JPS58136917A - Monitoring method of combustion in boiler furnace - Google Patents

Monitoring method of combustion in boiler furnace

Info

Publication number
JPS58136917A
JPS58136917A JP57017536A JP1753682A JPS58136917A JP S58136917 A JPS58136917 A JP S58136917A JP 57017536 A JP57017536 A JP 57017536A JP 1753682 A JP1753682 A JP 1753682A JP S58136917 A JPS58136917 A JP S58136917A
Authority
JP
Japan
Prior art keywords
combustion
furnace
monitoring method
value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57017536A
Other languages
Japanese (ja)
Other versions
JPS6331691B2 (en
Inventor
Mitsuyo Nishikawa
西川 光世
Nobuo Kurihara
伸夫 栗原
Kiyoshi Miura
清 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57017536A priority Critical patent/JPS58136917A/en
Publication of JPS58136917A publication Critical patent/JPS58136917A/en
Publication of JPS6331691B2 publication Critical patent/JPS6331691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To contrive to save labor for monitoring operation by a method wherein the burning state in a combustion furnace is detected by an image-sensor a plurality of times and the frequency of occurrence of detection signals having a predetermined brightness within a predetermined period of time is counted in order to monitor the state in the furnace based upon the counted value. CONSTITUTION:An industrial television camera 4, for example, is mounted on the wall within the furnace 2 in order to monitor the combustion state in the furnace 2 of a boiler. Video signals 5 from the industrial television camera 4 are obtained through an A/D converter 6 by an electronic computer 8 in order to obtain the sum of the parts which are equal to one another between every picture by means of an integral function 11. Next, the mean value of the video signals is calculated at a mean value calculating function 12 so as to obtain a mean video signal, which is divided into partial pictures again in order to compare each partial picture with the set values 15 corresponding to the pre-set gradation. When the gradation of partial pictures exceeds the set value 15 in the comparison, the positional distribution of subject partial pictures is calculated in order to output the treatment result thereto to an output unit 10.

Description

【発明の詳細な説明】 本発明は、ボイラ火炉内部の燃焼状at−監視する装置
に係9、特に火力発電用ボイラに通用するic最4なボ
イラ炉内の燃焼状態監視方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for monitoring the combustion state inside a boiler furnace, and particularly to a method for monitoring the combustion state inside an IC boiler furnace, which is applicable to boilers for thermal power generation.

従来、ボイラ炉内の燃焼状態に関しては、炉内監視IT
Vによる燃焼監視、@1窓からの点検、伝熱管温度の管
理等の方式が主に用iられている。
Conventionally, the combustion state inside a boiler furnace was monitored using in-furnace monitoring IT.
Methods such as combustion monitoring using V, inspection from @1 window, and management of heat transfer tube temperature are mainly used.

自動管理装置としては、フV−ムデテクタによるバーナ
自動点火、消火判定が火炉保護のために使用されている
程度でめった。
As for automatic control devices, automatic burner ignition and fire extinguishing judgment using flame V-metameters have been rarely used to protect furnaces.

しかも、営業運転中の経時的に変化する燃焼状態に関し
ては、定量的に評価できず運転員は経験と勘に頼らざる
t−得なく燃焼状況に対して充分に対処できないという
問題がめつ友。
Moreover, the combustion conditions that change over time during commercial operation cannot be quantitatively evaluated, and operators have no choice but to rely on their experience and intuition, making it impossible to adequately deal with the combustion conditions.

また従来、炉内の異常燃焼を監視する方法として、炉内
の状1Mを監視するテVビカメラの出力信号を正常な燃
焼状態の火炎ゆらぎにより発生する映像信号のゆらぎに
対応し次時定数で積分し、この積分値の平均値から正常
燃焼状態の基準値を求め、この基準値と前記積分値を比
較し一定差異以上の場合警報を発するものがめる。しか
し、この方法では、異常燃焼が生じても積分値が基準値
以内であれば警報は発せられないという問題がめっ次。
Conventionally, as a method for monitoring abnormal combustion in the furnace, the output signal of a TV camera that monitors the condition 1M inside the furnace is adjusted to correspond to the fluctuations in the video signal caused by flame fluctuations in a normal combustion condition, using the following time constant. A reference value for a normal combustion state is determined from the average value of the integrated values, and this reference value is compared with the integrated value, and if the difference exceeds a certain value, a warning is issued. However, the problem with this method is that even if abnormal combustion occurs, no alarm will be issued as long as the integral value is within the standard value.

