JPS58136585A - Ship mooring method - Google Patents

Ship mooring method

Info

Publication number
JPS58136585A
JPS58136585A JP1999682A JP1999682A JPS58136585A JP S58136585 A JPS58136585 A JP S58136585A JP 1999682 A JP1999682 A JP 1999682A JP 1999682 A JP1999682 A JP 1999682A JP S58136585 A JPS58136585 A JP S58136585A
Authority
JP
Japan
Prior art keywords
mooring
cylinder device
bit
ship
cylinder chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1999682A
Other languages
Japanese (ja)
Inventor
Masatoshi Fukada
深田 雅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1999682A priority Critical patent/JPS58136585A/en
Publication of JPS58136585A publication Critical patent/JPS58136585A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B2021/001Mooring bars, yokes, or the like, e.g. comprising articulations on both ends

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Jib Cranes (AREA)

Abstract

PURPOSE:To easily and safely motor a ship, by leading an eye splice carried at the front end of a muli-step cylinder device to a ship mooring bit in association with a detected signal indicating the position relative to the ship mooring bit on a quaywall corresponding to the multi-step cylinder device. CONSTITUTION:The transmission and receiving of signals between the first to third PTRs 50A, 50B, 50A and a PTR53 on a quaywall 47 causes a position of a multi-step cylinder device 9 relative to a mooring bit 52 to be calculated by and stored in a main computer 55 and the ship mooring bit 52 for accessing each multi-step cylinder device 5 is determined and is inputted in the main computer 55 from which a signal is transmitted to an auxiliary computer 56 incorporated in a base 4, for driving a turning hydraulic motor, a derricking cylinder and the multi-step cylinder device 9. Thereby, each eye splice is led and moored to each ship mooring bit 52.

Description

【発明の詳細な説明】 本発明は係船方法に関する。[Detailed description of the invention] The present invention relates to a method for mooring a ship.

従来、大型船舶を岸壁に保留する場合、その係留索はタ
グボートによ)岸J11まで運ばれ、そして岸壁の係留
ビットに係留索先端のアイスプライスが引掛けられた後
、係留索を巻取ってその係留が行なわれていた。しかし
、上記係船作業は多くの作業員による手作業で行なわれ
ており労力と危険を伴う作業であった。
Conventionally, when a large ship is moored at a quay, its mooring line is carried to quay J11 by a tugboat, and after the ice splice at the end of the mooring line is hooked to a mooring bit on the quay, the mooring line is wound up. The mooring was in progress. However, the above-mentioned mooring work was carried out manually by many workers, and was laborious and dangerous work.

そこで、零発BAは少人数で容易に速やかかつ安全に係
船作業を成し得る係船方法を提供することを目的とする
Therefore, the purpose of zero-start BA is to provide a mooring method that allows a small number of people to perform mooring work easily, quickly, and safely.

即ち、本発明は船舶の上甲板上舷側に沿って複数箇所で
旋回自在に且つ俯仰自在に支持されると共に先端にアイ
スプライスを有する多段式シリンダー装置と、これら各
多段式シリンダー装置に対応する岸壁上の係船用ビット
との相対位置を検出手段により検出し、該検出手段から
の信号により、  □上記多段式シリンダー装置を旋回
及び俯仰させると共にそのピストンロッドを出退させて
その先端のアイスプライスを上記係船用ビットに導くこ
とを特徴とする係船方法でめる。
That is, the present invention provides a multi-stage cylinder device that is rotatably and vertically supported at a plurality of locations along the upper deck of a ship and has an eye splice at its tip, and a quay corresponding to each of these multi-stage cylinder devices. The relative position with respect to the upper mooring bit is detected by a detection means, and the signal from the detection means causes the multi-stage cylinder device to swivel and move up and down, as well as to move its piston rod back and forth to open the eye splice at its tip. A mooring method characterized by guiding the mooring bit to the above-mentioned mooring bit.

