JPS58135174A - Manufacture of alumina formed body - Google Patents

Manufacture of alumina formed body

Info

Publication number
JPS58135174A
JPS58135174A JP57015488A JP1548882A JPS58135174A JP S58135174 A JPS58135174 A JP S58135174A JP 57015488 A JP57015488 A JP 57015488A JP 1548882 A JP1548882 A JP 1548882A JP S58135174 A JPS58135174 A JP S58135174A
Authority
JP
Japan
Prior art keywords
alumina
alumina hydrate
colloidal
thin film
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015488A
Other languages
Japanese (ja)
Inventor
清人 土井
河村 憲昌
誠 堀田
興津 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57015488A priority Critical patent/JPS58135174A/en
Publication of JPS58135174A publication Critical patent/JPS58135174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はアルミナ系成形体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing an alumina-based molded body.

さらに詳しくは、コロイド状アルミナ水和物を調湿して
得られる特定量の水を含むペースト状ないし粉末状のア
ルミナ水和物、又はこれにケイ素やマグネシウムの化合
物を添加混合したアルミナを主要成分とするアルミナ系
水和物調湿物を、加圧成形して後焼成する事を特徴とす
る方法であシ、これによ多形状が均一でピンホール、そ
シ、ひび等の物理的欠陥がなく、かつ耐熱性、高絶縁性
、耐薬品性の優れたアルミナ系成形体を製造する仁とが
出来る。
More specifically, the main ingredients are paste-like or powder-like alumina hydrate containing a specific amount of water obtained by conditioning colloidal alumina hydrate, or alumina mixed with silicon or magnesium compounds. This method is characterized by press-forming and post-sintering an alumina-based hydrate humidity control product, which has a uniform shape and is free from physical defects such as pinholes, dents, and cracks. It is possible to produce an alumina-based molded body with no heat resistance, high insulation properties, and excellent chemical resistance.

アルミナ系成形体はアルミナの持つ耐熱性、高絶縁性、
化学的安定性、耐磨耗性、光透過性等の特性を活かして
、高温用反応管、保護管、炉芯管、IC基板、抵抗器、
コンデンサー、るつぼ、耐薬品性容器類、触媒担体、研
磨材、高硬度工具、摺動部被覆材、ナ) IJウムラン
ブ発光内管、紫外線赤外線透過材、高温炉用窓材等の広
範囲な工業的用途に用いられている。
Alumina molded bodies have the heat resistance and high insulation properties of alumina.
By taking advantage of its characteristics such as chemical stability, abrasion resistance, and optical transparency, we can manufacture high-temperature reaction tubes, protection tubes, furnace core tubes, IC boards, resistors,
A wide range of industrial products such as condensers, crucibles, chemical-resistant containers, catalyst carriers, abrasive materials, high-hardness tools, sliding part coating materials, IJ Umlumb luminescent inner tubes, ultraviolet and infrared transmitting materials, window materials for high-temperature furnaces, etc. It is used for a purpose.

この様なアルミナ系成形体は現在主として、アルミナ粉
末に結合剤を添加し、加圧成形した後、1800℃程度
またはそれ以上の高温で焼結させる方法で得られている
Such alumina-based molded bodies are currently obtained mainly by adding a binder to alumina powder, press-molding the mixture, and then sintering it at a high temperature of about 1800° C. or higher.

特に透光性を要求される所謂透光性アルミナ焼結体は、
均一粒径で極めて微粒の高純度なアルミナ粉末に、結合
剤やマグネシウム化合物等を添加し成形した後、アルミ
ナ結晶の成長を抑制しつつ成形体内の気孔をなくして焼
成したものである。
In particular, so-called translucent alumina sintered bodies that require translucency are
After adding a binder, a magnesium compound, etc. to high-purity alumina powder with a uniform particle size and extremely fine particles and molding it, the molded product is fired to suppress the growth of alumina crystals and eliminate pores in the molded product.

薄膜状に成形する場合には、アルミナ粉末に結合剤、可
塑剤及び溶媒を加えスラリー状となし、このスラリーを
ドクターブレード等の機器を用いて一定の厚みで、例え
ばスチールベルトまたはプラスチックフィルム上に塗布
し、乾燥し、その後焼成する方法も知られている。
When forming into a thin film, a binder, a plasticizer, and a solvent are added to the alumina powder to form a slurry, and this slurry is spread onto a steel belt or plastic film to a certain thickness using a device such as a doctor blade. Methods of coating, drying and then firing are also known.

また昨今、有材残基、ハロゲン、水酸基を有するポリア
ルミノキサンを製膜して前駆体膜とし、この前駆体膜を
焼成する事によシアルミナ薄膜を製造する方法(特公昭
56−369)、アルミニウムアルコキサイドを加水分
解し、酸によシ解膠してアルミナ水和物コロイドとなし
、このコロイドを自然乾燥、加熱乾燥、減圧乾燥などの
方法よシ乾燥して薄膜状または塊状に成形し、その後焼
成する事によシアルミナ薄膜またはアルミナ塊状体を得
る方法(特公昭54−25520)が報告されている。
Recently, a method for producing a sialumina thin film by forming a film of polyaluminoxane having material residues, halogen, and hydroxyl groups as a precursor film and firing this precursor film (Japanese Patent Publication No. 56-369), The alkoxide is hydrolyzed and peptized with acid to form an alumina hydrate colloid, and this colloid is dried by methods such as natural drying, heat drying, and vacuum drying to form a thin film or block. A method of obtaining a sialumina thin film or alumina lump by subsequent firing has been reported (Japanese Patent Publication No. 54-25520).

