JPS58133945A - Control device for anti-lock brake device - Google Patents
Control device for anti-lock brake deviceInfo
- Publication number
- JPS58133945A JPS58133945A JP700683A JP700683A JPS58133945A JP S58133945 A JPS58133945 A JP S58133945A JP 700683 A JP700683 A JP 700683A JP 700683 A JP700683 A JP 700683A JP S58133945 A JPS58133945 A JP S58133945A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- oil
- oil passage
- switch
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
- B60T8/4004—Repositioning the piston(s) of the brake control means by means of a fluid pressurising means in order to reduce the brake pressure
- B60T8/4009—Repositioning the piston(s) of the brake control means by means of a fluid pressurising means in order to reduce the brake pressure the brake control means being the wheel cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
- B60T8/404—Control of the pump unit
- B60T8/4045—Control of the pump unit involving ON/OFF switching
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、アンチロックブレーキ装置の制御装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an anti-lock brake device.
従来、かかる制御装置として、油圧を供給されると制動
力を抑制するようにブレーキ装置に設けられた制御油圧
室と、電動式油圧ポンプと、この油圧ポンプの吐出[」
に連なる高圧油路と、油槽と、この油槽に連なる低圧油
路と、前記制御油圧室を前記高圧油路及び低圧油路に交
互に連通制御する制御弁とよりなり、制動時、制動力が
過剰となったとき制御弁の切換作用により高圧油路を制
御油圧室に連通させて油圧ポンプの吐出圧により過剰1
1i11動力を抑制することにより、車輪のロック現象
を未然に防1トする31:5に17だものが知られてい
る。Conventionally, such control devices include a control hydraulic chamber provided in a brake device so as to suppress braking force when hydraulic pressure is supplied, an electric hydraulic pump, and a discharge of this hydraulic pump.
It consists of a high-pressure oil passage connected to the oil tank, an oil tank, a low-pressure oil passage connected to the oil tank, and a control valve that alternately controls the control oil pressure chamber to communicate with the high-pressure oil passage and the low-pressure oil passage, and when braking, the braking force is increased. When there is an excess, the high pressure oil passage is communicated with the control hydraulic chamber by the switching action of the control valve, and the excess 1 is controlled by the discharge pressure of the hydraulic pump.
A 31:5 ratio of 17 is known that prevents the wheel locking phenomenon by suppressing the 1i11 power.
ところで、この従来製筒では油圧ポンプを常時作動し、
ておき、吐出される余剰圧油をリリーフ弁を介して油槽
に還流させているか、一般にはこの制御装置が作動する
機会は極めて少ブ:cいので、そねにも拘らず油圧ポン
プを常時作動しておくことは動力損失上好ましくない。By the way, in this conventional cylinder making system, the hydraulic pump is constantly operated.
The surplus pressure oil that is discharged is then returned to the oil tank via a relief valve.In general, there are very few chances that this control device will operate, so the hydraulic pump must be kept running at all times. It is undesirable to leave it in operation due to power loss.
そこでかかる問題を解消するために、上記高庄油路に油
圧ポンプの吐出圧を蓄圧する蓄圧?gを接続し、その蓄
圧器の油圧に応動する圧力スイッチにより油圧ポンプへ
の通電を制御して、その月巳力が設定置以下となったと
きだけ油圧ポンプを駆動することが考えられるが、この
場合には、ト記用カスイッチが、上記設定値をイ^゛1
かに1−y(或いは1降するだけで直ちにON或いはO
/I’ /i”状態にりj換えられてしまうので、結局
、その圧力スイッチは頻繁に0 #−Ol=’ fi’
を繰り返すことになり、該スイッチ白シの寿命が短かく
なるばかりで7.[<、ポンプの起動、停市の繰り返し
によって騒音が発イ1し、またポンプの耐久性も低下す
る等の不具合かある。In order to solve this problem, is it possible to accumulate the discharge pressure of the hydraulic pump in the Takasho oil passage? It is conceivable to connect the power supply g to the hydraulic pump and control the energization of the hydraulic pump with a pressure switch that responds to the hydraulic pressure of the pressure accumulator, and drive the hydraulic pump only when the power level falls below the set value. In this case, the writing switch will change the setting value to
Crab 1-y (or immediately ON or O by just 1 drop)
/I'/i'' state, so the pressure switch is often 0 #-Ol='fi'
7) will be repeated, which will only shorten the life of the switch. [<, There are problems such as noise being generated by the pump starting and stopping repeatedly, and the durability of the pump being reduced.
本発明は」1記に鑑み提案されたもので、従来のものの
上記問題、不具合をすべて解消し得る、前記アンチロッ
クブレーキ装置の制御装置を提供することを目的とする
。The present invention has been proposed in view of the above-mentioned item 1, and an object of the present invention is to provide a control device for the anti-lock brake device, which can eliminate all of the above-mentioned problems and inconveniences of the conventional devices.