以下、本発明の一実施例を図面に基づき説明する。第1
図〜第6図において、(1)は大型船舶(2)の上甲板
(3)1舷側に沿って複数個設けられた係船装置本体で
、後述する制御装瞳によって駆動#御される。上記係船
装置本体(1)Fi、上甲板(3)1絃側に設けられ九
基台(4)と、該基台(4)上に旋回軸受(5)を介し
て旋回自在に支持された支持体(6)と、先端にアイス
ジ2イス(7)を有すると共に基部(9a)が上記支持
体(6)上部に水平方向の軸体(8)を介して俯仰自在
に支持された多段式(本実施例では3段式)シリンダー
* 1112(9)と、基部(9a)内に配置さレテ、
小歯車OOt介して支持体(6)下部の大歯車Q1を回
転させる油圧モーター(旋回装置の一例)(6)と、一
端が支持体(6)の側部に連結されると共Ka端が多段
式シリンダー装置(9)K連結された油圧シリンダー(
俯仰装置の一例)o4とから構成されている。なお、(
4405(le#i油圧モーター(ロ)、油圧シリンダ
ー(至)、多段式シリンダー装置(9)の油圧ライン、
α?) 08 G呻は油圧ライン04 (Lie (1
11の途中に介装された油圧切換弁、■(2)@は各油
圧切換弁(ロ)(至)(至)の手前の油圧供給ライン(
14a015g)(16a)に介装され九流量計である
Hereinafter, one embodiment of the present invention will be described based on the drawings. 1st
6, (1) is a plurality of mooring device bodies provided along one side of the upper deck (3) of a large ship (2), which are driven and controlled by a control pupil to be described later. The mooring device main body (1) Fi is provided on the upper deck (3) on the 1st string side and has a nine base (4) and is rotatably supported on the base (4) via a swing bearing (5). A multi-stage type having a support (6) and an ice cube chair (7) at the tip, and a base (9a) supported on the upper part of the support (6) via a horizontal shaft (8) so as to be able to rise and fall freely. (3-stage type in this embodiment) Cylinder * 1112 (9), Rete arranged in the base (9a),
A hydraulic motor (an example of a turning device) (6) rotates a large gear Q1 at the bottom of the support (6) via a small gear OOt, and when one end is connected to the side of the support (6), the Ka end is Multi-stage cylinder device (9) K connected hydraulic cylinders (
An example of an elevating device) o4. In addition,(
4405 (le#i hydraulic motor (b), hydraulic cylinder (to), multi-stage cylinder device (9) hydraulic line,
α? ) 08 G groan is hydraulic line 04 (Lie (1
Hydraulic switching valve installed in the middle of 11, ■ (2) @ is the hydraulic supply line before each hydraulic switching valve (B) (To) (To)
14a015g) (16a) are nine flowmeters.

