed and captured in each filter 1.2. At this point, switch 7 is set to A and a3 <Thus, gold 1! The ceramic filters 1 and 2 generate heat, and the carbon particles captured almost uniformly in the filters 1.2 and 9 with less electrical energy.
)+ It is possible to burn and annihilate it quickly. In addition, by setting the electrode on the exhaust gas inflow side of the filter device to a random layer, it is possible to prevent the inflow side, for example, from the wire mesh 3a.
1 ft of carbon is piled up on the outer cylinder 12 and the filter device and the outer cylinder 12
Even if it becomes energized, the short circuit point is on the ground side, so the porous I! l Electric ceramic filter 1.20 The current rating does not decrease, the humidity of the router 1.2 does not decrease, and the car phone does not burn. Next, FIG. 2 shows a second embodiment of the first invention, in which 41 is a porous bamboo ceramic filter with a large opening diameter, and 42 is a porous conductive filter with a small opening diameter. The diameter of the first embodiment is the same as that of the first embodiment, and the two are joined at one end face to form an interface 41, forming an integral structure. There is. The other end face of the filter 41 is formed with a metal electrode as a metallized layer 43, and unlike other filters 41,
The other end surface of 2 (:) the metallic electrode is the metallized layer 4
5, the overall configuration is a metallized layer 43, a porous conductive ceramic filter 41 with a large pore diameter,
It constitutes a waste filter device consisting of a bonding interface 47, a porous conductive ceramic "noirta" 42 with a small pore diameter, and a metallized layer 45. Both metallized layers 43 and 45 of the filter device are made of stainless steel, etc., respectively. The wire meshes 4'l and 46 are connected in a state where they are partially in contact with each other, and the conductor wire 48 is further welded to the wire mesh 44, and the wire 181 is connected to the power supply via the switch 50.
On the other hand, a conductive wire 49 is welded to the wire mesh 46 and connected to the electric IF for one second. Here, the conductor 48 side is grounded, and the electrode side of the metallized layer 43 is at ground potential.
I'm here. In the above configuration J: 1" 1 gas filter device, conductor 4
9. The switch E50, the power supply E, and the conductive wire 49 collectively form an energizing heating circuit. Next, FIG. 3 shows a third embodiment of the present invention. A large-diameter porous conductive ceramic filter 52 represents a small-diameter porous conductive ceramic filter with hollow cylindrical pores.
The size of the hole opening is <f'b as in the first embodiment, and the outer circumferential surface of the filter 52 and the inner circumferential surface of the filter 51 are joined at an interface 68 to form a two-layer filter. are doing. A metallic electrode is formed on the outer peripheral surface of the filter 51 as a metallized layer 53, and a metallic electrode is also formed on the inner peripheral surface of the filter 52 as a metallized layer 54. The structure of the metallized layer 5
3. υ consisting of a porous conductive ceramic filter 51 with a large pore diameter, a w surface 68, a porous conductive ceramic filter 52 with small pores [1], and a metallized layer 54
1 gas filter HtFn. Conductive wires 63 and 64 are respectively connected to the metallized layers 53 and 54 by welding or other methods, and are led to the outside through insulators 66 and 67 in an insulated state. and the other 11 ta
l 6 /l is directly connected to the other pole of the power supply F. Here, the conductor 63 side is grounded, and the metalized W45
The electrode side of No. 3 is the ground type (&donna・). According to the above configuration, a filter device for gas, a conductor 63,
The switch 65, the electric wire EE, and the entire four wires 64 form a current-carrying heating circuit. ” - 4. on one of the circular end faces of the two-layer filter. L, Ir.
A non-porous insulating 11 ceramic circular plate 55 of 'i+ diameter is closely bonded. On the other hand, two-layer full t-1
A non-porous insulating circular plate 57 of li'il t is also tightly coupled to one end surface of the circular plate 5.
7 is a circular hole in the center of A and a cylindrical tube 57 fitted to the hole.
A is filled with acid to form an outflow 1'l 57h having approximately the same shape as the center hole 56 of the two-layer filter. 59 is an outer cylinder for housing the filter, and has an end wall 69 on the upstream side of the exhaust gas, and the end wall has an inflow +1
A suitable number of holes 598 are bored on the periphery of the end wall 69, and a hole 59 is also formed in the center of the end wall 69 concentrically with the end wall 69.
0 is provided. However, the hole 590 is provided for N quantification and does not need to be drilled. An annular protrusion 62b is provided perpendicularly to the end wall 69 between the inlet 59a and the hole 59c, the inner periphery of which fits the downstream end of the two-layer filter; The annular protrusion 621+ and the end wall 69 inside the annular protrusion 621+ closely support the circular plate 55 connected to the end of the 12-layer filter on the flow side, thereby maintaining an FM tight state. The entire upstream end surface of the outer cylinder 59 is covered by a short cylindrical connecting lid 14-58, with peripheral flanges 70 and 71 connected to each other in an airtight manner. Then, a part of the lid body 58 is provided with exhaust gas Tojin 1-. 158a] 4 pipe body 58c
is installed, and the pipe body cO58c is connected to the exhaust manifold. On the other hand, the entire downstream end surface 4 of the outer cylinder 59; L, ? The flanges 72 and 73 on each periphery are connected to each other by the moon-shaped connecting lid body 60 and are covered in an airtight state. :, A locking projection 61a protruding from the inner peripheral surface of the exhaust gas inflow I-1 and an annular projection whose inner peripheral surface fits the downstream end surface and the outer peripheral surface end of the two-layer filter. The locking protrusion 61a and the annular protrusion 611) are located on the downstream side of the two-layer filter. The ends are supported tightly to maintain an airtight state. Intangible 60
It has a small diameter 1"1 output hole 60 (l) on the downstream side, and is connected to an exhaust pipe (not shown). In the above configuration, it is equipped with a small diameter 1" 1 output hole 60 (l). The exhaust gas passes through the exhaust manifold as it is, and as shown in the dotted line, 1--1.