以下、図面により本発明の一実施例について説明する。An embodiment of the present invention will be described below with reference to the drawings.
まず第1図には本発明装置を備えた車両用制動装置と、
その制動装置にその制動力を抑制するように制御油圧を
作用させる制御油圧回路とが示されている。この第1図
において、ブレーキペダル30はマスクシリンダ31に
対して、そのペダル30踏込時にマスクシリンダ31が
all動油圧を発生するよう連結されている。そのマス
クシリンダ31に対応するホイールシリンダ33は車輪
(図示せず)近傍の車体に固着されており、そのシリン
ダ33内には一対のピストン35 、35’が摺合され
、それらピストン35 、35’間には、マスクシリン
ダ31の作動油室に油路32を介し 5−
て連通ずる制御抽油F「室36がuE+i成さ上1ろ3
.各ピストン35,35’のロッド37 、37/+i
″、イニA1ぞれホイールシリンダ33の端壁を貫通(
2て外力へのびており、各ロッド37 、37’の例剥
1ij41(は、中11品に装着されたブレーキシュー
・(図示せず)の内周面に近接する一対のブレーキシュ
ー39.39’にそれぞれ連結されている。従ってブレ
ーキペダル30が踏込まれてマスクシリンダ31が制動
油圧を発生すると、この制動油圧はホイールシリンダ3
3内の制動油圧室36に伝達されて各ピストン35.3
ダを〃いに〃f反する方向に押I]Es動し、それに伴
ない各ブレーキシュー39 、39’がブレーキドラム
内周部に向けて押圧され、そのドラノ、内周面との摩擦
接触により重輪に制動力を加えることができる。。First, FIG. 1 shows a vehicle braking device equipped with the device of the present invention,
A control hydraulic circuit is shown that applies a control hydraulic pressure to the braking device to suppress the braking force. In FIG. 1, a brake pedal 30 is connected to a mask cylinder 31 so that the mask cylinder 31 generates all hydraulic pressure when the pedal 30 is depressed. A wheel cylinder 33 corresponding to the mask cylinder 31 is fixed to the vehicle body near a wheel (not shown), and a pair of pistons 35 and 35' are fitted inside the cylinder 33, and between the pistons 35 and 35'. In this case, the control oil extraction chamber 36 is connected to the hydraulic oil chamber of the mask cylinder 31 via the oil passage 32.
.. Rod 37, 37/+i of each piston 35, 35'
″, Ini A1 each penetrates the end wall of the wheel cylinder 33 (
A pair of brake shoes 39 and 39' close to the inner circumferential surface of the brake shoes (not shown) attached to the middle 11 item (example 1ij41) of each rod 37 and 37' extend to an external force. Therefore, when the brake pedal 30 is depressed and the mask cylinder 31 generates braking oil pressure, this braking oil pressure is transferred to the wheel cylinder 3.
The hydraulic pressure is transmitted to the brake hydraulic chamber 36 in each piston 35.3.
When the brake drum is pushed in the opposite direction, each brake shoe 39, 39' is pressed toward the inner periphery of the brake drum, and due to frictional contact with the inner periphery of the brake drum. It is possible to add braking force to heavy wheels. .
上記制動力が太き過ぎると車輪がロックする可能性が生
じる。そこで車輪がロックさ、lするのを防−〇 −
11−1するために、各ピストン35 、35’とホイ
ールシリンダ33端壁との間には一対の制御油圧室40
゜40′がそれぞれ形成されており、これらの制御油圧
室40 、40’に十記制動油圧室36の制動油圧に対
抗し得る制御油圧を圧入することにより、各ピストン3
5 、35’の外方への移動を抑制して」1記制動力を
抑制するようになっている。次にそのための制御油圧回
路について説明する。If the braking force is too large, there is a possibility that the wheels will lock. In order to prevent the wheels from locking up, a pair of control hydraulic chambers 40 are provided between each piston 35, 35' and the end wall of the wheel cylinder 33.
Each piston 3
5, 35' to the outside to suppress the braking force described in 1. Next, a control hydraulic circuit for this purpose will be explained.