しかし現在広く行われている前述のアルミナ粉末を用い
る方法では、成形体を得るためには2000℃に近い高
温での焼結を要し、炉材等設備面での制約が大きいばか
シでなく、多大なエネルギーを消費するなど経済的でな
い。
However, the method using alumina powder, which is currently widely used, requires sintering at a high temperature of close to 2000°C to obtain a molded body, and it is not a foolproof method that has large restrictions on equipment such as furnace materials. , it is not economical as it consumes a large amount of energy.

またこの方法で透光性成形体を得ようとする場合、原料
アルミナは極めて高純度に精製し、かつ粒径が1ミクロ
ン以下の極めて微細なものでなければならず、さらに焼
結に関しても、結晶粒成長を抑制しつつ行なわなければ
ならない等高度の技術を要し、結果として成形体の製造
は容易でない。
In addition, in order to obtain a translucent molded body using this method, the raw alumina must be purified to an extremely high purity and must be extremely fine with a particle size of 1 micron or less. This requires sophisticated technology, such as the need to suppress grain growth, and as a result, it is not easy to produce a molded body.

また薄膜の成形に関しては、前述のドクターブレード法
ではドクターブレードの加工精度から、また移動担体と
して用いられるスチールベルト、プラスチックフィルム
等の表面欠陥や厚み精度が直接製品アルミナ薄膜の厚み
に反映するため、厚みのばらつきが大きく、数10μ程
度の厚みの薄膜の製造はおろか、実際には0.2酩程度
の厚みのものが限度である。
Regarding thin film forming, in the doctor blade method mentioned above, the processing accuracy of the doctor blade, as well as the surface defects and thickness accuracy of the steel belt, plastic film, etc. used as the moving carrier, are directly reflected in the thickness of the product alumina thin film. There is a large variation in thickness, and it is not only possible to manufacture a thin film with a thickness of about several tens of microns, but in reality, the limit is a film with a thickness of about 0.2 microns.

ポリアルミノキサンを用いる方法では、原料ポリアルミ
ノキサンをアルミニウムアルコキシドの加水分解によっ
て得るため、ポリアルミノキサンが多量の有機基を残存
しておシ、さらにポリアルミノキサン自体も加水分解さ
れる性質を有するので、焼成稜の薄膜に残留有機成分や
残留炭素を包含しやすく、またポリアルミノキサン重合
度の制御及びポリアルミノキサンの安定性にも問題があ
る。
In the method using polyaluminoxane, the raw material polyaluminoxane is obtained by hydrolysis of aluminum alkoxide, so polyaluminoxane retains a large amount of organic groups, and furthermore, polyaluminoxane itself has the property of being hydrolyzed, so the firing edge The thin film tends to contain residual organic components and residual carbon, and there are also problems in controlling the degree of polyaluminoxane polymerization and in the stability of polyaluminoxane.

アルミナ薄膜または塊状成形体が残留炭素を包含した場
合、透光性及び白変の低下によシ外観が悪化するのみな
らず、絶縁性などの電気的特性が著しくそこなわれるた
め、必然的に成形体の用途は限定される。
If an alumina thin film or alumina molded product contains residual carbon, not only will the appearance deteriorate due to a decrease in translucency and whitening, but also the electrical properties such as insulation will be significantly impaired. The uses of the molded body are limited.

一方、アルミニウムアルコキシドを完全に加水分解し、
その抜解膠して得られるコロイド状アルミナ水和物を、
フィルム等の基板に展開し乾燥製膜し焼成する方法では
、有機残基は含有しにくく比較的薄い膜の製造も可能で
あるが、この場合成形に供するゾルには流動性が要求さ
れ、従ってゾル議席が低く多量の水分を含むので、乾燥
製膜に長時間と多大なエネルギーt−要すると共に、乾
燥時における水分揮散の方向が限定されるため、薄膜が
そシやすく、そりの矯正で、膜に割れが入シ物理的欠陥
のない膜を得る事は困難である。またこの方法は比較的
厚みのある成形体または塊状の成形体を製造するには、
乾燥成形にさらに長時間と多大なエネルギーが必要で技
術上の不利が大きい。
On the other hand, aluminum alkoxide is completely hydrolyzed,
The colloidal alumina hydrate obtained by deflocculation is
In the method of spreading on a substrate such as a film, drying, and firing, it is possible to produce a relatively thin film that does not easily contain organic residues, but in this case, the sol used for molding is required to have fluidity. Since the sol seat is low and contains a large amount of water, it takes a long time and a lot of energy to form a dry film, and since the direction of water volatilization during drying is limited, the thin film is easy to bend, and warpage can be corrected. It is difficult to obtain a film free from physical defects due to cracks in the film. In addition, this method requires
Dry molding requires a longer time and a large amount of energy, which is a major technical disadvantage.