5 - Flow direction]: from the introduction ITI 58a of the connecting article 58. Furthermore, the exhaust gas flows into the inside of the outer cylinder 59 from the inlet 59a which is opened in the end wall 69 of the outer cylinder 59 and flows into the inside of the outer cylinder 59. The outer circumferential surface of the cylindrical exhaust gas filter device exposed inside passes through the remetallized layer 53 and enters its porous interior. In the porous conductive ceramic filter 51 with a large diameter, carbon particles with a relatively large diameter are captured, and then in the porous conductive ceramic filter 52 with a small diameter pore into which exhaust gas enters, carbon particles with a relatively small diameter are captured. of carbon particles are captured, and the 1"1 gas passes through the other metallized layer 54 and flows out into the center hole 56. At this point, the carbon particles are dispersed and captured throughout the filters 51 and 52. , almost all found in exhaust gas4
It's ugly. Next, the JJI gas flows out from the center hole 56 to the outlet 57bJ of the non-porous insulating ceramic circular plate 57 and from inside the outer cylinder 59 to the leakage S1-shaped lid body fi O, and then to the exhaust 11 of the pyro-16 integral 60. From eye 160d to exhaust pipe Jll +I
′? Jru. At this time, if the switch 65 of the heat circuit 110 is turned on and electricity is applied between the metallized layers 53 and 54, which are metal electrodes, the heat is dispersed and captured in the filters 51 and 52. Carbon fine particles filter 51. .. 52
It quickly burns and disappears due to its own heat generation. Next, FIG. 4 shows a fourth embodiment of the first invention.1 Here, 81 is a porous conductive ceramic filter with large diameter pores H in the form of a hollow cylinder, and 82 is a porous conductive ceramic filter in the form of a hollow cylinder. Hole H
This shows a porous IP electrode v1 ceramic filter with a small diameter of pores 1"("). The outer circumferential surface of the filter 96 and Metalized layers 83 and 84 as metallic electrodes are respectively provided on the inner circumferential surface, and are in close contact with the metalized layer 84 on the inner circumferential surface.
- A non-porous heat-resistant closure for closing the 1st stream side of the center hole F3:) of the router 96! 1 tube 97 is inserted into the center hole 85. The filter 96, the metallized layers 83, 84, and the closed tube 97 as a whole constitute an exhaust gas filter device. ”] The filter assembly is housed in the outer cylinder 88 so that the outer circumferential surface of the child is in close contact with the inner circumferential surface of the outer cylinder, and protrudes into the inside of the outer cylinder 88.1. : Person in charge L: J to protrusion 88a, 111 gas] -
The outer tube 88 and the funnel-shaped connecting tube 89 are connected at the respective flanges 88b and 89a, and the funnel-shaped connecting tube 89 is locked on the flow side.
The filter device is connected to the downstream side of the JJI gas by the other flange 89d to maintain its position. . Also, the end 9 of the metallized layer 84 on the inner peripheral surface of the filter device
A conductive wire 91 is connected to the outer cylinder 88 by welding or the like, and a conductive wire 91 is connected to a part 94 of the outer cylinder 88 which is in direct contact with the metallized layer 83 on the outer circumferential surface of the filter device and is electrically connected to the metallized layer 83.
are connected by welding etc. -18- The conductor 91 is installed in the leakage connecting pipe 89. l
The conductor KA90 is connected to the opposite pole of the power supply 1, and the CI wire 90 side is connected to the power source 1- through the switch 92. 171 Toshikawa Noirta device, outer cylinder 88, 1mm) 90.91, switch 92, and the entire power source F form an energization heating circuit C'. In the following configuration, carbon from the engine is The II gas containing fine particles passes through the exhaust 1 to the manifold as it is and enters the C1 foreign exchange 88, as shown by the dotted line.
JJI Soil Flow Direction FJ First, the soil flows into the large diameter filter 81 of hole 1-1. Since there is a closed pipe rs, 23(・) in the center hole 85 of the filter 81, the S1 gas will not pass through to the exhaust pipe side B as it is. Hole 1 of filter 81\Infiltration 1J, JJ1
Of the carbon particles in the gas, 11 (t
r is dispersed and captured throughout the filter 81, and then passes through the interface 86 and the exhaust gas enters the filter 82-19
-- When the remaining relatively small-diameter particles are dispersed throughout the filter 82 and captured, the exhaust gas leaks out from the downstream side of the filter 82 (passes through the fit 31-shaped connecting pipe, and then flows to the downstream side B). The direction is shown in the diagram and the gas is discharged through the exhaust pipe.At this time, the heat source 92 of the heating path 111 is turned off, so that it is difficult to conduct electricity between the metallized layers 83 and 84, which are metal electrodes. b) The carbon particles dispersed and captured in the filters 81 and 82 are filtered to the filter 81.
