JPS58135411A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS58135411A
JPS58135411A JP1720382A JP1720382A JPS58135411A JP S58135411 A JPS58135411 A JP S58135411A JP 1720382 A JP1720382 A JP 1720382A JP 1720382 A JP1720382 A JP 1720382A JP S58135411 A JPS58135411 A JP S58135411A
Authority
JP
Japan
Prior art keywords
distance
regions
distance measuring
sensor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1720382A
Other languages
Japanese (ja)
Other versions
JPH0531085B2 (en
Inventor
Toshiichi Ichiyanagi
一柳 外史一
Akiyasu Washimi
鷲見 明保
Toru Kawai
徹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1720382A priority Critical patent/JPS58135411A/en
Publication of JPS58135411A publication Critical patent/JPS58135411A/en
Publication of JPH0531085B2 publication Critical patent/JPH0531085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To increase the detecting range of distance and to improve the measuring performance of distance without having a large and complicated electric circuit system, by dividing a distance section to be detected into plural regions and providing plural distance measuring systems to each divided regions. CONSTITUTION:Mirrors MR1 and MR2 are set with a prescribed length of base line secured between them, and the standard and reference optical systems are formed with distance measuring lenses LS1 and LS2, mirror faces MR3 and MR4 of a prism PR, and an image sensor IS. Then a measuring distance section is divided into two regions S and R. The output of the sensor IS is fed to the regions S and R via a quantizing circuit QZ under the control of a control circuit SQ. The quantized signals of the regions S and R are supplied to distance measuring arithmetic circuits EF1 and EF2 respectively. The coincidence or discordance is detected for the picture element of a standard viewfield image obtained through a sensor region S to (M+L) units of continuous picture elements of a reference viewfield image obtained through sensor regions R1 and R2. Thus the distance measuring information is delivered. Therefore the distance measuring performance is improved as the detecting range of distance is increased.

Description

【発明の詳細な説明】 重置−は測距装置に胸するものである。[Detailed description of the invention] The superposition is for the distance measuring device.

一杯ま−Cの距離を検出する測距装置については胱をζ
−々良案されて居り、そのうちの一部はカメラ婚に於て
実用に供されて−る処である。斯かる細動#に置のうち
で、例えば、11動部の全く無−1一定さrLk M 
&l距履元学糸によって、純粋にその距1111c対応
した相対位置ずれを有して形成される物体の2tIkの
間の該相対位置すれgIkmを検出することで、その距
離を検出する様KL&ものがある。
For a distance measuring device that detects the distance between one cup and C, use the bladder.
-There are many good ideas, some of which are put to practical use in camera weddings. Among such fibrillation #, for example, there is no -1 constant rLk M of 11 moving parts.
By detecting the relative positional deviation gIkm between 2tIk of an object formed with a relative positional deviation corresponding to the distance 1111c, the distance can be detected by There is.

ここで、2像間の相対位置ずれの検出としては新開コリ
レージ曹ンの手法が用−られ、例えd%基準とすべき一
方の像につ−ては連続したMillIの画素に′:)−
ての情報を、また、参照すべきもう一方報を慢(即ち、
晶阜視lfM−嵩く参湘視野編一本の関係)、該参照視
野像に関するM個の連続−丸−素中の何れの位置に基準
視野像に関する麺個の連続画素から成る像部分と実質的
に同じと見做せる像部分が在るかを検出することで物体
距離の検出が行われる。とζろで、とのmK#なりた長
さく語長)の情報胸でコリレージ曹ンを行う場合、各員
なった組合せの全てにつ―て並列的に行うのでは回路規
模が増大し、基準情報の語長が長くなるにつれて、また
、画情報間の語長の差を大きくとるにつれて極めて 大
になって来るものであり、従って、豊富な情報を小規模
な回路で容易に級える様にするためにはビット・パイ・
ビットによる!L外淑処理に和らざるを得なくなる駅で
あるが、反曲、直列源処理では、基4i!情報の組長が
長くなるにつれて、また、画情報間の語長の差を大きく
とるfcつれて、処理を終rするまでに要する時局が長
大化し、結局、迅連な測距と云うものか望み銀〈なりて
、カメラ慢では撮影時に不都合を招くことか危惧される
Here, the new Corriage Sohn method is used to detect the relative positional shift between the two images, and for example, for one image that should be used as the d% reference, continuous Mill I pixels are
information, and other information to be referred to (i.e.,
At any position among the M continuous pixels with respect to the reference visual field image, there is an image portion consisting of N consecutive pixels with respect to the reference visual field image. Object distance is detected by detecting whether there are image parts that can be considered to be substantially the same. When performing a colliage calculation on the information chest of (mK#, long word length), if all combinations of each member are performed in parallel, the circuit size will increase. As the word length of the reference information becomes longer, and as the difference in word length between image information becomes larger, the size becomes extremely large. Therefore, it is possible to easily classify a wealth of information using a small-scale circuit. To make it a bit pie
Depends on the bit! This is a station where you have to settle for L Gaishuku processing, but in recursion and series source processing, base 4i! As the length of the information becomes longer, and as the difference in word length between image information becomes larger, the time required to complete the processing becomes longer, and in the end, it becomes difficult to perform rapid distance measurement. I'm worried that being too proud of my camera will cause inconvenience when taking pictures.