本発明者らは・、この様な既存技術の欠点がなく120
0℃程度の低温で焼成が可能であシ、炭素のような不純
物を含有しにくく、簡便な操作で成形が可能で均一な厚
みの、そシ、ピンホール、割れ等の物理的欠陥がない均
質な、アルミナ、シリカーアルミナ、マグネシア−アル
ミナ、シリカ−マグネシアルアルミナからなる各種アル
ミナ系成形体の製造方法について鋭意検討をした結果本
発明に至ったものである。
The present inventors have developed a 120
It can be fired at a low temperature of around 0℃, does not easily contain impurities such as carbon, can be easily molded, has a uniform thickness, and has no physical defects such as warps, pinholes, or cracks. The present invention was developed as a result of extensive research into methods for producing various alumina-based molded bodies made of homogeneous alumina, silica-alumina, magnesia-alumina, and silica-magnesial alumina.

すなわち、本発明は、特許請求の範囲に記載の通シであ
るが、技術的な要点はコロイド状アルミナ水和物を調湿
して得られる無水アルミナ100重量部あた915〜8
0重量部の水分を含むペースト状ないし粉末状のアルミ
ナ水和物調湿物とし、これを加圧成形して後、焼成する
事を特徴とするアルミナ系成形体の製造方法である。そ
して必要に応じてシリカやマグネシャ更に焼成によシこ
れらに変換する化合物を、コロイド状アルミナ水和物の
調湿前に添加混合するか、または後に添加混合した後、
加圧成形し、焼成することも可能である。
That is, the present invention is consistent with the scope of the claims, but the technical point is that 915 to 8 parts per 100 parts by weight of anhydrous alumina obtained by conditioning colloidal alumina hydrate.
This is a method for producing an alumina-based molded body, which is characterized in that a paste-like or powder-like alumina hydrate humidity control product containing 0 parts by weight of water is formed, pressure-molded, and then fired. Then, if necessary, silica and magnesia are further added and mixed with compounds to be converted into these by firing, either before or after adding and mixing the colloidal alumina hydrate.
It is also possible to perform pressure molding and firing.

本発明に使用するコロイド状アルミナ水和物とは、結晶
質または非晶質のアルミナ水和物の微粒子が水または有
機溶媒を含む水中に均一に分散しているものであって、
粒径が大きいと調湿の為の濃縮ないし乾燥や、粉砕、成
形、焼成の各工程中では更なる細粒化は起シがたいため
、成形体に不均一性を生じがちであるから、この粒径が
1ミクロン以下程度であれば均一性の要請も満され易く
本発明の効果をもたらす上に好都合である。
The colloidal alumina hydrate used in the present invention is one in which fine particles of crystalline or amorphous alumina hydrate are uniformly dispersed in water or water containing an organic solvent,
If the particle size is large, it is difficult to further refine the particles during the steps of concentration or drying for humidity control, crushing, molding, and baking, which tends to cause non-uniformity in the molded product. If the particle size is about 1 micron or less, the requirement for uniformity can be easily satisfied, which is advantageous in bringing about the effects of the present invention.

有機溶媒としては各種アルコール、エーテル等が使用で
きる。
Various alcohols, ethers, etc. can be used as the organic solvent.

コロイド状アルミナ水和物を得る一般的な方法には、 (1)アルミニウム塩にアルカリを加えて生じるゲル状
アルミナ水和物または電解質溶液中で、アルミニウムを
陽極として電解する事によって得られるゲル状アルミナ
水和物またはアルキルアルミニウムや、アルミニウムア
ルコキシド等を加水分解して得られるアルミナ水和物等
結晶質または非晶質アルミナ水和物を、硝酸、塩酸、臭
素酸、ヨウ素酸、ギ酸、酢酸のごとき酸または塩化鉄、
塩化アルミニウム等の塩類の一種または2種以上を添加
し解膠する方法。
Common methods for obtaining colloidal alumina hydrate include (1) gel-like alumina hydrate produced by adding an alkali to aluminum salt, or gel-like alumina hydrate produced by electrolyzing aluminum as an anode in an electrolyte solution; Crystalline or amorphous alumina hydrate, such as alumina hydrate or alumina hydrate obtained by hydrolyzing aluminum alkoxide, etc., is treated with nitric acid, hydrochloric acid, bromic acid, iodic acid, formic acid, or acetic acid. acids such as iron chloride,
A method of peptizing by adding one or more salts such as aluminum chloride.

(2)アルミニウムを水中で電気分散させる方法。(2) A method of electrically dispersing aluminum in water.

(3)アルミニウムを酸素の存在下で熱水で処理する方
法、または赤熱したアルミニウムを水と接解する方法、
水とアルミニウムを加圧中で反応させる方法等、金属ア
ルミニウムから得る方法。
(3) a method of treating aluminum with hot water in the presence of oxygen, or a method of fusion of red-hot aluminum with water;
A method of obtaining aluminum from metal, such as a method of reacting water and aluminum under pressure.

(4)アルミニウム塩の加水分解による方法。(4) Method by hydrolysis of aluminum salt.