また、同様な方法として、F内の所定部分に対応する映
像信号を抽出し、正常燃焼状態の映像信号のゆらぎに対
応し次所定の時定数で積分し、その積分値と基準値(積
分値から所定の値を引い比値)を比較してこの差異が一
定値以上の場合に警報を発する方法がるる、しかし、こ
の方法では燃焼が変化する場合(負荷上昇、下降)には
、基準値の設定がゆらぎの変化分によp決定されるため
、誤動作することが考えられる。
In addition, as a similar method, extract the video signal corresponding to a predetermined part in F, and then integrate it with a predetermined time constant in response to the fluctuation of the video signal in the normal combustion state, and combine the integral value with the reference value (integral value There is a method in which a predetermined value is subtracted from the ratio value) and an alarm is issued if this difference is greater than a certain value. Since the setting of p is determined by the amount of change in fluctuation, malfunctions may occur.

嘔らに同様な方法として、映倫信号をゆらぎの時定数に
よシ積分し、この値から基準値を求め前記積分値と比較
するものがめるが、これも炉の出力が変化する場合に誤
警報を発したり、異常を検出できない場合がるるという
問題がめつ九。
A similar method is to integrate the Eirin signal by the fluctuation time constant, derive a reference value from this value, and compare it with the integrated value, but this also can cause false alarms if the furnace output changes. The problem with this is that it may sometimes emit alarms or fail to detect abnormalities.

以上述べた従来の方法に共通する問題として。This is a common problem with the conventional methods described above.

映像信号を積分する九め、異常の検出は積分値の増減及
びその変化率によるしか無く、どのような異常状態にる
るかということを知ることかでtkなかつ次。また、積
分過程で増減が相殺され次場合は異常でbっても警報が
出ないという本質的な問題を備えていた。
The ninth step in integrating the video signal is that abnormalities can only be detected by the increase/decrease in the integral value and its rate of change, and the next step is to know what kind of abnormal state will occur. In addition, there is an essential problem that the increase and decrease are canceled out during the integration process, and in the next case, even if an abnormality occurs, no alarm is issued.

さらに、正常な燃焼状態における情報t−得ることがで
きなかった。
Furthermore, it was not possible to obtain information under normal combustion conditions.

本発明の目的は、ボイラ火炉内部の燃焼状態を火炎の映
像パターンを自動的に評価抽出する方法を提供すること
にるる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for automatically evaluating and extracting a flame image pattern to determine the combustion state inside a boiler furnace.

本発明の要点は、ITVカメラや赤外−カメラ等で検出
した映像にゆらぎかめる場合に火炉での熱吸収が平均的
な輝度(階調)分布に関係することから、輝度ごとのW
A度により炉内の燃焼状at監視することにある。
The key point of the present invention is that when the image detected by an ITV camera or an infrared camera has fluctuations, the heat absorption in the furnace is related to the average brightness (gradation) distribution.
The aim is to monitor the combustion state in the furnace using the A degree.

具体的にはITV等で検出される映像信号の輝度につい
て複数の輝度範囲に分割し、検出された映像信号の輝度
が分割された輝度範囲のどれに対応するかの度数を計数
し、めらかしめ設定された度数を越え次輝度により炉内
燃焼状態を監視することにるる。
Specifically, the brightness of a video signal detected by an ITV, etc. is divided into multiple brightness ranges, and the frequency of which of the divided brightness ranges the brightness of the detected video signal corresponds to is counted and calculated. The combustion condition in the furnace is monitored by the brightness after the caulking exceeds the set frequency.