一上船した様な鉋距装Vに於てに、基準情報の1投を長
くすることね物体のklftllに能、弁別能を向上さ
せることにつながり、また、同情報閣の組長の汝ヲ大さ
くとることは検出距離ゾーンの細分化と、検出距離範囲
の近距#M麹への拡大につながるものでりり、従って、
↑−報の直列型処理を導入する上で、71「賛処理時間
の関係で情報の鰯長入び画情報間のki脳長を大きく設
定出来ないことは、直ちに細動装置としての性能の低化
につながってしまう−くであ る。
In the case of a long-range weapon V, which has just been disembarked, lengthening the length of each throw of the reference information will lead to improved ability and discrimination of objects, and also, as you, the head of the information cabinet, Making it larger will lead to subdivision of the detection distance zone and expansion of the detection distance range to the short distance #M koji. Therefore,
↑ - When introducing serial processing of information, it was found that the performance of the fibrillation device was immediately affected by the inability to set the length of the information and the length of the ki between the images due to processing time. This can lead to a decline in the energy consumption.

本発明は期かる事情に鑑みて為されたもので、細動装置
として、特に電気回路系の構成を複雑化ロソ大帖化させ
ずに済み、また、処理時間につぃても大幅に短縮するこ
とが出来、しかも、その検出対象距離範囲の大輪な拡大
と、測距性能の向上を図り得る様にすることを目的とし
、斯力・る1的の下で本発明の測距装置iiは、その検
出対象距m範囲を伽数の鎖板に分割すると共に、夫々、
その各各に対応した複数の測距系を設定し、これらを並
行して作動させて、物体が何れの領域中の何れの位置に
在るかで該物体までの距離を特宇する様にしたことを特
徴とするもVでりる。
The present invention was made in view of the above circumstances, and as a fibrillation device, it does not require the configuration of the electric circuit system to become complicated and bulky, and the processing time is also significantly shortened. The object of the present invention is to provide a distance measuring device ii of the present invention with the aim of significantly expanding the range of distance to be detected and improving the distance measuring performance. divides the detection target distance m range into a number of chain plates, and each
By setting up multiple distance measuring systems corresponding to each of these, and operating them in parallel, the distance to the object can be determined based on which position in which area the object is located. It is characterized by the fact that it is also V.

以下・、本発明の好ましい実施例について添附の図面を
1照して説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

先ず、第1図をh照するに、同図に於て、MR。First, referring to FIG. 1, in the same figure, MR.