(5)塩化アルミニウム水溶液に種々の炭酸塩、酸化物
、水酸化物等を加え複分解する方法。
(5) A method of double decomposition by adding various carbonates, oxides, hydroxides, etc. to an aluminum chloride aqueous solution.

などの種々の方法によって得ることが出来る。これら各
種方法の中で、アルミニウムアルコキシド等有機アルミ
ニウムを加水分解及び解膠する上記(1)の方法で得た
コロイド状アルミナ水和物は、原料を蒸留等の操作によ
フ精製できるので、純度の高い成形体を得ることも目的
とする本発明に於いては好適である。
It can be obtained by various methods such as. Among these various methods, the colloidal alumina hydrate obtained by the method (1) above, in which organic aluminum such as aluminum alkoxide is hydrolyzed and peptized, has a high purity because the raw material can be purified by operations such as distillation. This is suitable in the present invention, which also aims to obtain a molded article with a high temperature.

コロイド状アルミナ水和物を原料として本発明を実施す
るとコロイド粒子が微細であることから高度に均一な成
形体を得ることが容易であるという利点を有し、塊状粉
状のアルミナ水和物では得難い透光性均一性を有するア
ルミナ系成形体を得る事ができる。
When the present invention is carried out using colloidal alumina hydrate as a raw material, it has the advantage that it is easy to obtain a highly uniform molded body because the colloidal particles are fine. It is possible to obtain an alumina-based molded body having a uniformity of light transmittance that is difficult to obtain.

本発明では、焼成前に濃縮・乾燥・粉砕という工程を経
ることが出来るが、後述の如く、これらの工程を経ても
コロイド粒子が、粗大化する事がなく、これらの工程が
均一な成形体を得るための障害となる事はない。
In the present invention, the steps of concentration, drying, and pulverization can be performed before firing, but as will be described later, the colloid particles do not become coarse even after these steps, and these steps result in a uniform compact. There is no obstacle to obtaining.

本発明にいう調湿には濃縮や乾燥もあシ、コロイド状ア
ルミナ水和物中の分散媒を加熱または減圧その他の方法
によシ除去すること、または電気泳動法等によシ、コロ
イド状アルミナ水和物を濃縮し、無水アルミナ100重
量部あた915〜80重量部の水分を含む状態に、コロ
イド状アルミナ水和物を調整することもいう。
Humidity control in the present invention involves concentration and drying, removal of the dispersion medium in colloidal alumina hydrate by heating, reduced pressure, or other methods, or electrophoresis, colloidal alumina hydrate, etc. It is also referred to as concentrating the alumina hydrate and adjusting the colloidal alumina hydrate to a state containing 915 to 80 parts by weight of water per 100 parts by weight of anhydrous alumina.

コロイド状アルミナ水和物を、一旦適当に乾燥し、無水
アルミナ100重量部あた915〜80重量部の水分を
含む範囲に水分量を再度調整しても良い。
The colloidal alumina hydrate may be suitably dried once, and the water content may be adjusted again to a range containing 915 to 80 parts by weight of water per 100 parts by weight of anhydrous alumina.

乾燥後の水分が無水アルミナ重量当980%を超える場
合は流動性が高すぎ、次の工程である加圧成形の際、成
形体となし難く、さらに揮散水分量が多いため、成形後
そり、ひずみなど変形をおこしやすく、本発明の目的を
達成するには障轟でない。一方15%以下になった場合
には、アルミナ水利物とアルミナの混合物となって成形
工程以後で不均一さを生じる原因となる。
If the moisture after drying exceeds 980% by weight of anhydrous alumina, the fluidity is too high and it is difficult to form a molded product during the next step of pressure molding, and the amount of volatilized water is high, resulting in warpage after molding. It is easy to cause deformation such as strain, but it is not an obstacle to achieving the object of the present invention. On the other hand, if it is less than 15%, it becomes a mixture of alumina water and alumina, which causes non-uniformity after the molding process.

本発明におけるコロイド状アルミナ水和物を調湿して得
られるペースト状ないし粉状のアルミナ水和物調湿物は
、再度水中へ分散しても沈澱や未溶解分を生じる事がな
く容易にコロイド状、態まで再分散する。
The paste-like or powder-like alumina hydrate humidity-conditioned product obtained by humidity-conditioning the colloidal alumina hydrate according to the present invention does not cause precipitation or undissolved matter even if it is re-dispersed in water, and can be easily obtained. Redisperses to colloidal state.

これは乾燥、濃縮、粉砕等の工程を経ても、コロイド粒
子が凝集等して粗大化していない事を示唆している。
This suggests that the colloidal particles do not aggregate or become coarse even after undergoing processes such as drying, concentration, and pulverization.

本発明において調湿されたコロイド状アルミナ水和物調
湿物は、加圧により容易に成形できる。
The colloidal alumina hydrate humidity-controlled product according to the present invention can be easily molded by pressurization.