以下に本発明の一実施伺1k15!明する。第1図にお
いて、ボイラはバーナlから供給される燃料を火F2で
燃焼させ、その発熱量で伝熱管3内の水蒸気を飽和蒸気
(或いは水を水蒸気)に変えることを目的としている。
The following is a 1k15 visit to the implementation of this invention! I will clarify. In FIG. 1, the purpose of the boiler is to combust fuel supplied from a burner 1 with a fire F2, and use the generated heat to convert water vapor in a heat exchanger tube 3 into saturated steam (or water into steam).

そこで、火炉2内における燃焼状態を監視するために1
例えばITVカメラ(或いは赤外線カメラ等)4t−火
炉3内の壁面に取り付ける方法がめる。本実施例は、こ
のようにして取り付けられた例えばITVカメラからの
映儂信号管用いる。ITVカメンからの映像信号5’i
:A/D変換器6を介して電子計算機8にjIiL9込
み、処理結果9を出力装置10に出力する。
Therefore, in order to monitor the combustion state in the furnace 2,
For example, a method for attaching an ITV camera (or infrared camera, etc.) to the wall inside the 4t-furnace 3 will be described. The present embodiment uses a video signal tube from, for example, an ITV camera installed in this manner. Video signal 5'i from ITV Kamen
: jIiL9 is input to the electronic computer 8 via the A/D converter 6, and the processing result 9 is output to the output device 10.

次に、電子計算機8内の処理機能を第2図〜第4図を用
いてll!明する。また各処理機能は、ハードワエアで
構成されても同様の効果を得ることができる。電子計算
機8内の処理機能の一告を第2図に示す、第2図におい
て、ITVカメラ4からの映像信号5は、A/D変換器
6でデジタル信号に変換され電子計算機8に取込まれる
。取り込まれ次映像信号7は、積分機能11により画面
毎の同一部の和を求め、平均値演算機11!12で映像
信号の平均値を計算し、平均映像信号とする。
Next, the processing functions in the electronic computer 8 will be described using FIGS. 2 to 4! I will clarify. Moreover, the same effects can be obtained even if each processing function is configured by hardware. A summary of the processing functions within the computer 8 is shown in FIG. 2. In FIG. It will be done. The captured video signal 7 is used to calculate the sum of the same portions for each screen using an integration function 11, and average values of the video signals are calculated using average value calculators 11 and 12 to obtain an average video signal.

平均映像信号を祷るための他の方法の一例を第3図に示
す。第3図において、 A/f)変換器6でデジタル信
号に変換され次映儂信号7t−1映儂信号分割機t!1
6で第5図に示すように部分画面に任意分割する。次に
、任意分@@t1.fc各部分画面に対厄する映儂信号
毎に、一定面面数のヒストグラムを演算するヒストグラ
ム演算機能17で処理される。ヒストグラムの基本的な
パターンはボイラ炉内の火炎を撮像した場合、第6図(
匈、 (b)、 (C)。
An example of another method for obtaining an average video signal is shown in FIG. In FIG. 3, the A/f) converter 6 converts the signal into a digital signal, and then the video signal 7t-1 video signal splitter t! 1
6, the screen is arbitrarily divided into partial screens as shown in FIG. Next, any part @@t1. fc Each of the video signals applied to each partial screen is processed by a histogram calculation function 17 that calculates a histogram of a fixed number of screens. The basic pattern of a histogram is shown in Figure 6 (
匈, (b), (C).

各 (d)の4櫨類に分かれ、それらr!第7図に示す部分
人 画11C該当する。このようにして得られた各部分ll
1ii面の階−に対するヒストグラムを、予め設定して
おいた@度に対する設定値19と比較−耗18で比較し
、設定[19を超えている部分の平均的な階調をその部
分Ij!1iiIの階調とすることによシ平均映像信号
を算出する。
Each (d) is divided into four species, and those r! This corresponds to the partial human image 11C shown in FIG. Each part obtained in this way
The histogram for the floor of the 1ii surface is compared with the preset value 19 for the @ degree using the comparison - wear 18, and the average gradation of the portion exceeding the setting [19 is determined for that portion Ij! By setting the gradation to 1iiiI, an average video signal is calculated.