ここで、上記多段式シリンダー装置(9)を、第4図に
基づき説明する。多段式シリンダー装置(9)は内部に
第1シリンダー室四を有するシリンダ一体−と、第1シ
リンダー室に)内に出退自在に配設されると共に内部に
第2シリンダー室に)を有する第1ピストンロツド(ホ
)と、このIJ2シリンダー室(ホ)内に出退自在に配
設されると共に内部にII3シリンダー室費を有する第
2ピストンロンド翰と、この第3シリンダー室匈内に出
退自在に配設された第3ピストンロンド■とから構成さ
れている。上記各シリンダー室磐@(財)内壁には、各
ピストンロッド(ホ)@四の退入位置を規制するストッ
パー…8η(2)が設けられ、また各ピストンロッド@
(至)四の外周には各ピストンロッドcI4に)四の突
出位置を規制するストッパー@e4(至)が設けられて
いる。そして、上記各ピストンロッド@に)四を外側か
ら順次突出させるために、第1ヘツド側シリンダー室(
23a)内から第2ヘツド側シリンダー1(25a)内
に、第2ヘッド側シリング−室(25a)内から第3ヘ
ツド側シリンダー室(27a)内にそれぞれ圧油を供給
する第11第2のシーケンス弁に)−が設けられ、また
そのロッド側シリンダー室(23bX25b)内の油を
排出するために、第10ツド側シリンダー室(23b)
内から第20ツド側シリンダー室(25b)内に、第2
0ツド側シリンダー室(25b)内から11N30ツド
側シリンダー室(27b)内に1それぞ°れ連通する第
11第2の逆止弁(至)−が設けられている。また、各
ピストンロッドg4@(2)を中央から順次退入させる
ために1第30フド側シリンダー室(27b)から第2
0ツド側シリンダー室(25b)内に、第20ツド倒シ
リンダー室(25b)内から第10ツド側シリンダー室
(23b)内にそれぞれ圧油を供給するlI!3、第4
のシーケンス弁−一が設けられ、またそのヘッド側シリ
ンダーm! (25a)(27a)内の油を排出するた
めに、第3ヘツド側シリンダー室(27a)内から第2
ヘツド側シリンダー室(25a)内に、第2ヘツド側シ
リンダー室(25a)内から$1ヘッド側シリンダー室
(23a)内にそれぞれ連通する第3、第4の逆止弁−
一が設けられている。そして、第1ヘツド側シリンダー
室(23a)内には、油圧切換弁DIの一方のボートか
らの高圧ホース−が接続され、ま九第30ッド側シリン
ダー室(27b)には、同じく他方のボートからの高圧
ホース−が接続されて、いる。なお、上記第30ツド側
シリンダー室(27b)K接続された高圧ホース−の途
中には、各ピストンロッド(ホ)(至)四の出退に対応
できるようにホースリール−が介在されている。また、
上記各シーケンス弁(至)に)IIUはそれぞれシリン
ダー室(2)(至)(財)内の圧力が一定値以上になっ
た場合に開くようKされている。従って、この構成にお
いて、第1ヘッド側シリング−室(23a)内に圧油を
供給すると、先ず第1ピストンロンド(ホ)が突出し4
.第1ピストンロツド(至)がそのストッパーに)に、
i:i)停止すると、第1ヘツド側シリンダー室(23
a) 、−4,の圧力が上がシ第1シークンス弁に)の
設定圧力に達すると、第1シーケンス弁(至)が開き、
続いて第2ピストンロツド翰が突出し、更に!82ピス
トンロンド員が突出した後、第3ピストンロツド四が突
出する。なお、各ロッド側シリンダー室(23b)(2
5b)(27b)内の油は第1、第2の逆止弁cnwを
通って尺される。
Here, the multistage cylinder device (9) will be explained based on FIG. 4. The multi-stage cylinder device (9) has an integral cylinder having a first cylinder chamber 4 therein, and a second cylinder which is movably disposed inside the first cylinder chamber and has a second cylinder chamber inside. 1 piston rod (E), a 2nd piston rod which is arranged to be able to move in and out of this IJ2 cylinder chamber (E) and has a II 3 cylinder chamber inside, and a 2nd piston rod that can be moved out and out of this 3rd cylinder chamber. It consists of a freely arranged third piston rond. A stopper...8η (2) is provided on the inner wall of each cylinder chamber (E) to restrict the retracting position of each piston rod (E).
A stopper @ e4 (to) is provided on the outer periphery of (to) 4 for each piston rod cI4 to restrict the protruding position of (to) 4. Then, in order to make each of the piston rods (4) successively protrude from the outside, the first head side cylinder chamber (
23a) into the second head side cylinder 1 (25a) and from the second head side cylinder chamber (25a) into the third head side cylinder chamber (27a). ) is provided in the sequence valve, and in order to discharge the oil in the rod side cylinder chamber (23b x 25b), the 10th rod side cylinder chamber (23b) is provided.
From inside the 20th side cylinder chamber (25b), the 2nd
Eleventh and second check valves (to) are provided which communicate from the 0-side cylinder chamber (25b) to the 11N30-side cylinder chamber (27b), respectively. In addition, in order to move each piston rod g4@(2) in and out sequentially from the center, the second
Pressure oil is supplied into the 0-side cylinder chamber (25b) and from the 20th-side cylinder chamber (25b) to the 10th-side cylinder chamber (23b). 3. 4th
A sequence valve-1 is provided, and its head side cylinder m! (25a) In order to drain the oil in (27a), the second head cylinder chamber (27a) is
In the head side cylinder chamber (25a), there are third and fourth check valves that communicate from the second head side cylinder chamber (25a) to the $1 head side cylinder chamber (23a), respectively.
One is provided. A high pressure hose from one boat of the hydraulic switching valve DI is connected to the first head side cylinder chamber (23a), and the other one is connected to the 9th and 30th head side cylinder chamber (27b). A high pressure hose from the boat is connected. In addition, a hose reel is interposed in the middle of the high pressure hose connected to the 30th side cylinder chamber (27b) K so as to accommodate the movement of the piston rods (e) and (to) four. . Also,
Each of the sequence valves IIU is configured to open when the pressure within the cylinder chamber 2 exceeds a certain value. Therefore, in this configuration, when pressure oil is supplied into the first head side sill chamber (23a), the first piston rond (e) first protrudes 4.
.. The first piston rod (to) is the stopper),
i: i) When stopped, the first head side cylinder chamber (23
a) When the pressure of , -4, reaches the set pressure of the first sequence valve (to), the first sequence valve (to) opens;
Next, the second piston rod sticks out, and even more! After the 82 piston rod member protrudes, the third piston rod 4 protrudes. In addition, each rod side cylinder chamber (23b) (2
5b) (27b) is directed through the first and second check valves cnw.

また、逆に、第30ンド側シリンダー室(27b)内に
圧油を供給すると、第3ピストンロツド翰、第2ピスト
ンロツド(2)、第1ピストンロツド四と順次退入する
。ところで、第5図及び第6図に示すように、第3ピス
トンロツド四先端に設けられたアイスプライス(7)#
′i、作業員が岸I!!!補側の係船用ビット(財)K
係止しやすいように、矢印囚(靭方向即ち回転、前後移
動ができるように取付けられている。
Conversely, when pressure oil is supplied into the 30th cylinder side cylinder chamber (27b), the third piston rod, the second piston rod (2), and the first piston rod 4 move in and out in sequence. By the way, as shown in FIGS. 5 and 6, the eye splices (7) ## provided at the four tips of the third piston rod
'i, the workers are on the shore! ! ! Auxiliary side mooring bit (goods) K
For easy locking, it is attached so that it can be rotated and moved forward and backward.