.. Due to the heat generated by the internal body of 82, it quickly burns and disappears. Next, Fig. 5 shows an embodiment of the invention No. 2 1-1. A short cylindrical porous conductive ceramic filter with a small opening diameter is used, and the diameter of the opening is the same as that of the first embodiment of the first invention, and 24 is a porous conductive ceramic filter having a small opening diameter. Honey 7
J Musu's body shows a lamic heater. . The end faces of these two filters 21 and 22 and one heater 2
Is each of the lattice-shaped end faces of 4 metal? The electrode is 20
- Talizing layer 29+1, 29b, 30a, 30b,
28a, 2811. One metallized layer 291) of the filter 210 and one metallized layer 30a of the noil filter 22 are connected to the surface of a circular corrugated wire mesh 23b made of stainless steel, etc., and are in contact with the metalized layers 29h, 30a, respectively. In some cases, the wire mesh 23b is partially electrically connected to the metallized layers 29b and 30a by brazing.Also, the other metallized layer 29a of the filter 21 and one metallized layer 28b of the heater 24 are connected to each other by brazing. The front and back sides of the circular corrugated wire mesh 23a made of stainless steel or the like are in contact with the metallized layers 29a and 28b, respectively, and in some cases, the wire mesh 23a partially contacts the metallized layers 29a and 28b.
It is electrically connected by brazing. A circular corrugated wire mesh 230 made of stainless steel or the like is in contact with the metallized layer 30b on the other end surface of the filter 22 so that its negative surface overlaps with the metallized layer 30b on the other end surface of the filter 22.
is partially metallized IIM: 10 to 21 - electrically connected by solder (=jl).Similarly, the metallized layer 2 on the other grid-like end surface of
88, a circular corrugated wire mesh 27 made of stainless steel or the like is in contact with the wire mesh 27 so that their negative surfaces overlap.
Brazing is applied partially to the metallized layer 28a.

【プにより電気
的に接続されている。 そして全体として、DIガス−1流側Fから、円形波形
金網27、ハニカl\構造セラミック加熱器24、円形
波形金網23a1孔目の径が大ぎい短円筒形多孔質導電
性セラミックフィルタ21、円形波形金網23b1孔目
の1¥が小さい短円筒形多孔質導電性セラミックフCル
タ22及び円形波形金網23’Cが積層し、一体の円筒
体となって、排ガス用フィルタ装置を形成している。 上記フィルタ装置はI?ラミックの絶縁筒31内に納め
られて、外筒33に絶縁及び密着状態に挿入され、フィ
ルタ装置は外筒33の鍔部331)と結合している匿@
管3bの鍔部36と絶縁環32どの間に配設されたバネ
祠37の挿口、力により、絶縁環32を介して絶縁1n
31の係止部31aに−22− 付勢され、更に外筒33の内部に付設された係11突条
33a方向に付勢されることにより支持されている。 十記フィルタ装置の両端の金網27.23Gには各々導
線38a 、38bがろう付は部分3’la、34bに
て電気的に接続され、碍子/IOA、’lOI]を介し
て、絶縁的に外筒33の外部へ導出されている。 i#導線 8i+は電源Fの一方の極へスイッチ39を
介して接続され、電源Fどスイッ13f)の間で車体に
接地されている。一方、導線38I)は電源Eの池の極
へ接続され、前記フィルタ装置、導線38a、38b、
スイッチ39及び電&a F全体で・通電加熱回路を形
成している。 以上の構成において、エンジンからのカーボン微粒子を
含んだ排ガスはイブジ−ストマニホールドをそのまシト
通過して、Ijtj Nil ’r示1ように、1−流
方向Fより、フィルタ装置へ流入する。3そして、まず
IJ+ガスは金網27を通過し、ハ、、−カム構造の加
熱器24のll!1壁26壁隔6られに通−23− 路25を下流側[3に向って流れる。次いで、金網23
a1メタライズ1129a 、孔口の径が大ぎい多孔質
導電性セラミックフィルタ21、メタライズ層29b、
金網2ご一3b、メタライズ層30a。 孔Hの径が小ざい多孔質導電性セラミックフィルタ22
、メタライズ1F130 b及び金網23Cを通過して
、フィルタ装置を1友1)出て下流方向B’\流れ、υ
1気管にす11F出される。 この時、スイッチ39がΔンされており、フィルタ装置
の両端の金網27.23G間が通電状態であった場合、