油槽TK吸込口が連なる油圧ポンプPの吐出口には、逆
止弁44を途中に介装した高圧油路45が接続されてお
り、この高圧油路45は第1制御弁J/l および油路
48.49を介して前記両制御油圧室40.40’に接
続される。高圧油路45には逆止弁44よりも下流側に
おいて、油圧ポンプPの吐出圧を蓄Ff−シ得る蓄圧器
46が、また逆止弁44より」−流側において、油槽1
゛に連なる還流油路50がそ才1ぞれ接続されており、
還流油路50の途中にはリリーフ弁51が介装される。A high pressure oil line 45 with a check valve 44 interposed in the middle is connected to the discharge port of the hydraulic pump P which is connected to the suction port of the oil tank TK, and this high pressure oil line 45 is connected to the first control valve J/l and the oil It is connected to both control hydraulic chambers 40,40' via channels 48,49. In the high pressure oil passage 45, on the downstream side of the check valve 44, there is a pressure accumulator 46 for accumulating the discharge pressure of the hydraulic pump P.
A return oil passage 50 connected to the
A relief valve 51 is interposed in the middle of the return oil passage 50.
また油槽Tには、第2制御弁V2および油路52,49
を介して前記制御油圧室40 、40’に接続さλする
低圧油路53が接続される。第1.第2制御弁1’l
+V2は図示さ第1ていな(・コンピュータの判断に基
づき車両の走行状態に応じてそれぞれ切換制御されるよ
うになっている。The oil tank T also includes a second control valve V2 and oil passages 52, 49.
A low-pressure oil passage 53 connected to the control oil pressure chambers 40 and 40' is connected through the control oil pressure chambers 40 and 40'. 1st. 2nd control valve 1'l
+V2 is the first valve shown in the figure (the switching is controlled according to the driving condition of the vehicle based on the judgment of the computer).
ポンプPは、電源57よりリレースイッチ56を介して
電力供給を受ける電力モータAfに、Lす駆動される。The pump P is driven by a power motor Af that receives power from a power source 57 via a relay switch 56 .
リレースイッチ56&t、、圧カスづソチSにより作動
制御される電磁アクチュエータ55によって開閉制御さ
れるようになっている3、圧力スイッチSは、その圧力
検出部が高圧油路45の逆止弁44より下流側に圧力検
出用油路54を介して接続されており、その油路54の
油圧が上限設定値以下に低−1したとき閉じt)Jlて
電磁アクチュエータ55に通電し、また同油圧が前記千
°限設定値よりも高い」二限設定値以上に上昇したとき
開かれて電磁アクチコーエータ55への通電を停止する
ように構成されており、この点に本発明の特徴がある。Relay switch 56&t, pressure switch S is controlled to open and close by an electromagnetic actuator 55 whose operation is controlled by pressure switch S. It is connected to the downstream side via a pressure detection oil passage 54, and closes when the oil pressure of the oil passage 54 falls below the upper limit set value. The present invention is characterized in that it is configured to be opened and stop energizing the electromagnetic actuator 55 when the temperature rises to a second limit setting value, which is higher than the 1,000° limit setting value.
次に第2,3図に基づき上記圧力スイッチSの具体的構
造を説明する。Next, the specific structure of the pressure switch S will be explained based on FIGS. 2 and 3.
圧力スイッチSの本体1ば、中心線方向に突出する突出
シリンダ部2と、この突出シリンダ部2とは反対側に形
成された円筒部3とを有し、突出シリンダ部2の中心部
には、受圧ピストン8と、この受圧ピストン8と一体的
に滑液するようにして円筒部2の中心線に沿って延在す
るロッド9とを軸方向に沿接自在に支持する沿接孔4が
、中心線方向に貫通して形成されている。この除、本体
1は磁性刊料により形成され、またロッド9は非磁性旧
材により形成されている。The main body 1 of the pressure switch S has a protruding cylinder part 2 which protrudes in the direction of the center line, and a cylindrical part 3 formed on the opposite side of the protruding cylinder part 2. , a contact hole 4 that supports the pressure receiving piston 8 and a rod 9 extending along the center line of the cylindrical portion 2 so as to be able to freely contact the pressure receiving piston 8 in the axial direction. , is formed to penetrate in the direction of the center line. Other than this, the main body 1 is made of magnetic material, and the rod 9 is made of non-magnetic old material.
沿接孔4の外端部には径大部が形成されており、−〇
−
この径大部内には、シール部材5を介して、中心部に開
孔1を有するとともに受圧ピストン8の先端部を沿接自
在に支持して受圧ピストン8に対するストッパー機能を
果たす嵌装体6が嵌入されて固定されている。A large diameter portion is formed at the outer end of the parallel hole 4, and -〇
- In this large-diameter portion, a fitting body 6 is provided through the sealing member 5, which has an opening 1 in the center and supports the tip of the pressure-receiving piston 8 so as to be freely movable thereon, thereby functioning as a stopper for the pressure-receiving piston 8. is inserted and fixed.