次に、上記係船装置本体を駆動制御する制御装置にりい
てm明する。この制御装−一は、第2図及び第7図に示
すように、多段式シリンダー装置(9)近傍即ち基台(
4)上に立設されると共に第1、第2、第3のパルス信
号の発信/受信器(Pulse si −gnal T
ransmitter & Receiver以下、P
TRと称す)(50A)(50B)(50C)を有する
アンテナallと、岸Mloη上の各係船用ピッ)62
1に設置される移動式PTRelJと、上記アンテナ6
11及び移動式PTR631とによ多構成される検出手
段−からの信号を記憶処理する主コンピユータ−(通常
、操舵室に設置される)■と、この主コンピューター団
に有線又は無線により接続されて多段式シリンダー装置
(9)用の旋回装置(6)、俯仰装置(ロ)及び多段式
シリンダー装置(9)の、ピストンロンドに)(7)四
の出退(仲組)を駆動する補助コンピューター団とから
構成されている。ところで、上記アンテナ6Llの第1
〜第3 PTR(50A)(50B)(50C)#i、
一定間隔置きに同じパターンのパルス信号を発信するも
ので、ま九岸壁(47)上の移動式P T R6Jはア
ンテナ611ノ各PTR(50A)(50B)(50C
)からの信号を受信すると直ちに同一信号を送り返すも
のである。なお、移動式PTR−は各係船用ピッ)反応
じて複数個設けられた場合、あらかじめ異った信号にそ
れぞれ反応するようにされ、またこの移動式PTRωi
t信号を受信してから同一信号返信までの時間のずれが
発生しないものか、若しくは時間のずれがあったとして
も常に一定の遅れでもって返信するものである。そして
、これらアンテナ611側と岸壁−例とのPTRMa3
1によって多段式シリンダー装置(9)と係船用ビット
−との相対位置が検出される。即ち、第9図(a)に示
すように、第1 PTR(50A)と所定の例えばNo
、 l移動式PTR(53A)との間における発信(e
)と受信(f)との時間差(t) Kよって第1 PT
R(50A)とNo−1移動式PTR(53k)との距
離(rx)が分かる。同様に1第2PTR(50B)と
No、 1移動式PTR(53A)との距離(r2)及
び第3P1’R(50C)とNo、1移動式PTR(5
3A)との距離(r3)がそれぞれ分かる。すると、ア
ンテナ6υの中心(0)とNo、 1移動式PTR(5
3A)即ちNo、 l係船用ビット(52A)とに関し
下記のような三元2次連立方程式を立てることができる
。なお、式中、a、bFiアンテナ6υの中心向と第1
〜第3 P T R(50AX50BX50C)までの
距離、(”y * ylPl z(p ) tjアンテ
ナ611の中心(2)に対する係船用ピッ) 63の座
標位置である。
Next, the control device for driving and controlling the main body of the mooring device will be explained. As shown in FIG. 2 and FIG.
4) First, second, and third pulse signal transmitters/receivers (Pulse si-gnal T
Transmitter & Receiver and below, P
(referred to as TR) (50A) (50B) (50C) and each mooring pin on shore Mloη) 62
The mobile PTRelJ installed in 1 and the antenna 6
11 and a mobile PTR 631, and a main computer (usually installed in the wheelhouse) that stores and processes the signals from the detection means, and a main computer connected to this main computer group by wire or wirelessly. An auxiliary computer that drives the turning device (6) for the multi-stage cylinder device (9), the elevating device (b), and the piston rond of the multi-stage cylinder device (9)) (7) 4. It is made up of a group. By the way, the first antenna of the antenna 6Ll
~3rd PTR (50A) (50B) (50C) #i,
It transmits pulse signals with the same pattern at regular intervals, and the mobile PTR6J on the Ma-ku Quay (47) has antennas 611 and each PTR (50A) (50B) (50C).
), it immediately sends back the same signal. In addition, if a plurality of mobile PTRs are provided for each mooring pin, they are made to respond to different signals in advance, and this mobile PTRωi
Either there is no time lag between receiving the t signal and replying to the same signal, or even if there is a time lag, the reply is always returned with a certain delay. And, PTRMa3 of these antenna 611 side and quay-example
1, the relative position between the multistage cylinder device (9) and the mooring bit is detected. That is, as shown in FIG. 9(a), the first PTR (50A) and a predetermined number, for example,
, l Mobile PTR (53A) and transmission (e
) and reception (f) (t) K Therefore, the first PT
The distance (rx) between R (50A) and No-1 mobile PTR (53k) is known. Similarly, the distance (r2) between the 1st 2nd PTR (50B) and No. 1 mobile PTR (53A) and the 3rd P1'R (50C) and No. 1 mobile PTR (53A).
3A) respectively. Then, the center (0) of antenna 6υ and No. 1 mobile PTR (5
3A) That is, the following three-dimensional quadratic simultaneous equations can be set up regarding the l mooring bit (52A). In addition, in the formula, a, b, the center direction of the Fi antenna 6υ and the first
to the third PTR (50AX50BX50C), which is the coordinate position of ("y * ylPl z (p) tj mooring pin 63 with respect to the center (2) of the antenna 611).