ま九、他の方法として、前記の方法において設定値19
’iMiえている部分の平均的な階調とし九が、設定値
19を超えている部分とその前後の階調に分けて2値化
、3億化を図ることも方法としては有効である。また、
f&定懺19?超えている部分の最多頻度の階g4t−
平均映像信号とする方法。
Nine, as another method, set value 19 in the above method.
It is also an effective method to divide the average gradation of the part that is displayed in 'iMi' into the part where 9 exceeds the set value of 19 and the gradation before and after it, and to convert it into binarization and convert it into 300 million. Also,
f & stationary 19? The most frequent floor of the exceeded part g4t-
A method to obtain an average video signal.

或いは階IAを次のようにクラス分けする。(9iIl
えば第6図(尋のようにM階−で4クラスに分ける場合
) no  =  ”t l’1tXiは、Aクラスml+
1〜m、  tt  は、B 〃m宜十l〜m、階−は
、Cクラス ms士l〜M  ’  Il’lsD  #谷りラス内
に設定値M L I 1m t *を超えた部分が入る
と。
Alternatively, the floor IA is classified as follows. (9iIl
For example, in Figure 6 (when dividing into 4 classes by M floor - like Hiroshima) no = ``t l'1tXi is A class ml+
1 to m, tt is B 〃m 1 to m, floor is C class ms to M'Il'lsD When you enter.

Aクラスに入つ九場合1階調m1゜を設定。If 9 falls in class A, set 1 gradation m1°.

(me ’hmto ’hmt ) Byシラス入った場合1階tl14 ” me t−設
定。
(me 'hmto 'hmt) If you enter By Shirasu, 1st floor tl14 ”me t-setting.

(m++1sm*oSmm) Cクラスに入った場合1階i!II m n oを設定
(m++1sm*oSmm) If you enter class C, you will be on the 1st floor i! Set II m no.

(fnl+1s、mso<m5) Dクラスに入った場合1階gm46t−設定。(fnl+1s, mso<m5) If you enter D class, the 1st floor GM46T- setting.

(ms+ISlSm4os 肯えば上記のように階−を設定し、平均映像信号とする
方法も平均映像信号を求める上で有効な方法でめる。
(ms+ISlSm4os) If yes, setting the floor as described above and using it as an average video signal is also an effective method for determining the average video signal.

以上のような各種方法で求め、られ九平均映像偏号は、
平均映像信号分割機能13で再度部分−面に分割され1
分割された各部分画面な予め設定しておいII−階Il
に対する設定値15と比較する。この時に1階−が設定
値15を超えている部分画面の位置分布を求める。次に
、この処理結果9t−出力装置110に出力する。
The nine-average video polarization obtained using the various methods described above is
The average video signal division function 13 divides it into parts and planes again.
Each divided partial screen is set in advance.
Compare with the setting value 15 for . At this time, the position distribution of the partial screen where the first floor - exceeds the set value 15 is determined. Next, this processing result 9t is outputted to the output device 110.

上記方法では、平均映像gI号を求める場合に負荷が一
定でろるという条件が伴う。なぜならd負荷が上昇、下
降している場合、或いは、るる負荷から別の負荷へ移行
した場合には、バーナへの燃料供給料が変化し、その結
果、火炎の大きさ、形状等が変化しそれに伴い、m面全
体の階調も変化するからでるる。この丸め、負荷変化の
度に設定値15を変更しなければならない。
In the above method, when calculating the average video gI, there is a condition that the load remains constant. This is because when the load is rising or falling, or when moving from one load to another, the fuel supply to the burner changes, and as a result, the size, shape, etc. of the flame changes. This is because the gradation of the entire m-plane changes accordingly. During this rounding, the set value 15 must be changed every time the load changes.

そこで、上記欠点を補う方法t−説明する。Therefore, a method for compensating for the above drawbacks will be explained.