突出シリンダ部2の先端側外周部は、シール部材10を
介して、連結体11の係合孔内に螺入されており、この
連結体11には、該突出シリンダ部2端面に連通ずる前
記圧力検出用油路54が形成されている。したがって油
路54を経て導入された圧油はさらに開孔1を経て受圧
ピストン8の受圧面を押圧し、その結果、受圧ピストン
8は油路54を経て導入された高圧油路45の油圧に応
じて、ロッド9を円筒部3の外方へ抑圧移動させようと
する力を受ける。The outer periphery on the distal end side of the protruding cylinder portion 2 is screwed into the engagement hole of the connecting body 11 via the sealing member 10, and the connecting body 11 has the above-mentioned groove that communicates with the end surface of the protruding cylinder portion 2. A pressure detection oil passage 54 is formed. Therefore, the pressure oil introduced through the oil passage 54 further passes through the hole 1 and presses the pressure receiving surface of the pressure receiving piston 8, and as a result, the pressure receiving piston 8 responds to the hydraulic pressure of the high pressure oil passage 45 introduced through the oil passage 54. Accordingly, the rod 9 receives a force that tends to move the rod 9 outward from the cylindrical portion 3.
円筒部3の外端側内周面に形成された雌ねじ部16には
、外周面」二に雄ねじ14が形成され、直 10−
径方向に対向した位置には一対の軸方向の長孔15 、
15’が形成されたばね圧調整シリンダ13の内端側外
周部が、円筒部3の内周側に形成された環状段部とばね
圧調整シリンダ13の内端面との間に磁性材料により形
成された環状の移動制限板20の外周部を挟持するよう
にして螺合されている。A female threaded portion 16 formed on the inner circumferential surface of the outer end of the cylindrical portion 3 has a male thread 14 formed on the outer circumferential surface, and a pair of axially elongated holes 15 at positions facing each other in the radial direction. ,
15' is formed between the annular stepped portion formed on the inner circumferential side of the cylindrical portion 3 and the inner end surface of the spring pressure adjusting cylinder 13, and is made of a magnetic material. They are screwed together so as to sandwich the outer periphery of the annular movement limiting plate 20.
ロッド9の受圧ピストン8寄りの部分には、受圧ピスト
ン8が流体圧を受けていないときには本体1の段部18
内に入り込む径大部17が一体的に形成されており、こ
の径大部17に隣接して、ロッド9上には磁石19が嵌
着されている。ロッド9上には、さらに磁石19に隣接
して、移動制限板20の中心孔を貫通するボス部22を
有するばね座21が嵌合されている。ロッド9の外端寄
りの部分には、ばね圧調整シリンダ13の一対の長孔1
5 、15’から半径方向外方に突出する一対の突出腕
25 、25’を有するばね座24がロッド9に対して
沿接自在に嵌合されており、このばね座24とばね座2
1との間には押圧ばね23が介装されている。そして、
ばね圧調整シリンダ13の雄ねじ14には各突出腕25
、25’と押圧接触するようにして調整輪26が螺合
されていて、この調整輪26を回転操作することにより
、4f11庄ばね23の押圧力を調整することができる
ようになっている。When the pressure receiving piston 8 is not receiving fluid pressure, a stepped portion 18 of the main body 1 is located at the portion of the rod 9 near the pressure receiving piston 8.
A large-diameter portion 17 that extends into the rod 9 is integrally formed, and a magnet 19 is fitted onto the rod 9 adjacent to the large-diameter portion 17 . Further fitted onto the rod 9, adjacent to the magnet 19, is a spring seat 21 having a boss portion 22 passing through the center hole of the movement limiting plate 20. A pair of elongated holes 1 of a spring pressure adjusting cylinder 13 are provided in a portion near the outer end of the rod 9.
A spring seat 24 having a pair of protruding arms 25 and 25' protruding radially outward from 5 and 15' is fitted to the rod 9 so as to be able to freely move along the rod 9.
1, a pressure spring 23 is interposed between the two. and,
Each protruding arm 25 is attached to the male thread 14 of the spring pressure adjustment cylinder 13.
, 25' are screwed together so as to make pressure contact with them, and by rotating this adjustment wheel 26, the pressing force of the 4f11 spring 23 can be adjusted.
ばね圧調整シリンダ13の外端部内周側には支持部材2
γを介して、接点切換作動イ29を内側に備えた接点切
換装置28が支持されている。この接点切換装置28の
入力側端子は前記電磁−rクチュエータ55に接続され
、またその出方端子は接地されている1)
磁石19の軸方向の幅は、本体1の磁石19と接する面
と移動制限&2oとの間の軸方向の間隔よりも小さく、
また、本体1と移動制限板20とは共に磁性材#1によ
り形成されていることから、ロッド9および磁石19は
、ばね座21を介して常時押圧ばね23による押圧力を
受け、受圧ピストン8が流体圧を受けていないときには
、磁石19は本体1に磁力により圧着している。このと
きには、ロッド9の先端は接点切換作動子29から離ね
ていることにより、接点切換装置28は接状態に置かれ
ている。A support member 2 is provided on the inner peripheral side of the outer end of the spring pressure adjustment cylinder 13.