−紀(1) 、 (2) 、 (3)を解くことKより
、係船用ビット6カの位置(”6+ ’lo、+ 26
 )が分かる。但し、上記連立方程式の解は唯一ではな
いが、x6.>0. z(、<0の条件により、解が定
まる。上記係船用ビット6カの位W1(x6.Y6.Z
o、)が求まると、第8図に示すように、アンテナ61
1の中心(6)に対して、その直線距W1(t)、俯仰
角(Q%)、水平方向の回転角(旋回角)(QR)、が
下記式により求まる。
- By solving K (1), (2), and (3), the position of the 6 mooring bits ("6 + 'lo, + 26
) can be understood. However, the solution to the above simultaneous equations is not unique, but x6. >0. The solution is determined by the condition of z(, <0. W1(x6.Y6.Z
o, ) is determined, as shown in FIG. 8, the antenna 61
With respect to the center (6) of 1, the straight line distance W1(t), elevation angle (Q%), and horizontal rotation angle (turning angle) (QR) are determined by the following formula.

従って、上記6値(1)(Q%、)(QR)通シに多段
式シリンダー装置(9)を旋回、俯仰、及び伸tm7に
行なえば先端のアイスプライス(7)をNo、 1保船
用ビツト621に導くことができる。なお、上記各式の
計算#−i操舵室の主コンピユータ−θによって計算処
理されるト共に、補助コンピューター−によシ、岸壁ビ
ットに本装置の先端アイスプライスが近づく為に必要な
、多段式シリング−装置への油量、旋回用油圧モーター
への油量および俯仰用油圧シリンダーへの油量が計算さ
れ、計算された油量だけ各々の装置に送る様に油圧ライ
ンに取付けられた流量計からの信号にて油圧ラインに取
付けられた切換弁が制御される。同様に、No、 2係
船用ピツ) (52B)との相対位置を検出したい場合
は、アンテナ61Jの第1〜第3 PTR(50A)(
50B)(50C)から、No、 2月移動式PTR(
53B)に反応する信号例えば第9図(b)に示すよう
な信号を出せばよい。
Therefore, if the multi-stage cylinder device (9) is rotated, raised, raised, and extended tm7 according to the above six values (1) (Q%, ) (QR), the eye splice (7) at the tip will be No. 1 for ship maintenance. bit 621. In addition, in addition to the calculations of each of the above equations carried out by the main computer θ in the wheelhouse, the auxiliary computer also calculates the multi-stage formula necessary for the tip eye splice of this device to approach the quay bit. Schilling - A flow meter installed in the hydraulic line that calculates the amount of oil to the equipment, the amount of oil to the hydraulic motor for swinging, and the amount of oil to the hydraulic cylinder for elevation, and sends the calculated amount of oil to each device. A switching valve attached to the hydraulic line is controlled by a signal from the hydraulic line. Similarly, if you want to detect the relative position with No. 2 mooring PTR (52B), use the first to third PTRs (50A) (
50B) (50C), No. February Mobile PTR (
53B), for example, a signal as shown in FIG. 9(b) may be output.

次に、全体的な構成に基゛づいて係船作業を説明する。Next, mooring work will be explained based on the overall configuration.

先ず、船舶(2)をタグボー)Kよシ、第1図のように
岸jl[近くまで接近させる。そして、各アンrす61
1(7)第1〜第3 PTR(50A)(50B)(5
0C)と岸壁−η側の各移動式PTR(53)との発信
受信にょシ、多段式シリンダー装置(9)と各係船用ピ
ッ) 63との相対位置を主コンピユータ−651によ
シ計算させると共に記憶させておく。次に、主コンピユ
ータ−5に荷役前後の船体喫水線を入力する。多段式シ
リンダー装置(9)の伸縮量は限度があるため、荷役中
において、常に多段式シリンダー装置(9)と係船用ピ
ッ) 6Jとの距離がその限度内になければならない。
First, the ship (2) is brought close to the shore as shown in Figure 1. And each ans 61
1 (7) 1st to 3rd PTR (50A) (50B) (5
0C) and each mobile PTR (53) on the quay-η side, and the relative position between the multi-stage cylinder device (9) and each mooring piston 63 are calculated by the main computer 651. I will remember it together. Next, the hull waterline before and after cargo handling is input into the main computer 5. Since there is a limit to the amount of expansion and contraction of the multi-stage cylinder device (9), the distance between the multi-stage cylinder device (9) and the mooring pit (6J) must always be within that limit during cargo handling.