及びM n、 jt i&力方向所定の基線長Vrfi
!てて45度の仰角で斜設配置された一対のミラー、L
B、及びLi3.tj夫々ミラーMR,及びMR,から
の各反射光を1.7 受けて結像する一対の測距レンズ、PRn−夫々レンX
LS、及びL3.からの像光を下方へ反射させるための
45&のミラー面MR,及びMR,を有するブリJ ズムで、これら老何れも固定配置されていて、θ「−固
定の基廁距離光学系を構成している。ISは夫々元字糸
MR,−LB、 −Ml、及びMR,−XaB、 −M
R,を通じて得られる測距のための検出像をり二γに走
査して時系列走査電気信号を発生するための00D或い
はBjjD7オトー七ンサ、鼠OSイメージ・センサ等
のリニア・イメージ・センサで、本実施例ては光学系M
R,−LBビ1R1を通じて得られる鯨に対してハ図中
、8で示すMビットのセンサ・エレメントを、また、光
学JMa、 −18t −MR4を通じて得られる像に
対しては同じくRで示ス薦ピクトのセンサ・エレメント
(但L s N = M+2Lである)を適用するべく
両光学系に対して配置されている。ここでMIL、 −
LS、 = MIL、から成る光学系は・本実施例では
常にその先軸上で物体を照準するための基準(照準)光
学系として適用さn1照準された物体を含む空間の像は
該基準光学系により1センサ領域s上に、その中心が該
領域5q)cFJ央に一致する様にして炒成され、斯く
して七ン+i領#c8により基準視野信号が得られる。
and M n, jt i & force direction predetermined baseline length Vrfi
! A pair of mirrors arranged diagonally at an elevation angle of 45 degrees, L
B, and Li3. tj, respectively, a pair of distance measuring lenses that receive each reflected light from mirrors MR and MR, and form an image, PRn-respectively lenses X
LS, and L3. The optical system has 45 mirror surfaces MR and MR for reflecting the image light from IS is the original thread MR, -LB, -Ml, and MR, -XaB, -M, respectively.
A linear image sensor such as a 00D or BjjD7 sensor or a Mouse OS image sensor is used to generate a time-series scanning electrical signal by scanning the detected image for distance measurement obtained through R. , in this example, the optical system M
For the whale image obtained through R, -LB Bi1R1, the M-bit sensor element is indicated by 8 in the figure, and for the image obtained through optical JMa, -18t -MR4, it is also indicated by R. The recommended sensor elements (where L s N =M+2L) are arranged for both optical systems. Here MIL, −
The optical system consisting of LS, = MIL is applied as a reference (sighting) optical system to always aim at an object on its front axis in this embodiment. The system fires the image on one sensor area s in such a way that its center coincides with the center of the area 5q)cFJ, and thus a reference visual field signal is obtained from the area 7+i area #c8.

一方、MR,−L8ffi−MR4から成る光学系は、
上記基塾光学示MR,−LB、 −MR,によりて照準
され友物体を蒙基準光学系に対して槙方崗に所定の基線
長J足 たけオフセットした位置で舞えるための参照光学系とし
て適用され、物体を含む空間O像は該参照光学系により
、セン賃領域鳳上に1物体距離に相応して距離が近けれ
ば近−程、基準i!舒像から離間する様にして形r&g
れる。ζζで、セン賃領域墓の1〜Mi1目の麗個セン
fψエレメントにより形ll&されるセンサ領域はセン
サ領域Bの、基準光学系Ml、−L8□−MljK対す
る関係と同様、参照光学系Midl−18,−MR4の
光軸がその中央に一致する様にして該参照光学系に対し
て配置されて居り、そして、センナ領域Rの終端である
肩書lのセンサ・エレメントの位置Fi箋検出距離範囲
の至近側限界を決定する。41はイメージφセンサエ8
からの走査出力のアナpダ処理及び量子化(Nえは所定
のスレッシ曹ルド―レベkKNする走査出力の比較によ
ゐ11”t & tax ”o”へのデータ変換)を行
うための量子化−路、11.はセンサ領域8に相当する
量子化信号とセンサ領域Rのうち、l−M十り番目の(
M+L )個lのセンサ・エレメントにより形成される
センサ領域町に相当する量子化信号を受は入れて、これ
ら両量子化信号をもとに成る有限の距離から無限遠まで
O距−範囲工を対象にした測距演算を行う測距演算回路
、RF、tj同じく七ンす領域8に相当する量子化信号
と、セン?餉域Rのうち0.L+l〜1t(=鼠+2′
L)番目のCM+L )個のセンサ・エレメントによ抄
形成されるセンサ餉域−に相当する量子化信号を受1入
れて、これら両量子化髄号をもとに1上記距離範固工よ
りも近距離側の距離範囲鳳を対象にし大測距演算を行う
測距演算回路である。ここで、上記測距演算回路RIF
、及びiiy、a、例えば1本件出願人に係る特開昭b
5−115023号公報に於て詳細に開示されて−る様
な構成及び作用によ抄、第21iIに図解する如く、夫
々、センサ領域鼠!及び1mKよる参照視費像ム及びl
の各(M+L )個の達統−嵩に対し1センサ領域8に
よる基準視野像のMilの連続画素t”q M個の連続
画素毎K18次、所定−素数づつシフトさせ乍もピット
・パイ・ピッ)(1−素対l−嵩)で一致、不一致を検
出し、最終的に、最大−散散を夫々最大一致画素数メモ
リMOO,及びMOO,に、まえ、この最大一致画素数
を生じたM個の連続画素の、各センサ領域R8及び−内
での位置を夫々最良−数位置メモリM OL、及びMO
L、に記憶して、該位置メモリMOL。
On the other hand, the optical system consisting of MR, -L8ffi-MR4 is
As a reference optical system for aiming the target object using the above-mentioned basic optical system MR, -LB, -MR, and moving it at a position offset by a predetermined baseline length J with respect to the reference optical system. Applied, the spatial image containing the object is placed on the center area by the reference optical system according to the object distance, and the closer the distance is, the reference i! Shape r & g away from the statue of Shu.
It will be done. In ζζ, the sensor area shaped by the 1st to Mi1th element fψ of the sensor area is the same as the relationship of the sensor area B to the reference optical system Ml, -L8□-MljK, and the reference optical system Midl. -18, - The optical axis of MR4 is arranged with respect to the reference optical system so that it coincides with its center, and the position of the sensor element with title l, which is the end of the senna region R, is located at the detection distance. Determine the nearest limit of range. 41 is image φ sensor 8
Quantum for performing analog processing and quantization of the scanning output from 11. is the quantized signal corresponding to sensor area 8 and the l-M tenth (
Accept the quantized signals corresponding to the sensor area formed by M+L) sensor elements, and calculate the O distance-range from the finite distance to infinity based on these two quantized signals. A distance measurement calculation circuit that performs distance measurement calculation for the target, RF, tj, and a quantized signal corresponding to the 7th area 8, and a sensor? 0 out of the area R. L+l~1t(=mouse+2'
Accept the quantized signal corresponding to the sensor area - formed by the L)th CM+L) sensor elements, and calculate from the above distance range based on both of these quantized signals. This is a distance measurement calculation circuit that performs large distance measurement calculations targeting the distance range on the short distance side. Here, the distance measurement calculation circuit RIF
, and iiy, a, e.g. JP-A-Sho b pertaining to one applicant.
5-115023, and as illustrated in No. 21iI, the sensor area mouse! and reference visual image m and l by 1 mK
For each (M+L) number of pixels, the continuous pixels t"q of Mil in the reference visual field image by one sensor area 8 are shifted by a predetermined number of primes every K18th order, and the pit, pie, Detect matches and mismatches using (1-prime pair l-volume), and finally, store the maximum-dispersion in the maximum matching pixel number memories MOO and MOO, respectively, and generate this maximum matching pixel number. The positions of the M continuous pixels in each sensor region R8 and - are stored in the best-number position memories MOL and MO, respectively.
L, and the position memory MOL.