カーボンm粒子を含んだ排ガスはまず予め加熱器24で
加熱され、次いで両フィルタ21.22により、カーボ
ン微粒子が捕捉され燃焼される。 ここにおいて1番目の発明の第1実施例の効果に加えて
、加熱器24にて予め排ガスが加熱されることにJ:す
、フィルタ21.22が排ガスにJ、リカーボン微粒子
燃焼′温麿以下に冷却されることがない。特に、フィル
タ21の上流側においでは、排ガスが予め加熱されてい
ないとカーボン微粒子−24= が1lit栢することから、圧力損失を大きくりること
があり、加熱器24の付設により、フィルタ21.22
全体でカーボンの燃焼除却が効率的にijわれる。 」−2加熱器としてはハニカム構造体以外にフィルタに
使用されていると同様な多孔質のものでも同様な効果の
もとに使用可能である。 1M目の発明の第1〜第4実施例及び2番目の発明の実
施例において、多孔質導電性セラミックフィルタとして
番よ、連通孔を分布状に有する海綿状構造体であるもの
、フェルト状、織布状成形体等の多数の線状索体の集合
構造体等の導電性セラミックフィルタ等を採用すること
ができる。 上記の多孔質導電性セラミックフ、Cルタの製造方法は
組成を焼成14にまたは焼成後の人気雰囲気中での加熱
処理により多孔質となるように配合された生のセラミッ
クを焼成製造Jる以外に、例えば、次の如くなされる。 炭化珪素あるいは二珪化モリブデン等の主成分の他に、
アルミナ、シリカ等の焼結助剤を含む原料微粉末、アル
ギン酸ソー−25− ダ、アルギン酸アンしン、ポリビニールアル1−ル等の
有機バインダー、水、1チルアルコール等の溶剤を加え
て混練して泥漿状調合物を作り、その中に所定の目の細
かさをもつ、目的とする所定形状のポリウレタン等のプ
ラスデフオームを浸漬し、乾燥後大気雰囲気あるいは窒
素雰囲気下1600°0前後で焼成することにより得ら
れる。 上記の多孔質フィルタ製造方法において、プラスチック
フ4−ムとしで、2梗類の目の細かさをもつ直方体又は
中空円筒体等の所定形状のフオームを、予め接合した形
C泥漿状調合物に浸漬、乾燥したのら、あるいは2種の
フオームを別々に浸漬、乾燥及び仮焼後史に泥漿状調合
物で接合した後、焼成覆ることにJ:す、第2〜4実施
例にお()る各種形状の二層フィルタを製造することが
できる。 又、ハニカム構造体を製造づるには貫通孔の断面形状が
三角形、四角形、六角形等の多角形及び円形、楕円形等
の所定の形状を構成するJ:うに多数のスリン1〜から
なるダイスより粘土状の牛のセー  26  = ラミックを押し出づことにJ、り一体4fl!i造の長
尺物を得、該長尺物を必要な良さに切断後、焼成1jる
ことにより濾過壁ハニカム措)6体を1[することが″
(゛ぎる。 金属質電極手段はL’l ’iki t/I’l:’ラ
ミックフィルタ(hるいは加熱器のCラミックのハニカ
ム構)6体の両端面に、例λば、白金等の金属粉末ペー
ス1−あるいはニッケル、」バルト等と珪素どの粉本ペ
ースト混合物を焼さイ・目Jることにより形成さね<)
3.この場合、端面全体に形成しなくてし、格r状、縞
状等に適当に間隔をおいて形成しても良い、1また、こ
の多孔質フィルタの全体または一部分の表面部に白金、
白金とL]ラジウム混合らしくは合金、白金とパラジウ
ムの混合もしく番ま合金などの触媒金属を分散状に10
持さ1!でおくことは、カーボンの焼却をにり低い潟I
Ji[ぐ行うことがCきるので有利となる。これは、た
とえば、多孔質M¥ m造林を触媒金属の酸しし・< 
1%、、(11の液(こ浸漬後、比較的高い温嗅C加熱
処〕1!JることにJ、って)qることがで゛ぎる。 −27− 以、1−の如< 1 ?It l」の発明の排ガス用フ
ィルタ装置によれば、例えば、自oJ車の排気浄化に適
用した揚台、1ノ1万ス中のカーボン微粒子はフィルタ
の孔口の径が異/i′ろことにより、粒子径に応じて各
フィルタ中に分散して捕捉され、フィルタ全体にわたっ
てカーボンが分t5−4ることになり、それ故、例えば
、今;1+ Cq)J−うな孔口が一定のフィルタのよ
゛うに前面ICl1il’i) ’(17J−ボンが)
W積しく、目詰まりを起こ゛りとい)Iにとがなくなる
。しかも、フィルタ自体が導′Pti介熱性であり、フ
ィルタの電極へ通電するだ【ノで、上記の如くフィルタ
全体にわたりくまなく分散しているカーボン微粒子全て
がフィルタ全体の発熱にJ:リフィルタ全域で同時に瞬
間的に加熱されることによって、効率的に速やかに燃焼
消滅Jるのである、1 一方、2 rr1+iの発明においては上記の1番目の
発明の効果に加λ(、フィルタの」二流側に多孔構造の
自己通電発熱1111加熱器を設置プることににす、例
えば、市街地走fJ++、′fで排ガス温度が低くて1
力−ボン微粒子の燃焼が妨げられ、特に、フィルター 
  28 − の1流側において排ガス又は再燃用外気による冷却のた
め、カーボン微粒子が燃焼消滅せずフィルタ中に残留j
11積し、フィルタの目詰まりを(1す゛るような場合
においても、に記のような加熱装置nの電極に通電する
だ【〕で、フィルタを通過】る前に、排ガスを予め急速
に加熱胃渇づることかできるので排カスがフィルタに至
っても既に排ガスは91’ ?AiiしているのでフC
ルタの前面がカーボンの燃焼温度以下に冷却されること
がなくて、フィルタに捕捉されIこ全でのカーボン微粒
子が速やかに、燃焼消滅し、目詰まりを生ぜず、いかな
る状況Fの自動中走行においCb1ノイルタの目詰まり
によるエンジン出力のバカ損失を生ずることがないので
ある。
[Electrically connected by As a whole, from the DI gas 1 flow side F, the circular corrugated wire mesh 27, the honeycomb structure ceramic heater 24, the circular corrugated wire mesh 23a, the short cylindrical porous conductive ceramic filter 21 with a large hole diameter, and the circular The short cylindrical porous conductive ceramic filter 22 and the circular corrugated wire mesh 23'C are laminated to form an integrated cylindrical body, forming an exhaust gas filter device. . Is the above filter device I? The filter device is housed in a lamic insulating cylinder 31 and inserted into the outer cylinder 33 in an insulated and tightly sealed state, and the filter device is connected to the flange 331 of the outer cylinder 33.