従って、荷役前後の喫水線を入力する事忙よって、多段
式シリンダー¥eI! (9)が接近できる係船用ビッ
ト62を計算させて主コンピューター卵のCRTK表示
させる。そして、アクセスできる係船用ピッ) 621
が分かると、本船の係船作業責任者が風向、潮の流れ等
を考慮して、各多段式シリンダー装置(9)のアクセス
する係船用ビットδδを決めて、主コンピユータ−(ト
)K入力する。主コンピューター−からは、各多段式シ
リンダー装置(9)の基台(4)に内蔵された補助コン
ピューター(ト)に信号が出され、この補助コンピュー
ター印によ逆旋回用油圧モーター(6)、俯仰用油圧シ
リンダ−Q3、多段式シリンダー装置(9)がそれぞれ
駆動制御されて、各多段式シリンダー装置(9)のアイ
スプライス(7)がそれぞれ所定の係船用ピッ) 6L
3に導かれる、こうして、係船用ピッiJK導かれたア
イスプライスt7) #′i、岸壁側作業者によって係
船用ビット15Δに係止される。なお、上記多段式シリ
ンダー装置(9)には、一定の力以上に張力が働くと自
動的に伸び、またそれ以下の張力になると自動的に縮む
様に、自動張力調整機構が組込1れている。上記手順を
示すと、第1θ図に示すような70−チャートになる。
Therefore, since I am busy inputting the waterline before and after cargo handling, I have to pay a multi-stage cylinder ¥eI! (9) calculates the mooring bit 62 that can be approached and displays it on the CRTK of the main computer. and an accessible mooring pit) 621
Once this is known, the person in charge of the mooring work of the vessel determines the mooring bit δδ to be accessed by each multi-stage cylinder device (9), taking into consideration the wind direction, tidal flow, etc., and inputs it into the main computer (K). . The main computer sends a signal to the auxiliary computer (g) built in the base (4) of each multi-stage cylinder device (9), and the auxiliary computer marks the reverse rotation hydraulic motor (6), The elevation hydraulic cylinder Q3 and the multi-stage cylinder device (9) are each driven and controlled, and the eye splice (7) of each multi-stage cylinder device (9) is set to a predetermined mooring pitch (6L).
3, and thus the mooring bit iJK guided eye splice t7) #'i is anchored to the mooring bit 15Δ by the wharf side worker. The multi-stage cylinder device (9) is equipped with an automatic tension adjustment mechanism so that the cylinder automatically expands when the tension exceeds a certain level and automatically contracts when the tension falls below a certain level. ing. The above procedure results in a 70-chart as shown in Figure 1θ.

以上のように、本発明の係船方法によれば、本船側のア
イスプライスを自動的に岸壁側の係船用ビットに導くこ
とができるので、少人数(1〜2名)の船上作業員にて
容易速やかにかつ安全に船舶の係留を行な得るため、係
船作業の省力化を図な ることができる。
As described above, according to the mooring method of the present invention, the ice splice on the ship side can be automatically guided to the mooring bit on the quay side, so a small number of onboard workers (1 to 2 people) can Since the ship can be moored easily, quickly and safely, it is possible to save labor in mooring work.

【図面の簡単な説明】[Brief explanation of the drawing]

図thIFi本発明の一実施例を示すもので、第1図は
全体平面図、第2図は第1図のII矢視拡大図、第3図
は第2図の詳細図、第4図は多段式シリンダー装置の拡
大断面図、第5図はアイスプライスの詳細平面図、第6
図は同側面図、第7図〜第9図は動作説明図、第10図
Fi保船作業のフローチャートを示す図である。 り1)・・・係船装置本体、(2)・・・大型船舶、(
3)・・・上甲板、(6)・・・支持体、(7)用アイ
スプライス、(9)・・・多段式シリンダー装置、(財
)・・・油圧モーター(i同装置)、□□□・・・油圧
シリンダー(俯仰装置)、17)・・・岸壁、−・・・
係船用ピット、−・・・制御装置、(50A)・・・1
1!■PTR,(50B) −・・第2PTR,(50
C)−・・第3PTR,t511・・・アンテナ、63
・・・係船用ビット、ω用移動式PTR。 −・・・検出手段、姉・・・主コンピユータ−、ω・・
・補助、コンピューター 代理人   森  本  義  弘 第2図 (2) をt p丁g          ’+2PTR岑3P
丁にナー 第1σ図
Figure thIFi shows one embodiment of the present invention. Figure 1 is an overall plan view, Figure 2 is an enlarged view taken in the direction of arrow II in Figure 1, Figure 3 is a detailed view of Figure 2, and Figure 4 is a detailed view of Figure 2. An enlarged sectional view of the multi-stage cylinder device, Figure 5 is a detailed plan view of the eye splice, and Figure 6 is a detailed plan view of the ice splice.
The figure is a side view, FIGS. 7 to 9 are operation explanatory diagrams, and FIG. 10 is a flowchart of Fi ship maintenance work. 1)...Mooring device body, (2)...Large ship, (
3)...Upper deck, (6)...Support, (7) eye splice, (9)...Multi-stage cylinder device, (Foundation)...Hydraulic motor (I same device), □ □□...Hydraulic cylinder (elevation device), 17)...Wharf, -...
Mooring pit, ---control device, (50A)...1
1! ■PTR, (50B) --- 2nd PTR, (50B)
C)--3rd PTR, t511... antenna, 63
... Mooring bit, mobile PTR for ω. −...detection means, older sister...main computer, ω...
・Assistant, computer agent Yoshihiro Morimoto Figure 2 (2)
1st σ diagram