及びMOL、のメモリ内容を距1情報として出力する機
能を有するものである。尚、位置メモリMOL。
It has a function of outputting the memory contents of and MOL as distance 1 information. In addition, position memory MOL.

及びmoL、6(記憶されるデータは、基準視野像に対
する参照視野像1及び量の上記シフト−素数をカウント
することで与えられるものであるが、測距演算回路1中
のメモリMOL、にはカウントされ友シフト画素数に定
数@Vを加算したデータが當に記憶される様に為されて
−る。即ち、この定数″″rはセンサ領域8−R1の組
と8−1.の組゛が夫々対象としている距離軸III及
び鳳関O境弄距離に相当するデータであること仁容易に
麿解される処であろう。Do#i両測距演5iis鳳1
.及び翼1体1叶る各最大一致画素歇メ七りMool及
びMOO,の内容間の大小関係を利判別するための大小
判別回路、D8は該大小判別回路Doの判別出力に応答
して、大きいとされた方の測距演算回路ity、または
RN。
and moL, 6 (the data to be stored is given by counting the reference visual field image 1 and the amount of the above shift-prime number with respect to the standard visual field image, but the memory MOL in the ranging calculation circuit 1 has The data obtained by adding a constant @V to the counted and shifted pixel number is stored. That is, this constant ``''r is calculated by adding the constant @V to the number of pixels shifted.In other words, the constant ``''r is calculated by adding the constant @V to the number of pixels counted and shifted. It is easy to understand that ゛ corresponds to the target distance axis III and the distance between the two distances.
.. and a size discrimination circuit D8 for determining the magnitude relationship between the contents of each maximum matching pixel in each wing, Mool and MOO, in response to the discrimination output of the size discrimination circuit Do, The distance measuring calculation circuit ity or RN which is determined to be larger.