Insulation 1n is inserted through the insulating ring 32 by the force of the spring hole 37 disposed between the flange 36 of the pipe 3b and the insulating ring 32.
It is supported by being biased by the locking portion 31a of 31 and further biased in the direction of a protrusion 33a of the lock 11 provided inside the outer cylinder 33. Conductive wires 38a and 38b are electrically connected to wire meshes 27 and 23G at both ends of the filter device by brazing at portions 3'la and 34b, respectively, and are insulated through insulators/IOA and 'lOI]. It is led out to the outside of the outer cylinder 33. The i# conductor 8i+ is connected to one pole of the power source F via a switch 39, and is grounded to the vehicle body between the power source F and the switch 13f). On the other hand, the conductor 38I) is connected to the terminal of the power supply E, and the conductor 38I) is connected to the terminal of the power supply E,
The switch 39 and the electric &a F as a whole form an energizing heating circuit. In the above configuration, the exhaust gas containing carbon particles from the engine directly passes through the exhaust manifold and flows into the filter device in the flow direction F as shown in FIG. 3. Then, first, the IJ+ gas passes through the wire mesh 27, c...-ll of the cam structure heater 24! 1 wall 26 wall partition 6 flows through the passage 23 toward the downstream side [3]. Next, wire mesh 23
a1 metallization 1129a, porous conductive ceramic filter 21 with large pore diameter, metallization layer 29b,
Wire mesh 2 3b, metallized layer 30a. Porous conductive ceramic filter 22 with small diameter pores H
, passes through the metallization 1F130 b and the wire mesh 23C, exits the filter device 1) and flows in the downstream direction B'\flow, υ
11F is discharged into the trachea. At this time, if the switch 39 is turned on and the wire meshes 27 and 23G at both ends of the filter device are energized,
The exhaust gas containing carbon m particles is first heated in advance by the heater 24, and then the carbon particles are captured and burned by both filters 21 and 22. Here, in addition to the effects of the first embodiment of the first invention, the exhaust gas is heated in advance by the heater 24, and the filters 21 and 22 are used to heat the exhaust gas at a temperature lower than the carbon particulate combustion' temperature. It is never cooled down. In particular, on the upstream side of the filter 21, if the exhaust gas is not heated in advance, 1 liter of carbon particles -24= will accumulate, which may increase the pressure loss. 22
In total, carbon is efficiently burned and removed. In addition to the honeycomb structure, porous materials similar to those used in filters can be used as the heater with the same effect. In the first to fourth embodiments of the 1Mth invention and the second embodiment of the invention, the porous conductive ceramic filter includes a spongy structure having communicating pores in a distributed manner, a felt-like structure, It is possible to employ a conductive ceramic filter such as an aggregate structure of a large number of linear cables such as a woven fabric molded body. The method for producing the above-mentioned porous conductive ceramic filters is other than firing and producing raw ceramics whose composition is made porous by firing or by heat treatment in a popular atmosphere after firing. For example, it is done as follows. In addition to the main components such as silicon carbide or molybdenum disilicide,
Fine raw material powder containing sintering aids such as alumina and silica, an organic binder such as sodium alginate, anthin alginate, and polyvinyl alcohol, and a solvent such as water and 1-methyl alcohol are added and kneaded. A slurry-like mixture is prepared, and a plus deformed polyurethane of a desired shape with a predetermined mesh size is immersed in it, and after drying, it is heated at around 1600° in an air atmosphere or a nitrogen atmosphere. Obtained by firing. In the above method for manufacturing a porous filter, a plastic film having a predetermined shape such as a rectangular parallelepiped or a hollow cylinder having a mesh size of 2-mesh is bonded in advance to a shape C slurry-like composition. After soaking and drying, or after separately soaking, drying and calcination, the two foams were bonded with a slurry-like mixture and then baked. ) Two-layer filters of various shapes can be manufactured. In addition, in order to manufacture a honeycomb structure, a die consisting of a large number of sulins 1 to 1 is used, in which the cross-sectional shape of the through hole is a polygon such as a triangle, square, hexagon, or a predetermined shape such as a circle or an ellipse. More clay-like cow's 26 = J to push out the ramic, 4fl! Obtain a long piece of I structure, cut the long piece to the required size, and then fire it to make 6 filter wall honeycomb pieces in one piece.