A contact switching device 28 having a contact switching actuator 29 inside is supported via γ. The input side terminal of this contact switching device 28 is connected to the electromagnetic actuator 55, and its output terminal is grounded. less than the axial spacing between the movement limit &2o;
Further, since the main body 1 and the movement limiting plate 20 are both formed of magnetic material #1, the rod 9 and the magnet 19 are constantly subjected to the pressing force by the pressing spring 23 via the spring seat 21, and the pressure receiving piston 8 When not receiving fluid pressure, the magnet 19 is pressed against the main body 1 by magnetic force. At this time, the tip of the rod 9 is separated from the contact switching actuator 29, so that the contact switching device 28 is placed in the contact state.
いま受圧ピストン8が高圧油路45の油圧を受け、この
油圧により受圧ピストン8に対する押圧力が、磁石19
と本体1との間の圧着力と押圧ばね23の押圧力とに打
勝つと、ロッド9と磁石19とは接点切換装置28側に
抑圧移動され、磁石19は移動制限板20に圧着すると
ともに、ロッド9の先端は接点切換作動子29を押圧し
て、接点切換装置28を断状態に切換える。この状態に
おい13−
て、受圧ピストン8に作用する油圧に多少の降下変動が
あっても、磁石19はその磁力作用に。l−り移動制限
板20に対する圧着状態を保持し続ける。Now, the pressure receiving piston 8 receives oil pressure from the high pressure oil passage 45, and this oil pressure causes a pressing force on the pressure receiving piston 8 to be applied to the magnet 19.
When the pressure force between the body 1 and the pressure spring 23 is overcome, the rod 9 and the magnet 19 are compressed and moved toward the contact switching device 28 side, and the magnet 19 is pressed against the movement limiting plate 20. , the tip of the rod 9 presses the contact switching actuator 29 to switch the contact switching device 28 to the disconnected state. In this state, even if there is some downward fluctuation in the oil pressure acting on the pressure receiving piston 8, the magnet 19 will not be affected by its magnetic force. The state of pressure bonding to the movement limiting plate 20 is maintained continuously.
そして、受圧ピストン8に作用する油圧に1しる押圧力
が充分に小さくなって、磁石19と移動11jll限板
20との間の圧着力と協働しても押圧ばね23による押
圧力に抗し切れなく′j「つだとき、ロッド9と磁石1
9とは本体1側に移動し、磁石19は再び本体1に圧着
するとともに、ロッド9の先端は接点切換作動子29が
ら離才1て、接点切換装置28を再び接状態に切換える
。Then, even if the pressing force corresponding to the hydraulic pressure acting on the pressure receiving piston 8 becomes sufficiently small and cooperates with the pressing force between the magnet 19 and the moving 11jll limit plate 20, the pressing force by the pressing spring 23 is resisted. "When we meet, rod 9 and magnet 1
9 moves toward the main body 1, the magnet 19 is again pressed against the main body 1, and the tip of the rod 9 is separated from the contact switching actuator 29, thereby switching the contact switching device 28 to the contact state again.
第4図には、横軸に変位をとり、縦軸に力の大きさをと
ったときの、ロッド9および磁石19の軸方向の変位に
対するロッド9および磁石19にかかる本体1側向きの
押圧力の大きさをグラフにして示されている。ここで、
横軸−にの点山ば、磁石19が本体1に圧着したときの
ロッド9拓よ14−
び磁石19の本体1に対する位置に対応し、点02は、
磁石19が移動制限板20に圧着したときのロッド9お
よび磁石19の本体1に対する位置に対応する。直線a
は押圧ばね23の押圧力の変化を示し、曲線りは6’E
ζ石19の圧着力と押圧ばね23の押圧力との代数和の
変化を示している。したがって、図の斜線部分は、磁石
19の本体1あるいは移動制限板20に対する圧着力の
変化を示している。この第4図からも明らかなように、
受圧ピストン8に作用する油圧による押圧力の大きさが
AO,によって示される力の太きさよりも太き(なった
ときにばじめて磁石19は本体1から離れてロッド9と
ともに移動して移動制限板20に圧着し、同時にロッド
9は接点切換作動子29を押圧する。また、この状態に
おいて、受圧ピストン8に作用する流体圧による押圧力
の大きさがBO2によって示される力の太きさよりも小
さくなったときにはじめて磁石19は移動制限板20か
ら離ねてロッド9とともに移動して本体1に圧着し、同
時にロッド9は接点切換作動子29から離」する。FIG. 4 shows the force applied to the rod 9 and the magnet 19 in the side direction of the main body 1 in response to the axial displacement of the rod 9 and the magnet 19, with the horizontal axis representing the displacement and the vertical axis representing the magnitude of the force. The magnitude of pressure is shown graphically. here,
The point 02 on the horizontal axis corresponds to the position of the rod 9 and the magnet 19 relative to the main body 1 when the magnet 19 is pressed against the main body 1.