に於ける最良−数位置メモリMOL、またはMol、O
出力データをセレクトするデータ・セレクタDTlj、
決して本質的なものではな−が、データ・セレクタDB
よりセレクトされた位置メモリMOL、またはMOL、
の内容によって与えられる距離情報が無限遠を基準にし
てψるため、これを例えば至近を基準にしたより扱い易
−距l信@に変換するためのデータ・テーブルで、ここ
で#i該データ・テーブルDTを通じて距S信号が出力
される。尚、8Qは以上に説明した信号発生及び処理系
のシーケン鴬シャル鋤作をコントロールするコントロー
ル回路で、特Kil距演算−路my、及び…IF□は時
間的に並行して測距演算動作を行う様、管制される。
Best-number position memory MOL, or Mol, O in
a data selector DTlj that selects output data;
Although it is by no means essential, the data selector DB
The position memory MOL selected from the MOL, or MOL,
Since the distance information given by the contents of - A distance S signal is output through the table DT. In addition, 8Q is a control circuit that controls the sequential plowing of the signal generation and processing system explained above, and special distance calculation - path my and ... IF□ perform distance measurement calculation operations in parallel in time. It will be controlled as you do it.

斯くして、ここでは互ψに検出対象距離範囲を^にする
2系統の測距系(B ” ”1t ”t ” −4肱4
)を並行して動作させ、両系の検出結果を判定すること
により物体距離の特定が行われる様になる。
Thus, here, two distance measuring systems (B `` ``1t ``t '' -4 肱4
) are operated in parallel and the detection results of both systems are judged to determine the object distance.

因みに、上記大小判別回路noによる最大一致画素数メ
モリMOO1及びMOO,の内容間の大小判111に際
し、着し、同じと云う結果が得られた場合には物体が、
上記の対象距離範囲■及び1間の境界距離近辺に在るこ
とがか=9の確度で予想し得る友め、位置メモ’J M
OL、及びMO−〇−ずれの内容を距離情報として七し
クFしても大差は生じな−ものである。
Incidentally, when determining the size 111 between the contents of the maximum matching pixel number memories MOO1 and MOO, by the size discrimination circuit no, if the same result is obtained, the object is
Location memo 'J M
Even if the contents of the OL and MO-○ deviations are used as distance information and are used as distance information, there will not be much difference.

尚、量子化回路QZの構成につ≠ても、前述特開昭56
−115023号公報に於て、詳細に関して、特に電気
回路系の構成を何ら複雑化且つ大型化させずに済み、ま
た、処理時間についても大幅に短縮することが出来、し
かも、その検出対象距離範囲の大輪な拡大と、測距性能
の向上を図り得る様になるもので、測距装置に於て極め
て有益なものである。
The configuration of the quantization circuit QZ is also based on the above-mentioned Japanese Patent Laid-Open No. 56
-115023 Publication, regarding the details, it is possible to avoid making the configuration of the electric circuit system complicated or large in any way, and the processing time can be significantly shortened, and the distance range to be detected is This is extremely useful for distance measuring devices, as it allows for a large expansion of the field of view and an improvement in distance measuring performance.

尚−実施例としては1検出対象距離範囲の分割数を2と
した場合についてのみ示したが、この分割数rj s必
要に応じて、且つ、実現可能な範狸内で適宜選び得るも
のであること#i口うを倉友ない。
In addition, as an example, only the case where the number of divisions of one detection target distance range is 2 is shown, but this number of divisions can be selected as necessary and within a feasible range. #I don't want to talk to you.

【図面の簡単な説明】[Brief explanation of drawings]

#!1図は重置倒の一実施例を示すブロック図、第2図
は第1図中の2つの測距演算l路の動作内容を解112
11rするための模式図である。 MR,〜MR,はミラー若しくはミラー面、Lli、及
びLS!は結像レンズ、工8#′iリニア・イメージ・
七>t、StR;TL、B、/4センサ領域、Quit
量子化−路、RIF、及びRF、は測距演算回路、DO
ij大小判別回路、DBはデータ・セレクタで、8−粕
、RF、は塾1の測距糸を、8−1!、RF、は第2の
測距糸を特徴する 特許出鵬人 キャノン株式金社 代  理 人 丸  島  儀  −
#! Figure 1 is a block diagram showing an embodiment of superimposition, and Figure 2 is a block diagram showing the operation contents of the two distance measurement calculation paths in Figure 1.
11r is a schematic diagram. MR, ~MR, are mirrors or mirror surfaces, Lli, and LS! is an imaging lens,
7>t, StR; TL, B, /4 sensor area, Quit
Quantization path, RIF, and RF are ranging calculation circuits, DO
ij size discrimination circuit, DB is the data selector, 8-kasu, RF, the distance measuring thread of cram school 1, 8-1! , RF, is a patent featuring a second ranging thread.Gi Marushima, representative of Canon Co., Ltd. -