(Too much.) The metallic electrode means is made of a material such as platinum, etc. Metal powder paste 1 - Or formed by baking a powder paste mixture of nickel, balt, etc. and silicon etc.
3. In this case, it does not have to be formed on the entire end face, but may be formed at appropriate intervals in a lattice shape, striped shape, etc.
[Platinum and L] Radium mixture is an alloy, a mixture of platinum and palladium, or a catalyst metal such as a banma alloy is dispersed in 10
Hold 1! It is important to keep the carbon incineration in a low lagoon.
It is advantageous because you can perform Ji[gu]. This can be achieved, for example, by using porous M¥m afforestation with catalytic metal acid
1%, (11 solution (after immersion, relatively high temperature C heat treatment) 1! J, especially J) is too much. According to the exhaust gas filter device of the invention, for example, the carbon particulates in 10,000 particles of carbon particles in the lifting platform applied to the exhaust purification of OJ cars have different diameters of the pores of the filter. i′ filtration causes carbon to be dispersed and captured in each filter according to particle size, resulting in a fraction t5-4 of carbon throughout the filter, thus e.g. The front side is like a filter with a constant value.
W will accumulate and cause clogging) I will run out of sharpness. Moreover, since the filter itself is a Pti heat conductor and conducts electricity to the electrodes of the filter, all of the carbon particles dispersed throughout the filter as described above contribute to the heat generation of the entire filter. By simultaneously being instantaneously heated, the combustion is extinguished quickly and efficiently.1 On the other hand, in the invention of 2rr1+i, the effect of the first invention is added to the effect of the first invention described above. I decided to install a self-energizing heat generating 1111 heater with a porous structure.
The combustion of particulates is hindered, especially in filters.
28 - Due to cooling by exhaust gas or outside air for reburning on the first flow side of the filter, carbon particulates are not burned out and remain in the filter
11, and the exhaust gas is rapidly heated in advance before passing through the filter. Since the stomach can become thirsty, even if the excrement reaches the filter, the exhaust gas is already 91'?Aii, so it is closed.
The front surface of the filter is not cooled below the combustion temperature of carbon, and the carbon particles captured by the filter are quickly burned and extinguished, preventing clogging, and automatically driving under any conditions. This prevents unnecessary loss of engine output due to clogging of the odor Cb1 noilter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1番目の発明の排ガス用フィルタ装置の第1実
施例の断面図、第2図は第2実施例の断面図、第3図は
第3実施例の断面図、第4図は第4実施例の断面図、第
5図は2番目の発明の排ガス用フィルタ装置の一実施例
の断面図である。 −29= 1.21.41.51.81・・・孔口の径が大ぎい多
孔質導電性セラミックフィルタ 2.22.42.52.82・・・孔口の径が小さい多
孔質導電性セラミックフィルタ 4a、4b、5a、5b、29a、29b、30a 、
30b 、=13.45.53.54.83.81・・
・金属質電極手段 24・・・自己通電発熱型加熱器 代理人 弁理士 定立 勉 −30− 特開昭58−137423 (9>
Fig. 1 is a sectional view of the first embodiment of the exhaust gas filter device of the first invention, Fig. 2 is a sectional view of the second embodiment, Fig. 3 is a sectional view of the third embodiment, and Fig. 4 is a sectional view of the third embodiment. A sectional view of the fourth embodiment, and FIG. 5 is a sectional view of an embodiment of the exhaust gas filter device of the second invention. -29= 1.21.41.51.81...Porous conductive ceramic filter with large pore diameter 2.22.42.52.82...Porous conductive with small pore diameter Ceramic filters 4a, 4b, 5a, 5b, 29a, 29b, 30a,
30b, = 13.45.53.54.83.81...