本発明の他の実施例を#!4図に示す。s4図は。#Other embodiments of the invention! Shown in Figure 4. s4 diagram.

基本的にはs3図と同様でるるか、火炎の大きさ。Basically, the size of the flame is the same as the s3 diagram.

形状の変化による新たな階調に対する設定値15を平均
映像信号を用いて演算することによシ、懺荷変動中でも
火炎を良好にとらえることができる。
By calculating the set value 15 for the new gradation due to the change in shape using the average video signal, the flame can be captured well even during load fluctuations.

jI4図において、例えば平均値演算機能12で求めら
れた平均映像信号な用いて1階調に対する設定値の演算
機能20で(1)式を用いて階調に対する設定値を計算
する。
In FIG. jI4, for example, using the average video signal obtained by the average value calculation function 12, the setting value calculation function 20 for one gradation calculates the setting value for the gradation using equation (1).

A:階調に対する設定値 B二足数 Nニー山の分割数 X二各分割部における階調 以上により、負荷が一足、iWb中の何れにおいても良
好に火炎の形状、大きさt把握し、監視することができ
る。
A: Set value for gradation B 2 Number of legs N Number of divisions of knee peak can be monitored.

また、平均映像信号と平均化処理上しない映像信号の差
を計算することにより、火炎のゆらぎのf&FjLt−
把握することができ、バーナの空気量調節等の情報f:
得ることもできる。
In addition, by calculating the difference between the average video signal and the video signal that is not included in the averaging process, the flame fluctuation f&FjLt-
Information on burner air volume adjustment, etc. can be grasped:
You can also get it.

さらに、正常時の火炎形状を記憶しておくことにより、
ボイラの異常燃焼を自動的にとらえることができる。
Furthermore, by memorizing the flame shape under normal conditions,
Abnormal boiler combustion can be detected automatically.

また、菖1図では炉内の信号をITVカメラで映像信号
をとp出しているが、その信号を赤(R)。
Also, in Figure 1, the signal inside the furnace is output as a video signal using an ITV camera, and the signal is red (R).

縁(G)、實(B)K分離して、分離された信号の輝f
(階調)頻度による炉内監視をおこなってもよい。例え
ば第8図(a)に示すように信号5f:R。
Edge (G), truth (B) K separated, brightness f of separated signal
The inside of the furnace may be monitored based on (gradation) frequency. For example, as shown in FIG. 8(a), the signal 5f:R.

G、B分離手段50によシ分庫しそれぞれ対応する信号
変換回路52.54.56を介し、切替スイッチ58に
よシ切替えて前記信号のどれかを選択してA/Di、換
器に入力する方法でろってもよい。52〜56はこの段
階でA/D変換し順次記憶するものでろればA/D変換
器6は必要はなくなる。このように52〜56が記憶装
置1ilt含む場合には1例えばB信号で監視後、改た
めて他の信号(伺えばG信号)での分析が出来るので好
都合でるる。一般に炉内燃焼状急は負荷状態などによシ
その火炎の色成分も変動するから、炉の状況によシ1選
択回路60によって切替スイッチ58を選択切替えて4
よい。
The signals are separated by the G and B separation means 50, and then passed through the corresponding signal conversion circuits 52, 54, and 56, and the changeover switch 58 selects one of the signals and outputs it to the A/Di converter. You can use any method you like to enter it. If the data 52 to 56 are A/D converted and stored sequentially at this stage, the A/D converter 6 is not necessary. In this way, when 52 to 56 include the storage device 1ilt, it is convenient because after monitoring with 1, for example, the B signal, it is possible to analyze again with another signal (if you ask, the G signal). In general, when the combustion condition in the furnace is sudden, the color component of the flame changes depending on the load condition, etc., so depending on the furnace condition, the changeover switch 58 is selected by the 1 selection circuit 60.
good.