この成形物から得られる本発明のアルミナ系成形体は、
充分に均質で透明であり、しかも未焼成のアルミナ水和
物調理物成形物は多量の水分を含まないため、従来法の
欠点であった成形体のそり、ピンホール、割れ等の物理
的欠陥、変形および結果としての歩留シの低さを克服す
ることができた。
The alumina-based molded product of the present invention obtained from this molded product is
The unfired alumina hydrate molded product is sufficiently homogeneous and transparent, and does not contain a large amount of water, so it does not suffer from physical defects such as warping, pinholes, and cracks in the molded product, which were disadvantages of conventional methods. , the deformation and the resulting low yield could be overcome.

加圧成形法は特に限定はないが、成形体中に気泡を残さ
ないためには、減゛圧下で気泡等を除去しつつ加圧成形
するのが望ましい。また表面の平滑性を良くするために
は、加圧面を平滑にしておく。
The pressure molding method is not particularly limited, but in order to avoid leaving air bubbles in the molded product, it is desirable to perform pressure molding while removing air bubbles and the like under reduced pressure. Also, in order to improve the surface smoothness, the pressurizing surface should be smooth.

この方法で加圧成形した成形物は容易に機械的加工がで
き、研磨、穿孔、切断等の加工も行なうことができ、複
雑な形状の成形体をも得ることができる。
The molded product pressure-molded by this method can be easily mechanically processed, and can also be subjected to processing such as polishing, perforation, cutting, etc., and molded products with complex shapes can also be obtained.

本発明にいう焼成とは、500℃以上の温度にアルミナ
水和物の加圧成形物を加熱しアルミナ成形体へ転移させ
る事をいう−。500℃以下の温度での焼成では、アル
ミナ水和物からアルミナへの転移が充分におこらず、完
全なアルミナ成形体とはならない。
Firing as used in the present invention refers to heating a press-molded product of alumina hydrate to a temperature of 500° C. or higher to transform it into an alumina molded product. When firing at a temperature of 500° C. or lower, the transition from alumina hydrate to alumina does not occur sufficiently, and a perfect alumina molded body cannot be obtained.

透光性のアルミナ成形体を得ようとする場合は、焼成温
度は1.200℃以下が望ましい。1,200℃以上で
の焼成では、成形体に収縮が起シ、成形体中に比較的大
きい気孔を生じ、成形体が失透する。
When attempting to obtain a translucent alumina molded body, the firing temperature is desirably 1.200°C or lower. When fired at a temperature of 1,200° C. or higher, the molded product shrinks, creating relatively large pores in the molded product, resulting in devitrification of the molded product.

シリカまたはマグネシアを添加することによシ、これを
用いない場合に比して、よシ高温での焼成に耐えまたは
製品の使用に際しても透光性を維持ができる。焼成時の
成形体の変形を防止するために加圧下で焼成することも
出来る。
By adding silica or magnesia, it is possible to withstand firing at higher temperatures and maintain translucency even when the product is used, compared to the case where silica or magnesia is not used. In order to prevent the molded body from deforming during firing, firing may be performed under pressure.

本発明で言う焼成してシリカ又はマグネシアとなる物質
とは、これら以外の物質を残存しないものが望ましく、
たとえば、ケイ酸エステル、マグネシウムアルコキシド
等有機基金有するものや高純度シリカ、マグネシア等が
望ましい。シリカまたはマグネシアの添加量は、得られ
る成形体の用途にもよるが重量で20%以下となる様な
量の添加で充分である。
In the present invention, the substance that becomes silica or magnesia upon firing is preferably one that does not leave any substances other than these.
For example, those having an organic base such as silicate ester and magnesium alkoxide, high purity silica, and magnesia are desirable. The amount of silica or magnesia to be added depends on the use of the resulting molded product, but it is sufficient to add silica or magnesia in an amount that makes it 20% or less by weight.

20%以上添加すると、得られた成形体の耐熱性、絶縁
性、化学的安定性、耐摩耗性がアルミナのそれに比して
低下する。
If it is added in an amount of 20% or more, the heat resistance, insulation properties, chemical stability, and abrasion resistance of the obtained molded product will be lower than that of alumina.

得られる成形体を触媒又は触媒担体として用いる場合に
は、ケイ素またはマグネシウム以外の金属を含む物質を
ドーパントとして、アルミナ水和物コロイドまたはアル
ミナ水和物コロイドに添加し成形・焼成してもよい。
When the obtained molded body is used as a catalyst or a catalyst carrier, a substance containing a metal other than silicon or magnesium may be added as a dopant to an alumina hydrate colloid or an alumina hydrate colloid, and then molded and calcined.

以下に実施例を挙げて本発明の実施態様の一例金具体的
に説明する。
An example of the embodiment of the present invention will be specifically described below with reference to Examples.

参考例1 (コロイド状アルミナ水和物の調製−1)冷
却器、攪拌機、温度計を設置した5!の丸底フラスコに
、蒸留水4000Fを入れ攪拌し乍ら90℃まで加熱し
、これに粗粉砕したアルミニウムインプロポキシド70
0 ff加え、90 ’Cで1時間保って加水分解を行
ない、ゲル状アルミナ水和物を得た。
Reference Example 1 (Preparation of colloidal alumina hydrate-1) A cooler, stirrer, and thermometer were installed 5! Distilled water at 4000F was placed in a round bottom flask, heated to 90°C while stirring, and coarsely ground aluminum impropoxide 70 was added to it.
0 ff was added, and the mixture was kept at 90'C for 1 hour for hydrolysis to obtain a gel-like alumina hydrate.