This corresponds to the position of the rod 9 and the magnet 19 relative to the main body 1 when the magnet 19 is pressed against the movement limiting plate 20. straight line a
indicates the change in the pressing force of the pressing spring 23, and the curve is 6'E
It shows the change in the algebraic sum of the pressing force of the zeta stone 19 and the pressing force of the pressing spring 23. Therefore, the shaded area in the figure shows the change in the pressing force of the magnet 19 against the main body 1 or the movement limiting plate 20. As is clear from this Figure 4,
When the magnitude of the pressing force due to the hydraulic pressure acting on the pressure receiving piston 8 is greater than the magnitude of the force indicated by AO, the magnet 19 separates from the main body 1 and moves together with the rod 9. The rod 9 presses against the movement limiting plate 20, and at the same time presses the contact switching actuator 29.In addition, in this state, the magnitude of the pressing force due to the fluid pressure acting on the pressure receiving piston 8 is the force indicated by BO2. It is only when the magnet 19 becomes smaller than that that the magnet 19 separates from the movement limiting plate 20, moves together with the rod 9, and presses against the main body 1, and at the same time, the rod 9 separates from the contact switching actuator 29.
しかも、磁石19が本体1と移動制限板20どの中間位
置にあるときには、力の釣合いがきわめて不安定な状態
にあるので、磁石19が本体1から離れると直ちに移動
制限板20に圧着し、また移動制限板20から離れると
直ちに本体1に圧着するという特性が発揮される。Moreover, when the magnet 19 is located at an intermediate position between the main body 1 and the movement limiting plate 20, the balance of forces is extremely unstable, so that as soon as the magnet 19 separates from the main body 1, it is pressed against the movement limiting plate 20, and It exhibits the property of being crimped onto the main body 1 as soon as it is separated from the movement limiting plate 20.
次に本発明の実施例の作用について説明する。Next, the operation of the embodiment of the present invention will be explained.
車両の走行中において、非制動時あるいは制動時であっ
ても車輪のロックの可能性が全くない間は、図示されて
いないコンピュータの判断に基づいて第1図のように第
1制御弁V1は右側に、また第2制御弁V2は左側に、
それぞれ切換えられている。このときには、各制御油圧
室40 、40’は第2制御弁V2および低圧油路53
を介して油槽1゛内に連通しているので、制動力は自由
に増大することができる。While the vehicle is running, while there is no possibility of the wheels locking even when braking or not, the first control valve V1 is activated as shown in FIG. 1 based on the judgment of a computer (not shown). on the right side, and the second control valve V2 on the left side,
Each has been switched. At this time, each control hydraulic chamber 40, 40' is connected to the second control valve V2 and the low pressure oil passage 53.
Since the braking force is communicated with the inside of the oil tank 1 through the braking force, the braking force can be increased freely.
制動時において車輪のロックの可能性が生じると、第1
制御弁V1は右側に切換えられたまま、第2制御弁V2
が右側に切換えられる。このときには、各制御油圧室4
0 、407内の制御油は側鎖状態に置かれ、それ以上
の各ピストン35 、35’の外方への移動を折重する
ので、制動力はそれ以−に増大しないように一定に保た
れる。If there is a possibility of wheel locking during braking, the first
While the control valve V1 remains switched to the right side, the second control valve V2
is switched to the right side. At this time, each control hydraulic chamber 4
The control oil in the pistons 35 and 407 is placed in a side chain state, which compensates for the further outward movement of each piston 35 and 35', so that the braking force is kept constant to prevent any further increase. dripping
制動力がさらに大きくなって車輪がロックしそうになる
と、第1制御弁V、は左側に切換えられるとともに、第
2制御弁V2は右側に切換えられたままの状態を保持す
る。このときには、各制御油圧室40.40’は油槽T
から遮断されているとともに、各制御油圧室40 、4
o′内には、蓄圧器46から高圧油路45および第1
制御弁V、を介して制御油が圧入されるので、各ピスト
ン35゜17−
35′は互いに接近する方向に移動して制動力は減少す
る。When the braking force becomes even greater and the wheels are about to lock, the first control valve V is switched to the left, and the second control valve V2 remains switched to the right. At this time, each control hydraulic chamber 40, 40' is connected to the oil tank T.