Claims (1)

【特許請求の範囲】[Claims] 1、 船舶の上甲板上舷側に沿って複数箇所で旋回自在
に且つ俯仰自在に支持されると共に先端にアイスプライ
ス管有する多段式シリンダー装置と、これら各多段式シ
リンダー装置1/Ct4応する岸壁上の係船用ビットと
の相対位置を検出手段によシ検出し、該検出手段からの
信号により、上記多段式シリンダー装置を旋回及び俯仰
させると共にそのピストンロッドを出退させてその先端
のアイスプライスを上記係船用ビットに導くことを特徴
とする係船方法。
1. A multi-stage cylinder device that is rotatably and vertically supported at multiple locations along the upper side of the upper deck of the ship and has an ice splice pipe at its tip, and each of these multi-stage cylinder devices 1/Ct4 on the corresponding quay. A detection means detects the relative position of the mooring bit with respect to the mooring bit, and in response to a signal from the detection means, the multi-stage cylinder device is rotated and raised, and its piston rod is moved in and out to open the eye splice at its tip. A mooring method characterized by leading to the above-mentioned mooring bit.
JP1999682A 1982-02-10 1982-02-10 Ship mooring method Pending JPS58136585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1999682A JPS58136585A (en) 1982-02-10 1982-02-10 Ship mooring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1999682A JPS58136585A (en) 1982-02-10 1982-02-10 Ship mooring method

Publications (1)

Publication Number Publication Date
JPS58136585A true JPS58136585A (en) 1983-08-13

Family

ID=12014765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1999682A Pending JPS58136585A (en) 1982-02-10 1982-02-10 Ship mooring method

Country Status (1)

Country Link
JP (1) JPS58136585A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671391U (en) * 1993-03-23 1994-10-07 三菱重工業株式会社 Mooring and berthing support equipment for ships
WO1995018038A1 (en) * 1993-12-31 1995-07-06 Sven Olaf Aarts A method of manipulating a connecting element in shipping
WO2002044013A1 (en) * 2000-12-01 2002-06-06 Smart Billy Jay Vessel navigation and docking system and method
WO2006006879A1 (en) * 2004-07-09 2006-01-19 David Stanley Hendrick Geurts Boat mooring method, apparatus and system
JP2009102853A (en) * 2007-10-22 2009-05-14 Itoki Corp Door body with window
WO2009072906A3 (en) * 2007-12-04 2009-08-20 Cavotec Msl Holdings Ltd Mooring robot array control system and method therefore
CN102085909A (en) * 2011-01-15 2011-06-08 中国计量学院 Large-angle automatic docking device suitable for small-sized ship
KR101167909B1 (en) 2009-12-24 2012-07-30 서울대학교산학협력단 Ship fastening apparatus and vessel with the apparatus
WO2014210332A1 (en) 2013-06-27 2014-12-31 Nachem Ira Watercraft docking systems and methods of their operation
WO2020187900A1 (en) * 2019-03-18 2020-09-24 Macgregor Norway As A vessel having a mooring system for automatic mooring to a bollard and a method for mooring
WO2020187887A1 (en) * 2019-03-18 2020-09-24 Macgregor Norway As A mooring structure for automatic mooring of a vessel to a quay and a method for mooring
IT202100021290A1 (en) * 2021-08-05 2023-02-05 Atlantide Soc A Responsabilita Limitata MOORING DEVICE FOR BOATS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235839U (en) * 1975-09-05 1977-03-14
JPS5418787U (en) * 1974-03-07 1979-02-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418787U (en) * 1974-03-07 1979-02-06
JPS5235839U (en) * 1975-09-05 1977-03-14