しかる後、濃度2規定の塩酸17o2を加え、液温を9
5〜100 ’Cに保ち・、100時間攪拌を続ケて、
コロイド状アルミナ水和物を得た。このものは、微白濁
液体であシ、沈澱物等の固型物の残存は認められなかっ
た。
After that, 17o2 of hydrochloric acid with a concentration of 2N was added, and the temperature of the solution was reduced to 9.
Maintain at 5-100'C and continue stirring for 100 hours.
A colloidal alumina hydrate was obtained. This product was a slightly cloudy liquid and no solid matter such as precipitate was observed.

参考例2(コロイド状シリカの調製) 冷却器、攪拌機、温度計を設置した5−eの丸底フラス
コに、ケイ酸エチル20(1’及び蒸留水4001を加
え、攪拌し乍ら9o〜95℃まで加熱し、24時間同温
度を維持し、加水分解を行って、コロイド状シリカを得
た。
Reference Example 2 (Preparation of colloidal silica) Ethyl silicate 20 (1') and distilled water 4001 were added to a 5-e round bottom flask equipped with a condenser, stirrer, and thermometer, and while stirring, ℃ and maintained at the same temperature for 24 hours to perform hydrolysis to obtain colloidal silica.

実施例1 参考例1で得たコロイド状アルミナ水和物を、1001
11[1gの減圧下50℃に加熱し、無水アルミナ10
0重量部あたシ水分50重量部を含む状態まで濃縮固化
し、得られた塊状物を乳鉢で粉砕し、60メツシユパス
の粉末状含水アルミナ水和物を調製した。
Example 1 The colloidal alumina hydrate obtained in Reference Example 1 was
11 [1g of anhydrous alumina 10 heated to 50°C under reduced pressure
The mixture was concentrated and solidified to a state containing 50 parts by weight of water per 0 parts by weight, and the obtained lumps were ground in a mortar to prepare 60 mesh powder of hydrated alumina hydrate.

得られた粉末11を、ポリエステルフィルム上に直径3
偏の円状に均一に散布し、ポリエステルフィルムをかぶ
せた後、1000 Kg/Cflの圧力でプレスした。
The obtained powder 11 was placed on a polyester film with a diameter of 3 mm.
After uniformly scattering in an uneven circular shape and covering with a polyester film, it was pressed at a pressure of 1000 Kg/Cfl.

得られた薄膜は厚み0.10 II直径4eの円形であ
った。このアルミナ水和物薄膜をポリエステルフィルム
を剥離した後、電気炉内にて温度1000℃で30分間
焼成し、アルミナ薄膜を得た。
The obtained thin film had a circular shape with a thickness of 0.10 II and a diameter of 4e. After peeling off the polyester film, this alumina hydrate thin film was fired in an electric furnace at a temperature of 1000° C. for 30 minutes to obtain an alumina thin film.

得られた薄膜は、厚み0.08謁直径3anで、透明で
あシ、平滑で、そシ、ひび割れは認められなかった。ま
た、このアルミナ薄膜を分析したところ純度は99.9
9%であった。
The obtained thin film had a thickness of 0.08 mm and a diameter of 3 mm, was transparent, smooth, and had no warps or cracks. Also, when this alumina thin film was analyzed, the purity was 99.9.
It was 9%.

実施例2 実施例1で得た粉末状の含水アルミナ水和物4tを、直
径2偏のタブレット成形用金型内に均一に入れ、50 
’OKglcr&の圧力でプレスした。
Example 2 4 tons of the powdered hydrated alumina hydrate obtained in Example 1 was uniformly placed in a tablet molding mold with a diameter of 2 mm, and
Pressed with 'OKglcr& pressure.

得られた円筒状成形物にドリルで直径3 m11の穴を
あけ、電気炉にて1400℃の温度で30分間焼成し、
穿孔を有する厚み4關直径1.8 omの円筒状アルミ
ナ成形体を得た。得られた成形体には割れ等の欠陥は認
められなかった。
A hole with a diameter of 3 m11 was drilled in the obtained cylindrical molded product, and it was fired in an electric furnace at a temperature of 1400°C for 30 minutes.
A cylindrical alumina molded body having a perforation and having a thickness of 4 mm and a diameter of 1.8 om was obtained. No defects such as cracks were observed in the obtained molded body.

参考例2 (コロイド状アルミナ水和物の調製−2)ア
ルミニウムイソプロポキシド粉末70 ftk乳鉢に入
れ、0.01規定の塩酸202を加え、30分間混練し
、加水分解してアルミナ水和物を得た。
Reference Example 2 (Preparation of colloidal alumina hydrate-2) Aluminum isopropoxide powder was placed in a 70 ftk mortar, 0.01N hydrochloric acid 202 was added thereto, kneaded for 30 minutes, and hydrolyzed to produce alumina hydrate. Obtained.