Claims (1)

【特許請求の範囲】[Claims] 物体までの距離な検出する装置であって、その検出対象
距離範囲を輪数の領域に分割すると共に・人前、その各
々に対応したm数の測距系を設定し、こjLら′に並行
して作動させて、物体が何れの領域中の何れの位置に在
るかで該物体までの距離を特定する橡kc したことを
特徴とする測距装置。
It is a device that detects the distance to an object, and it divides the detection target distance range into areas of the number of wheels, sets a distance measuring system of m number corresponding to each area, and parallel to this. 1. A distance measuring device characterized in that the distance measuring device is operated to specify a distance to an object based on which position in which region the object is located.
JP1720382A 1982-02-05 1982-02-05 Distance measuring device Granted JPS58135411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1720382A JPS58135411A (en) 1982-02-05 1982-02-05 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1720382A JPS58135411A (en) 1982-02-05 1982-02-05 Distance measuring device

Publications (2)

Publication Number Publication Date
JPS58135411A true JPS58135411A (en) 1983-08-12
JPH0531085B2 JPH0531085B2 (en) 1993-05-11

Family

ID=11937372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1720382A Granted JPS58135411A (en) 1982-02-05 1982-02-05 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS58135411A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182309A (en) * 1983-03-31 1984-10-17 Mitsubishi Electric Corp Distance measuring device for automobile
US4766302A (en) * 1984-05-17 1988-08-23 Minolta Camera Kabushiki Kaisha Focus detecting device including means for determining a priority of correlation calculations
JPH0540037A (en) * 1991-06-07 1993-02-19 Nikon Corp Focus detecting device
JPH0540036A (en) * 1991-06-07 1993-02-19 Nikon Corp Focus detecting device
US5249013A (en) * 1990-07-23 1993-09-28 Ricoh Company, Ltd. Distance measuring device of camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675607A (en) * 1979-11-26 1981-06-22 Ricoh Co Ltd Automatic focus detecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675607A (en) * 1979-11-26 1981-06-22 Ricoh Co Ltd Automatic focus detecting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182309A (en) * 1983-03-31 1984-10-17 Mitsubishi Electric Corp Distance measuring device for automobile
JPH0417364B2 (en) * 1983-03-31 1992-03-25 Mitsubishi Electric Corp
US4766302A (en) * 1984-05-17 1988-08-23 Minolta Camera Kabushiki Kaisha Focus detecting device including means for determining a priority of correlation calculations
US4829170A (en) * 1984-05-17 1989-05-09 Minolta Camera Kabushiki Kaisha Digital focus detecting device
US5107291A (en) * 1984-05-17 1992-04-21 Minolta Camera Kabushiki Kaisha Focus detecting device
US5159383A (en) * 1984-05-17 1992-10-27 Minolta Camera Co., Ltd. Focus detecting device
US5249013A (en) * 1990-07-23 1993-09-28 Ricoh Company, Ltd. Distance measuring device of camera
JPH0540037A (en) * 1991-06-07 1993-02-19 Nikon Corp Focus detecting device
JPH0540036A (en) * 1991-06-07 1993-02-19 Nikon Corp Focus detecting device

Also Published As

Publication number Publication date
JPH0531085B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
CN102278946B (en) Imaging device, distance measuring method
US4679076A (en) Means for registering coordinates
CN102435169A (en) Range image sensor and range image generating method
KR100264393B1 (en) Stereo Camera System by Prism
JPH03129310A (en) Range detection optical system
JPS58135411A (en) Distance measuring device
JP2013224895A (en) Three dimensional measuring device
WO1990009560A1 (en) Distance gauge
JP2000304508A (en) Three-dimensional input device
US3280693A (en) Scale reading apparatus
JPH1026526A (en) Triangulation type range finding method
CN109945840B (en) Three-dimensional image shooting method and system
US5264892A (en) Camera distance measuring apparatus
JPS6118912A (en) Focus detecting device
US11272147B2 (en) Projector and projector system
JP4158300B2 (en) 3D input method and 3D input device
EP0140972B1 (en) Three-dimensional distance-measuring device
JPH0527041B2 (en)
JP2000088539A (en) Method and apparatus for three-dimensional inputting
JPH04174314A (en) Range finder system
JPS6281514A (en) Radius of curvature gauge
JPH0413619Y2 (en)
JPH03128409A (en) Three-dimensional shape sensor
JPH1026525A (en) Range finding method
JPH04274709A (en) Distance measuring system