また第8図(b)はITVで採取し良信号をフィルタ4
2を介してるる特定の色信号のみを検出する方法でめっ
てもよい。几、G、Bに応じてフィルト・、1 り42t−切替えれば特定の色に対応した信号を検出す
ることができる。
In addition, Fig. 8(b) shows a good signal collected by ITV and filtered to 4.
It is also possible to use a method of detecting only a specific color signal that is transmitted through 2. By switching the filter, 1, and 42t according to the color, G, and B, it is possible to detect a signal corresponding to a specific color.

また、めらかしめ定められた波長(例えばB。In addition, smooth and defined wavelengths (for example B) can also be used.

G、几)についてイメージセンシングをしている場合は
、設定値xsriそnぞれの波長について設定しておく
必要がある。
When performing image sensing for wavelengths (G, 几), it is necessary to set the setting value xsri for each wavelength.

ま九炉内の火炎形状を推定診断する場合は基準となる火
炎形状信号tiらかしめ設定値15として記憶しておく
必要かめる。
When estimating and diagnosing the flame shape in the furnace, it is necessary to store the reference flame shape signal ti as the caulking setting value 15.

本発明によると火炎ゆらぎが少る場合でも安定した炉の
燃焼状況を監視することができる。
According to the present invention, it is possible to monitor the stable combustion state of the furnace even when there is little flame fluctuation.

さらに具体的には次のような効果が得られる。More specifically, the following effects can be obtained.

fl)  火炎のゆらr′t−簡単に知ることができ、
バーナの空気量関節情報として用いることができる。
fl) Flame fluctuation r't-Easy to know,
It can be used as burner air amount joint information.

(2)  輝度(階調)の高い部分を抽出することによ
り、炎をパターンとしてとらえ、形状を分析することが
できる。
(2) By extracting the parts with high brightness (gradation), it is possible to understand the flame as a pattern and analyze its shape.

(32運転員の勘や経験に幀らなiため、運転員の負担
を軽減できる。
(32) Since it relies on the intuition and experience of the operator, the burden on the operator can be reduced.

(4)正常時の火炎形状を記憶しておくことにより、異
常燃焼を自動的にとらえることができる。
(4) By memorizing the normal flame shape, abnormal combustion can be automatically detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明の
一実施例の処理機能の一例を示す図、第3図は本発明の
一実施例の処理機能の他の一例を示す図、第4図は本発
明の他の実施例を示す図。 第5図は平均映像信号を得るためにuii面を任意分割
した時の映像信号を示す図、第6図は階調に対するヒス
トグラムの基本的なパターンを示す図。 第7図は第6図の各ヒスドグ2ムに対応する位置の一例
を示す図、第8図は他の実施例を示す。 l・・・バーナ、2・・・火炉、3・・・伝熱管、4・
・・ITVカメラ、5・・・映像信号、6・・・A/I
)変換器、7・・・デジタル信号に変換された映倫信号
、8・・・電子計算機、9・・・処理結果、lO・・・
出力装置、11・・・積分機能、12・・・平均値演算
機能、13・・・平均映像信号分割機能、14・・・比
較機能、15・・・階調に対する設定値、16・・・映
像信号分割機能、17・・・ヒストグラム演算機能、1
8・・・比較機能、19・・・頻度に対する設定値、2
0・・・階調に対する設定値の演算機能。 」宍工′ 事 6 図 (α) (す) γ皆  匍司 ゾロ 図 (め) 階   鰐
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing an example of the processing function of the embodiment of the invention, and Fig. 3 is another example of the processing function of the embodiment of the invention. FIG. 4 is a diagram showing another embodiment of the present invention. FIG. 5 is a diagram showing a video signal when the UII plane is arbitrarily divided to obtain an average video signal, and FIG. 6 is a diagram showing a basic pattern of a histogram for gradations. FIG. 7 is a diagram showing an example of the position corresponding to each hisdog 2m in FIG. 6, and FIG. 8 is a diagram showing another embodiment. l... Burner, 2... Furnace, 3... Heat exchanger tube, 4...
...ITV camera, 5...video signal, 6...A/I
) converter, 7...Eirin signal converted to digital signal, 8...electronic computer, 9...processing result, lO...
Output device, 11... Integration function, 12... Average value calculation function, 13... Average video signal division function, 14... Comparison function, 15... Setting value for gradation, 16... Video signal division function, 17... Histogram calculation function, 1
8... Comparison function, 19... Setting value for frequency, 2
0... Calculation function of setting value for gradation. ``Shishiko' thing 6 Figure (α) (su) γ everyone Souji Zoro figure (me) Floor Wani