得られた水和物t−11のフラスコに入れ、蒸留水38
0fおよび2規定の塩酸172を加えた後、内温を95
〜100℃に保ち100時間攪拌を続ケチ、コロイド状
のアルミナ水和物とした。得られたコロイド状アルミナ
水和物は、微白濁液状であ多、沈澱物等の固型物の残存
は認められなかった。
Place the obtained hydrate t-11 in a flask and add 38 mL of distilled water.
After adding 0f and 2N hydrochloric acid 172, the internal temperature was reduced to 95.
The mixture was kept at ~100°C and stirred continuously for 100 hours to form a colloidal alumina hydrate. The obtained colloidal alumina hydrate was in the form of a slightly cloudy liquid, with no residual solid matter such as precipitation.

実施例3 参考例1で得たコロイド状アルミナ水利物1002と参
考例2で得たコロイド状シ′リカIOfを混合し、減圧
加熱して無水アルミナ100重量部あたり50重量部の
水分を含む状態まで乾燥した。
Example 3 The colloidal alumina aquarium 1002 obtained in Reference Example 1 and the colloidal silica IOf obtained in Reference Example 2 were mixed and heated under reduced pressure to form a state containing 50 parts by weight of water per 100 parts by weight of anhydrous alumina. until dry.

乾燥した塊状物を以後実施例1と同一の方法で、粉砕・
成形・焼成を行ない、(但し焼成温度1400℃焼成時
間3時間)厚み0.09 IlB直径3.6薗の円形薄
膜状のアルミナ系成形体を得た。このものは透明であり
そシ、割れ等の物理的欠陥は認められなかった。
The dried lumps were then crushed and crushed in the same manner as in Example 1.
Molding and firing were carried out (calcination temperature: 1400°C, firing time: 3 hours) to obtain a circular thin film-like alumina-based molded body having a thickness of 0.09 IIB and a diameter of 3.6 mm. This product was transparent and had no physical defects such as scratches or cracks.

実施例4 実施例1で調製した粉末状含水アルミナ水利物1007
に対し0.5S’の粉末状水酸化マグネシウム金加え、
よく混合し、この混合物を実施例1と同一の方法で成形
焼成して、(但し焼成温度1400℃)厚み0.091
1m直径2.7俤の円形薄膜状のアルミナ系成形体を得
た。この薄膜は透明でちゃ、そり、割れ等の欠陥は認め
られなかった。
Example 4 Powdered hydrated alumina aquarium 1007 prepared in Example 1
Add 0.5S' of powdered magnesium hydroxide gold to the
Mix well, and mold and bake this mixture in the same manner as in Example 1 (however, the baking temperature is 1400°C) to give a thickness of 0.091 mm.
A circular thin film shaped alumina molded body with a diameter of 1 m and 2.7 yen was obtained. This thin film was transparent and no defects such as cracks, warpage, or cracks were observed.

実施例5 参考例3で得たコロイド状アルミナ水和物を、実施例1
と同一の方法で処理しアルミナ水和物薄膜を得た。得ら
れた薄膜は厚み0.12111直径4偏の円状であった
。との薄膜を1000℃で30分間焼成しアルミナ薄膜
とした。得られた薄膜は純度99.99%で厚み0.0
8 II直径3偏で透明であシ、平滑でそシ、ひび割れ
は認められなかった。
Example 5 The colloidal alumina hydrate obtained in Reference Example 3 was transferred to Example 1.
An alumina hydrate thin film was obtained by processing in the same manner as above. The obtained thin film had a circular shape with a thickness of 0.12111 mm and a diameter of 4 degrees. The thin film was fired at 1000°C for 30 minutes to obtain an alumina thin film. The obtained thin film has a purity of 99.99% and a thickness of 0.0
8 II The diameter was 3 degrees, transparent, smooth and rough, and no cracks were observed.

比較例1 参考例1で得られたコロイド状アルミナ水和物45tを
、106四方のテフロン製容器に流し込み自然乾燥し、
厚さ0.08 IIIのアルミナ水和物薄膜を得たが、
薄膜は乾燥後そシが生じ、そシを矯正するために荷重を
かけると割れてしまい、1cr/を以上の面積の薄膜は
得られなかった。そシの矯正なしに焼成した場合、そ9
の度合が大きくなシ、さらに割れも生じ、平滑な薄膜を
得る事はできなかった。
Comparative Example 1 45 tons of colloidal alumina hydrate obtained in Reference Example 1 was poured into a 106 square Teflon container and air-dried.
An alumina hydrate thin film with a thickness of 0.08 III was obtained.
The thin film was warped after drying, and when a load was applied to correct the warp, it broke, and a thin film with an area of 1 cr/or more could not be obtained. If fired without straightening the grain,
The degree of cracking was large, and cracks also occurred, making it impossible to obtain a smooth thin film.