・Metallic electrode means 24...Self-energizing heating type heater Agent Patent attorney Tsutomu Seiri-30- JP-A-58-137423 (9>

Claims (1)

【特許請求の範囲】 1 排ガスの流動方向に孔口の径が減少するにうに変f
ヒさせてなる多孔質フィルタにおいて、フィルタをS電
性セラミックで形成すると共に、該フィルタを通電加熱
する!ζめの金属質電極手段を設番プてなる排ガスフィ
ルタ装置。 2 多孔質フCルタが、個々に均一径の孔口をイjし、
相豆に孔「)の径が異なる2fil;以−1−のフィル
タ層を11ガ・スの流動方向に孔口の(¥が小さくイす
るように配列しで形成された特Thl’ Wj求の範囲
第1項記載の排ガス用フィルウ装置。 3 配513されたフィルタ層が、一体WJ造とくj二
っている特許請求の範囲第1項あるい(ま第2項記載の
111ガス用フイルタ装置。 4 配列されたフィルタ層が、個々に分離している特許
請求の範囲第1項あるいは第2 In記載の排ガス用〕
Cルタ装置。 −1− 5金属質電極1段が、排ガスの一1?にプノ向と下流方
向の両端に設しノられ、フィルタの孔1:J変化方向が
電気的に直列接続されると共に、上流側電極が接地電位
である特許請求の範囲第1項あるいは第2項記載の排ガ
ス用ノーfルタ装置。 6 フィルタが中空円筒形状であり、金属質電極手段が
フィルタの内向と外面とに設【プられ、外面電極が接地
電位である特許請求の範囲第1項記載のJJIガス用フ
ィルタ共置装 7 s電性レラミツクが、炭化珪素を主成分と一す−る
ものひある’l′i許請求の範囲第1項記載のI+ガス
用フrルタ装置。 8 ′s電刊セラミックが−LT工1化モリブデンを主
成分とするしのである特許請求の範囲第1項記載の13
Fガス用フイルタ訓L 9 多孔質フィルタの全体または一部の表面部に触媒金
属を分布1J:に担持させた特許請求の範囲第1項記載
の排ガス川フィルタ装置。 10 排ガスの流動方向に孔1」の径が減少づるように
変化させてなる多孔質フィルタにおいて、ツー  2 
− ィルタを導電t’t t )ミックで形成すると共に、
端面にノrルタを通電加熱するための金属買電44! 
1段を設#J、史に十記フィルタの−1−流側に挟ガス
との接触面積の人きい多孔II4造をなす自己通電発熱
形の加熱器を配して<Zる1ノ1ガス用フイルタk i
i# 、。
[Claims]1.
In the porous filter made by heating, the filter is formed of S-conducting ceramic, and the filter is heated with electricity! Exhaust gas filter device equipped with ζ metal electrode means. 2. The porous filter has individual holes of uniform diameter,
A special filter layer formed by arranging 2 filter layers with different hole diameters in the flow direction of 11 gas so that the hole openings are small. 3. The exhaust gas filter device according to claim 1. 3. The exhaust gas filter device according to claim 1 or 2, wherein the disposed filter layer is made of an integral WJ structure. Apparatus. 4. For exhaust gas according to claim 1 or 2, in which the arranged filter layers are individually separated]
C ruta device. -1- Is the first stage of 5 metallic electrodes one of the exhaust gases? Claims 1 or 2, wherein the filter holes 1:J change direction are electrically connected in series, and the upstream electrode is at ground potential. Nof filter device for exhaust gas as described in . 6. JJI gas filter co-location device 7 according to claim 1, wherein the filter has a hollow cylindrical shape, metallic electrode means are provided on the inner and outer surfaces of the filter, and the outer surface electrodes are at ground potential. 2. The filter device for I+ gas according to claim 1, wherein the s-electroconductor has silicon carbide as its main component. 8's Denkan Ceramic is -LT-treated molybdenum monoride as a main component.
9. The exhaust gas filter device according to claim 1, wherein a catalyst metal is supported on the whole or a part of the surface of the porous filter in a distribution of 1J:. 10 In a porous filter in which the diameter of pores 1'' is changed to decrease in the flow direction of exhaust gas,
- the filter is made of conductive material, and
Metal power purchase 44 for heating the end face with electricity!
One stage was installed, and a self-energizing heating type heater with a narrow pore II4 structure with a contact area with the gas was placed on the -1 flow side of the filter. gas filter k i
i#,.
JP57019417A 1982-02-09 1982-02-09 Filter apparatus for exhaust gas Granted JPS58137423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019417A JPS58137423A (en) 1982-02-09 1982-02-09 Filter apparatus for exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019417A JPS58137423A (en) 1982-02-09 1982-02-09 Filter apparatus for exhaust gas

Publications (2)

Publication Number Publication Date
JPS58137423A true JPS58137423A (en) 1983-08-15
JPH0211287B2 JPH0211287B2 (en) 1990-03-13

Family

ID=11998679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019417A Granted JPS58137423A (en) 1982-02-09 1982-02-09 Filter apparatus for exhaust gas

Country Status (1)

Country Link
JP (1) JPS58137423A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105716U (en) * 1986-12-27 1988-07-08
JPS63105713U (en) * 1986-12-27 1988-07-08
JPS63105715U (en) * 1986-12-27 1988-07-08
JPS63197511A (en) * 1986-12-05 1988-08-16 イベコ フィアト エセ ペ ア Regenerable filter for exhaust gas from internal combustion engine
JPS6415113A (en) * 1987-07-09 1989-01-19 Tadahiro Omi Filter element comprising electroconducting ceramic
JPH01145927U (en) * 1988-03-30 1989-10-06
JPH0315616A (en) * 1989-01-31 1991-01-24 Ibiden Co Ltd Exhaust gas purifying device
JPH0323307A (en) * 1989-06-19 1991-01-31 Ibiden Co Ltd Exhaust gas purifying device
EP0745759A2 (en) * 1995-05-30 1996-12-04 Sumitomo Electric Industries, Inc. Particulate trap for diesel engine
US5709722A (en) * 1995-05-30 1998-01-20 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
WO2001063102A1 (en) * 2000-02-22 2001-08-30 Toyota Jidosha Kabushiki Kaisha Particulate filter