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671391U (en) * 1993-03-23 1994-10-07 三菱重工業株式会社 Mooring and berthing support equipment for ships
WO1995018038A1 (en) * 1993-12-31 1995-07-06 Sven Olaf Aarts A method of manipulating a connecting element in shipping
NL9302289A (en) * 1993-12-31 1995-07-17 Sven Olaf Aarts Method for manipulating a connecting element in shipping.
US7021231B2 (en) 2000-12-01 2006-04-04 Billy-Jay Smart Vessel navigation and docking system and method
GB2369607B (en) * 2000-12-01 2003-11-12 Billy-Jay Smart Vessel navigation and docking system and method
GB2388355A (en) * 2000-12-01 2003-11-12 Billy-Jay Smart Vessel navigation and docking system and method
GB2388356A (en) * 2000-12-01 2003-11-12 Billy-Jay Smart Vessel navigation and docking system and method
GB2388356B (en) * 2000-12-01 2004-01-28 Billy-Jay Smart Vessel navigation and docking system and method
GB2388355B (en) * 2000-12-01 2004-01-28 Billy-Jay Smart Vessel navigation and docking system and method
WO2002044013A1 (en) * 2000-12-01 2002-06-06 Smart Billy Jay Vessel navigation and docking system and method
WO2006006879A1 (en) * 2004-07-09 2006-01-19 David Stanley Hendrick Geurts Boat mooring method, apparatus and system
JP2009102853A (en) * 2007-10-22 2009-05-14 Itoki Corp Door body with window
WO2009072906A3 (en) * 2007-12-04 2009-08-20 Cavotec Msl Holdings Ltd Mooring robot array control system and method therefore
KR101167909B1 (en) 2009-12-24 2012-07-30 서울대학교산학협력단 Ship fastening apparatus and vessel with the apparatus
CN102085909A (en) * 2011-01-15 2011-06-08 中国计量学院 Large-angle automatic docking device suitable for small-sized ship
WO2014210332A1 (en) 2013-06-27 2014-12-31 Nachem Ira Watercraft docking systems and methods of their operation
EP3014025A4 (en) * 2013-06-27 2016-12-07 Ira Nachem Watercraft docking systems and methods of their operation
AU2014302350B2 (en) * 2013-06-27 2018-04-05 Ira NACHEM Watercraft docking systems and methods of their operation
US10053193B2 (en) 2013-06-27 2018-08-21 Ira Nachem Watercraft docking systems and methods of their operation
WO2020187900A1 (en) * 2019-03-18 2020-09-24 Macgregor Norway As A vessel having a mooring system for automatic mooring to a bollard and a method for mooring
WO2020187887A1 (en) * 2019-03-18 2020-09-24 Macgregor Norway As A mooring structure for automatic mooring of a vessel to a quay and a method for mooring
IT202100021290A1 (en) * 2021-08-05 2023-02-05 Atlantide Soc A Responsabilita Limitata MOORING DEVICE FOR BOATS

Similar Documents

Publication Publication Date Title
JPS58136585A (en) Ship mooring method
AU2000234653B2 (en) Apparatus for deploying a load to an underwater target position with enhanced accuracy and a method to control such apparatus
US3778854A (en) Mooring and oil transfer apparatus
CN201245235Y (en) Deep water jackstone leveling ship
JP2002516222A (en) Apparatus and method for deploying an object or load to a seabed
US3774253A (en) Floating systems, especially mooring buoys, for anchoring to the sea-bed
CN113341868A (en) Remote monitoring system for offshore caisson installation and construction
CN110667787A (en) A throw stone ship for pile foundation is thrown and is filled
CN108570990A (en) Shallow water ocean bottom cable stone accurately fills device and method
CN104123855A (en) Safe navigation auxiliary system and method for ship passing ship lock
CN105464049A (en) Real-time testing-controlling acceptance system for deepwater dumping ship and construction method
US20050121230A1 (en) Boring machine having differential global positioning system receiver for underwater rock and boring method thereof
CN209143030U (en) A kind of oblique chute stone dumper
JPS6121214A (en) Constructing method of upwelling current structure
JPS61169528A (en) Rubble throwing ship
CN115653002A (en) Long-distance underwater transportation method for immersed tube
CN211228512U (en) Stone throwing ship for bridge bottom construction
US4323975A (en) Articulated loading arm control system
JPS63180814A (en) Method for positioning pile driving position by pile driving ship
KR101654608B1 (en) Semi-submergible rig and inclining test method thereof
JPS63210614A (en) Method for correcting varticality of pile in driving of pile
JP2009047699A (en) Navigation processor, processing configuration having the navigation processor, measuring system having the navigation processor, and method for measuring position and attitude of underwater system
CN113665735A (en) Posture adjusting method for self-elevating drilling platform in precise positioning process
JPH0476457A (en) Observation device for water quality
RU221649U1 (en) MOORING DEVICE OF LOCK CHAMBER