Claims (1)

【特許請求の範囲】 1、燃焼炉の燃焼状況を監視する方法において、繊炉内
の燃焼状況をイメージセンナにょ9複数回検出し、咳検
出信勺のあらかじめ定めた輝j[o所定時間内に発生す
る頻度【計数し、該針数値により該炉内の監視をおこな
うことt−5ilkとする燃焼状況監視方法。 2、前記特許請求O@s第1項紀戚において、該検出信
号を複aの輝度に分け、該分けられた輝度ごとにその検
出頻度を計数することを特徴とする燃焼状況監視方法。 3、前記脣軒−求OmWA@1項記颯において、咳炉西
のあらかじめ定められ九部分領域の燃焼状況を誼イメー
ジセンナにより検出することをq#黴とする燃焼状5!
1i視方法。 4、前記特許請求aims第3項記載において、該炉内
のるらかしめ複数のs分領域を設定し、鋏設定された部
分領域ごとに輝直頗IKを計数するととを特徴とする燃
焼状況監視方法。 56前記特許請求の範囲第1項〜第31A記載において
、めらかしめ基準計数IIAltを設定し、咳計数され
九頻度が該基準針a頻直設定懺を越えたか否かにより鍍
炉内の燃焼状況を診断することを特徴とする燃焼状況監
視方法。 6、前記特許請求の範囲第4項記載において、咳複数の
部分領域ごとにめらかしめ基準針数Sat設定し、該複
数領域ごとの輝度針数mmが咳基準計数頻度を越えたか
否かの組合せに19炉の診断をおこなうことをq#値と
する燃焼状況監視方法。 7、前記特許請求の範囲@6項において、咳複数領域と
とに定めた基準針数Mft越えた輝度の信号によシ誼炉
内の火炎形状を推定診断することを特徴とする燃焼状況
監視方法。 8、前記特許請求の範囲117項記載において、めらか
しめ記、憶して−る火炎形状と咳#1足された火炎形状
とを比較し、該推定され次火炎形状の診断をおこなうこ
とt−特徴とする燃焼状況監視方法。 9、前記q#杵績求の範囲IE!1項記載において、該
基*針数@′gL設定値を咳炉の運転状況に応じて変更
することt%徴とする燃焼状況監視方法。 10、前記特許請求の範囲第1項記載において、イメー
ジセンサからの信号のうち心らかじめ定めた波長の信号
についての輝度頻WLt−計数することtq#値とする
燃焼状況監視方法。 11、前記特許請求の範8j110項記載において。 めらかじめ定められ九豪数の波長の信号についてそれぞ
れ輝度頻匿を針数することt**とする燃焼状況監視方
法。
[Claims] 1. In a method for monitoring the combustion status of a combustion furnace, the combustion status in the furnace is detected multiple times using an image sensor, and the predetermined brightness of the cough detection signal is detected within a predetermined period of time. A combustion status monitoring method that involves counting the frequency of occurrences and monitoring the inside of the furnace based on the needle value. 2. The combustion status monitoring method according to the above-mentioned patent claim O@s, paragraph 1, characterized in that the detection signal is divided into a plurality of luminances, and the detection frequency is counted for each of the divided luminances. 3. In the above-mentioned OmWA @ Section 1, the combustion status 5 is to detect the combustion status of nine predetermined areas west of the cough furnace using the image sensor.
1i viewing method. 4. The combustion situation described in the third aspect of the patent claim, characterized in that a plurality of s-minute regions are set in the furnace, and the bright straight IK is counted for each set partial region. Monitoring method. 56 In the claims 1 to 31A, a smoothing reference count IIAlt is set, and the combustion in the smelting furnace is determined depending on whether the frequency of coughing exceeds the frequency setting value of the reference needle a. A combustion status monitoring method characterized by diagnosing the status. 6. In the claim 4, the number of smoothing stitches Sat is set for each of a plurality of partial areas, and it is determined whether the number of brightness stitches (mm) for each of the plurality of areas exceeds the cough reference counting frequency. Combustion status monitoring method that uses the q# value to diagnose 19 furnaces in combination. 7. Combustion status monitoring according to claim 6, characterized in that the flame shape in the furnace is estimated and diagnosed based on a signal with a brightness exceeding a reference number of needles Mft defined in multiple cough regions. Method. 8. In claim 117, the estimated next flame shape is diagnosed by comparing the flame shape stored in the smooth memory and the flame shape added by cough #1. -Characteristic combustion status monitoring method. 9. The range of the q# pestle test IE! The combustion status monitoring method as described in item 1, wherein the t% sign is to change the base * number of stitches @'gL set value according to the operating status of the cough oven. 10. The combustion status monitoring method as set forth in claim 1, in which the luminance frequency WLt-counting of the signal of a predetermined wavelength among the signals from the image sensor is calculated as the tq# value. 11. In the above-mentioned claim 8j110. A combustion status monitoring method in which the brightness frequency is calculated as t** for each signal of a smoothly determined wavelength of nine Australian numbers.
JP57017536A 1982-02-08 1982-02-08 Monitoring method of combustion in boiler furnace Granted JPS58136917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017536A JPS58136917A (en) 1982-02-08 1982-02-08 Monitoring method of combustion in boiler furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017536A JPS58136917A (en) 1982-02-08 1982-02-08 Monitoring method of combustion in boiler furnace