The control hydraulic chambers 40 and 4 are isolated from each other.
o' contains a high pressure oil passage 45 and a first
Since control oil is injected through the control valve V, the pistons 35.degree. 17-35' move toward each other and the braking force decreases.
以上の各作動過程を通して、高圧油路45し7たがって
蓄圧器46には常にアンチロツクブL−一−λ・制御を
適切に行うに必要な制御油圧が保]\1さf1′(いな
ければなr)ないが、この蓄圧器46内のilt制御油
圧は次のようにして調整制御さJ]ろ。すなわら、この
制御油圧が下限設定飴を下回ると前記1■ヨカスイツチ
Sの接点切換装置28が接状態となって電磁アクチュエ
ータ55に通電t7これによりリレースイッチ56を閉
じて電力モータ4/へ通電[2、ポンプPを駆動する3
、その結果、蓄圧器46には油圧ポンプPから圧油が高
圧油路45を介[7て供給され、その蓄圧器46内のi
Ii制御油圧が上列ずろ1、而してその開側l油圧が前
記下限設定値よりも高い上限設定値を上回ると、圧力ス
イッチSの接点切換装置28が断状態となって電磁アク
チュエ一18−
タ55への通電を停止し、これによりリレースイッチ5
6が開かれて電力モータMへの通電が停止され、ポンプ
I)も停止する。Through each of the above-mentioned operating processes, the high-pressure oil passages 45 and 7, and therefore the pressure accumulator 46, always maintain the control oil pressure necessary to properly control the anti-lock valve L-1-λ. (r) However, the ilt control oil pressure in this pressure accumulator 46 is adjusted and controlled as follows. That is, when this control oil pressure falls below the lower limit setting candy, the contact switching device 28 of the above-mentioned 1. [2. Drive pump P3
As a result, pressure oil is supplied from the hydraulic pump P to the pressure accumulator 46 via the high pressure oil passage 45, and the i in the pressure accumulator 46 is
When the Ii control oil pressure is in the upper row shift 1, and the opening side l oil pressure exceeds the upper limit set value, which is higher than the lower limit set value, the contact switching device 28 of the pressure switch S is disconnected, and the electromagnetic actuator 18 is turned off. - The relay switch 55 is de-energized, which causes the relay switch 5
6 is opened to de-energize the electric motor M and also stop the pump I).
その間、」−記制御油圧が一ヒ、下限設定値を越えない
範囲で上下変動しても、それにより電力モータMしたが
ってポンプりが起動、停止を繰り返すようなことがなく
、それらの作動或いは非作動状態が継続する。During this period, even if the control oil pressure fluctuates up and down within a range that does not exceed the lower limit set value, the electric motor M and therefore the pump will not repeatedly start and stop, and their operation or deactivation will be prevented. The operating state continues.
以上のように本発明によれば、アンチロックブレーキ装
置の制御装置における高圧油路に蓄圧器を接続し、この
蓄圧器に、高圧油路の油圧に応動する圧力スイッチによ
り通電制御される電動式油圧ポンプから適時圧油が供給
補充されるようにしたので、油圧ポンプを走行中宮に駆
動させる必要がなく、その運転コストを低減し得る。As described above, according to the present invention, a pressure accumulator is connected to a high-pressure oil passage in a control device for an anti-lock brake system, and this pressure accumulator is electrically powered by a pressure switch that responds to the oil pressure of the high-pressure oil passage. Since pressure oil is supplied and replenished from the hydraulic pump in a timely manner, there is no need to drive the hydraulic pump while the vehicle is running, and the operating cost can be reduced.
また前記圧力スイッチは、前記高圧油路の油圧が下限設
定値以下に低下したとき前記油圧ポンプの通電動作をし
、同油圧が前記下限設定値よりも高い上限設定値以上に
上列したとき前記油圧ポンプの通電停止動作をするよう
に構成さねているので、高圧油路の油圧が」二記上、下
限設定値の間を変動する限りにおいては圧力スイッチが
切換え1られることがなく、従って、その油圧の僅かの
変動でも該スイッチの切換作動が頻繁に繰り返されてポ
ンプの起動、停止が繰り返されるといった不具合が発生
するおそれはなくなり、同スイッチ自体は勿論のこと、
ポンプの耐久性も高めることができ、またポンプの起動
、停止の繰り返しによる騒音発生を抑えることができる
。The pressure switch energizes the hydraulic pump when the oil pressure in the high-pressure oil passage falls below a lower limit set value, and when the oil pressure rises above an upper limit set value higher than the lower limit set value, the pressure switch energizes the hydraulic pump. Since the hydraulic pump is configured to stop energizing, as long as the oil pressure in the high pressure oil path fluctuates between the above and lower limit set values, the pressure switch will not be switched. , there is no risk of problems such as the switching operation of the switch being repeated frequently even with slight fluctuations in the oil pressure, causing the pump to start and stop repeatedly, and of course the switch itself.