WO2001073271A1 (en) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6588204B2 (en) 2000-03-27 2003-07-08 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP2006326430A (en) * 2005-05-24 2006-12-07 Kawasaki Plant Systems Ltd Absorbing tower for flue gas desulfurization apparatus
US7296401B2 (en) 2000-07-21 2007-11-20 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
CN102465734A (en) * 2010-10-29 2012-05-23 通用汽车环球科技运作有限责任公司 Method of sizing a heating core of an exhaust heater for an exhaust treatment system of a vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164480A1 (en) * 2001-12-29 2003-07-17 Schumacher Umwelt Trenntech filter element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190626A (en) * 1981-05-19 1982-11-24 Bridgestone Corp Material for collecting particulate in engine exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190626A (en) * 1981-05-19 1982-11-24 Bridgestone Corp Material for collecting particulate in engine exhaust gas

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197511A (en) * 1986-12-05 1988-08-16 イベコ フィアト エセ ペ ア Regenerable filter for exhaust gas from internal combustion engine
EP0393729A2 (en) * 1986-12-05 1990-10-24 IVECO FIAT S.p.A. Regenerable filter in exhaust gases of an internal-combustion engine
JPS63105716U (en) * 1986-12-27 1988-07-08
JPS63105713U (en) * 1986-12-27 1988-07-08
JPS63105715U (en) * 1986-12-27 1988-07-08
JPH0517371Y2 (en) * 1986-12-27 1993-05-11
JPH0521614Y2 (en) * 1986-12-27 1993-06-03
JPH0521612Y2 (en) * 1986-12-27 1993-06-03
JPS6415113A (en) * 1987-07-09 1989-01-19 Tadahiro Omi Filter element comprising electroconducting ceramic
JPH01145927U (en) * 1988-03-30 1989-10-06
JPH0315616A (en) * 1989-01-31 1991-01-24 Ibiden Co Ltd Exhaust gas purifying device
JPH0323307A (en) * 1989-06-19 1991-01-31 Ibiden Co Ltd Exhaust gas purifying device
US5709722A (en) * 1995-05-30 1998-01-20 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
EP0745759A3 (en) * 1995-05-30 1997-03-05 Sumitomo Electric Industries Particulate trap for diesel engine
EP0745759A2 (en) * 1995-05-30 1996-12-04 Sumitomo Electric Industries, Inc. Particulate trap for diesel engine
US5863311A (en) * 1995-05-30 1999-01-26 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
EP1172533A4 (en) * 2000-02-22 2002-06-12 Toyota Motor Co Ltd Particulate filter
EP1172533A1 (en) * 2000-02-22 2002-01-16 Toyota Jidosha Kabushiki Kaisha Particulate filter
WO2001063102A1 (en) * 2000-02-22 2001-08-30 Toyota Jidosha Kabushiki Kaisha Particulate filter
US6776815B2 (en) 2000-02-22 2004-08-17 Toyota Jidosha Kabushiki Kaisha Particulate filter
WO2001073271A1 (en) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device
US6588204B2 (en) 2000-03-27 2003-07-08 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6874315B2 (en) 2000-03-27 2005-04-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
CN1325773C (en) * 2000-03-27 2007-07-11 丰田自动车株式会社 Exhaust gas cleaning device
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US7296401B2 (en) 2000-07-21 2007-11-20 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP2006326430A (en) * 2005-05-24 2006-12-07 Kawasaki Plant Systems Ltd Absorbing tower for flue gas desulfurization apparatus
CN102465734A (en) * 2010-10-29 2012-05-23 通用汽车环球科技运作有限责任公司 Method of sizing a heating core of an exhaust heater for an exhaust treatment system of a vehicle

Also Published As

Publication number Publication date
JPH0211287B2 (en) 1990-03-13

Similar Documents

Publication Publication Date Title
JPS58137423A (en) Filter apparatus for exhaust gas
US5423904A (en) Exhaust gas filter
JPH0586839A (en) Self-heating type filter
JPS58143817A (en) Filter apparatus for removing combustible fine particle
JPH0153082B2 (en)
JPS5867914A (en) Purification device for fine carbon particles of internal-combustion engine
JPH07127434A (en) Diesel particulate filter
JPS6363015B2 (en)
US5958095A (en) Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
JPS58174216A (en) Filter for removing combustible fine particle
JP3561950B2 (en) Porous ceramic and method for producing the same
JPH0247248B2 (en)
JPH11280451A (en) Exhaust emission control device
JPS5937224A (en) Filtering device for removing inflammable fine particle
JPH10272325A (en) Apparatus for treating fine particles
JPH07233719A (en) Diesel particulate filter
JPS6235854Y2 (en)
JPS59520A (en) Fine grain arresting device for internal-combustion engine
JPH08240116A (en) High frequency heating exhaust gas purifying facility
JP3129591B2 (en) Diesel Particulate Filter
JPH06129228A (en) Method and trapping micro particle in exhaust gas and filter therefor
JPS5970827A (en) Particle collection control device
JP2953408B2 (en) Regenerative heater for particulate trap for diesel engine and particulate trap for diesel engine using the heater
JPS58174217A (en) Ceramic filter for removing combustible fine particle
JP2006105078A (en) Exhaust emission control device