“比較例2 5!の丸底フラスコに蒸留水4000fを入れ、冷却器
、攪拌機、温度計を設置後90℃まで7711熱し、粗
粉砕したアルミニウムインプロポキシド700fを加熱
水に加え、90℃に保ち加水分解を行ないコロイド状で
ないアルミナ水和物を得た。得られたアルミナ水和物を
分離し、アルミナに対し40チの水分を有するまで乾燥
・粉砕し、60メツシユバスの粉体を得た。この粉末を
実施例1と同一の方法で成形焼成したが、成形後の薄膜
は透明なものは得られず、また焼成後の薄膜もそりが生
じ且つ不透明のままであった。
Comparative Example 2 Put 4000f of distilled water into a 5! round bottom flask, install a cooler, stirrer, and thermometer, heat it to 90℃, add 700f of coarsely ground aluminum impropoxide to the heated water, and heat it to 90℃. A non-colloidal alumina hydrate was obtained by holding and hydrolyzing the alumina hydrate.The obtained alumina hydrate was separated, dried and ground until it had a moisture content of 40% of the alumina, and a powder of 60 mesh baths was obtained. This powder was molded and fired in the same manner as in Example 1, but a transparent thin film could not be obtained after molding, and the thin film after firing was warped and remained opaque.

特許出願人 三井東圧化学株式会社Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)無水アルミナの100重量部につき15〜80重
量部の水を存在させたコロイド状アルミナ水和物調湿物
を加圧成形して後焼成することを特徴とするアルミナ系
成形体の製造方法。
(1) Production of an alumina-based molded body characterized by pressure molding a colloidal alumina hydrate moisture conditioned product in which 15 to 80 parts by weight of water is present per 100 parts by weight of anhydrous alumina and post-sintering. Method.
(2)コロイド状アルミナ水和物調湿物が固形物換算で
20チ以下のシリカもしくはマグネシャ又は焼成してシ
リカもしくはマグネシャとなる物質を含有することを特
徴とする特許請求の範囲第1項記載の方法−0
(2) Claim 1, characterized in that the colloidal alumina hydrate humidity control product contains 20 or less silica or magnesha, or a substance that becomes silica or magnesha when fired, in terms of solid matter. Method-0
(3)コロイド状アルミナ水和物の粒径が1ミクロン以
下であることを特徴とする特許請求の範囲第1項又は第
2項記載の方法。
(3) The method according to claim 1 or 2, wherein the particle size of the colloidal alumina hydrate is 1 micron or less.
(4)コロイド状アルミナ水和物が、アルミニウムアル
コキシドにモル比で3以上の水で加水分解して得たアル
ミナ水和物を解膠して得られたものであることを特徴と
する特許請求の範囲第1項ないし第3項に記載の方法。
(4) A patent claim characterized in that the colloidal alumina hydrate is obtained by peptizing alumina hydrate obtained by hydrolyzing aluminum alkoxide with water at a molar ratio of 3 or more. The method according to items 1 to 3 of the scope of the invention.
JP57015488A 1982-02-04 1982-02-04 Manufacture of alumina formed body Pending JPS58135174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015488A JPS58135174A (en) 1982-02-04 1982-02-04 Manufacture of alumina formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015488A JPS58135174A (en) 1982-02-04 1982-02-04 Manufacture of alumina formed body

Publications (1)

Publication Number Publication Date
JPS58135174A true JPS58135174A (en) 1983-08-11

Family

ID=11890176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015488A Pending JPS58135174A (en) 1982-02-04 1982-02-04 Manufacture of alumina formed body

Country Status (1)

Country Link
JP (1) JPS58135174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054327A1 (en) * 2021-09-30 2023-04-06 ヤマハ株式会社 Inorganic compound powder, method for producing inorganic compound powder, metal oxide molded article, and method for producing metal oxide molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054327A1 (en) * 2021-09-30 2023-04-06 ヤマハ株式会社 Inorganic compound powder, method for producing inorganic compound powder, metal oxide molded article, and method for producing metal oxide molded article

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
CN110590389B (en) Silicon nitride whisker-aluminum nitride-corundum ternary composite ceramic material using natural minerals as raw materials and preparation method thereof
US4152281A (en) Molten salt synthesis of lead zirconate titanate solid solution powder
JPS6150907B2 (en)
JPH0710535A (en) Production of alumina sol excellent in transparency and having satisfactory viscosity stability
EP0337472A2 (en) Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
GB2216546A (en) Zirconium oxide sinter for forming thin film thereof and method for production of the same
JPS61186268A (en) Manufacture of high strength beta-sialon silicon carbide composite body
JPS58135174A (en) Manufacture of alumina formed body
JPS5939366B2 (en) Manufacturing method of zirconium oxide fine powder
JP3087403B2 (en) Method for producing spherical alumina
JPH0454612B2 (en)
JPH0339967B2 (en)
JPS6360106A (en) Spinel powder and its production
US5177033A (en) Sintered body of light transmitting cordierite and a method of preparing the same
JP2508541B2 (en) Method for producing translucent alumina raw material powder
JPS6217005A (en) Preparation of mullite powder having high purity
US3099532A (en) Method of making high purity, substantially spherical discrete particles of beryllium hydroxide or oxide
JPS6357383B2 (en)
JPH05279141A (en) Preparation of lithium aluminosilicate or lithium aluminate ceramics having controlled stoichiometry and microstructure
JPH0615421B2 (en) Method for manufacturing mullite sintered body
JPS647030B2 (en)
JP2616916B2 (en) Amorphous composition and method for producing the same
JPS5926966A (en) Manufacture of ceramics green molded body
JPS647034B2 (en)