Publications (2)

Publication Number Publication Date
JPS58136917A true JPS58136917A (en) 1983-08-15
JPS6331691B2 JPS6331691B2 (en) 1988-06-24

Family

ID=11946635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017536A Granted JPS58136917A (en) 1982-02-08 1982-02-08 Monitoring method of combustion in boiler furnace

Country Status (1)

Country Link
JP (1) JPS58136917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633696A (en) * 2015-02-28 2015-05-20 烟台龙源电力技术股份有限公司 Method and device for detecting flame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633696A (en) * 2015-02-28 2015-05-20 烟台龙源电力技术股份有限公司 Method and device for detecting flame

Also Published As

Publication number Publication date
JPS6331691B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
EP3261333B1 (en) Thermal anomaly detection
CN1882078B (en) Image error detection device for monitoring camera
EP0304437B1 (en) Method of image analysis in pulverized fuel combustion
Baek et al. Flame image processing and analysis for optimal coal firing of thermal power plant
JPS58136917A (en) Monitoring method of combustion in boiler furnace
JPS5855512A (en) Method for judging condition of blast furnace
JP3935640B2 (en) Apparatus and method for monitoring and detecting slag dynamics in gasifier
JP3289456B2 (en) Anomaly detection method using images
KR19990018136A (en) Color quality inspection method and device
KR20230061998A (en) fire detection system using thermal and real image fusion camera
JPS60263012A (en) Flame monitoring method
JP3362605B2 (en) Combustion flame detector
KR200267510Y1 (en) an apparatus for watching a boiler&#39;s flames of power station
KR100376525B1 (en) Apparatus and method for monitoring blast furnace race way
JP2021038871A (en) Method of observing combustion field, observation device, and observation program
KR20210012323A (en) System for analyzing ignition state in burner zone method thereof
JPS5960120A (en) Detecting method of burning-out point
KR102488651B1 (en) Apparatus for determining abnormal state based on deep learning using ir camera
JPH03232613A (en) Article accumulating state detecting method and device
JPH0447238A (en) Abnormal heating detector for equipment in operation
JP3496746B2 (en) Flame detector
JPH04148110A (en) Identification of clogging of burner
JP2544807B2 (en) Flame detection device for combustion furnace
KR100356272B1 (en) A combustion method for boiler burner
KR20060071717A (en) System for automatically monitoring furnace tuyere using vision camera