The durability of the pump can also be increased, and noise generation due to repeated starting and stopping of the pump can be suppressed.
第1図は本発明装置を備えたアンチロックブレーキ装置
の一実施例を示す全体概要図、第2図はその実施例で使
用される圧力スイッチの縦断正面図、第3図は同圧力ス
イッチの側面図、第4図は同圧力スイッチの作動特性を
示すグラフである。
P・・・油圧ポンプ、S・・・圧力スイッチ、T・・・
油槽、V、、V2・・・制御弁、
40.40’・・・制御油圧室、45・・・高圧油路、
46・・・蓄圧器、53・・・低圧油路
特許出願人 本田技研工業株式会社
21−
第3図
第4図Fig. 1 is an overall schematic diagram showing an embodiment of an anti-lock brake device equipped with the device of the present invention, Fig. 2 is a longitudinal sectional front view of a pressure switch used in the embodiment, and Fig. 3 is a diagram of the same pressure switch. The side view, FIG. 4, is a graph showing the operating characteristics of the same pressure switch. P... Hydraulic pump, S... Pressure switch, T...
Oil tank, V,, V2...control valve, 40.40'...control hydraulic chamber, 45...high pressure oil path,
46... Pressure accumulator, 53... Low pressure oil line patent applicant Honda Motor Co., Ltd. 21- Figure 3 Figure 4
Claims (1)
置に設けられた制御油圧室と、電動式油圧ポンプと、こ
の油圧ポンプの吐出口に連なる憂圧油路と、油槽と、こ
の油槽に連なる低圧油路と、前記制御油圧室を前記高圧
油路及び低圧油路に交互に連通制御する制御弁と、前記
高圧油路に接続された蓄圧器と、前記高圧油路の圧力に
応動して前記油圧ポンプの通電制御を行う圧力スイッチ
とよりなり、前記圧力スイッチは、前記高圧油路の油圧
が下限設定値以下に低下したとき前記油圧ポンプの通電
動作をし、同油圧が前記下限設定値よりも昼い上限設定
値以上に上昇したとき前記油圧ポンプの通電停止動作を
するように構成されたことを特徴とする、アンチロック
ブレーキ装置の制御装置。A control hydraulic chamber provided in the brake device so as to suppress the braking force when hydraulic pressure is supplied, an electric hydraulic pump, a pressure oil passage connected to the discharge port of this hydraulic pump, an oil tank, and this oil tank. A series of low-pressure oil passages, a control valve that alternately controls communication of the control hydraulic chamber with the high-pressure oil passage and the low-pressure oil passage, a pressure accumulator connected to the high-pressure oil passage, and a pressure accumulator that responds to the pressure of the high-pressure oil passage. and a pressure switch that controls energization of the hydraulic pump, and the pressure switch energizes the hydraulic pump when the oil pressure in the high-pressure oil passage falls below the lower limit setting. A control device for an anti-lock brake device, characterized in that the control device is configured to stop energization of the hydraulic pump when the value rises to or above an upper limit setting value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP700683A JPS58133945A (en) | 1983-01-19 | 1983-01-19 | Control device for anti-lock brake device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP700683A JPS58133945A (en) | 1983-01-19 | 1983-01-19 | Control device for anti-lock brake device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58133945A true JPS58133945A (en) | 1983-08-09 |
JPS6253385B2 JPS6253385B2 (en) | 1987-11-10 |
Family
ID=11653973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP700683A Granted JPS58133945A (en) | 1983-01-19 | 1983-01-19 | Control device for anti-lock brake device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58133945A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880282A (en) * | 1987-08-30 | 1989-11-14 | Nippondenso Co., Ltd. | Braking system with apparatus for controlling pressure to be accumulated in accumulator for braking motor vehicle |
JPH04101003U (en) * | 1991-02-04 | 1992-09-01 | 本田技研工業株式会社 | Failure diagnosis device for pressure equipment control equipment |
JPH0558912U (en) * | 1991-01-16 | 1993-08-03 | 本田技研工業株式会社 | Failure diagnosis device for accumulator in pressure source for pressure equipment |
JP2006339601A (en) * | 2005-06-06 | 2006-12-14 | Fujikura Ltd | Solar cell module |
KR100785338B1 (en) | 2005-11-11 | 2007-12-17 | 정보문 | A brake control system for vehicle and control method thereof |
US8109048B2 (en) | 2008-02-11 | 2012-02-07 | Zap Solar, Inc. | Apparatus for forming and mounting a photovoltaic array |
US9816731B2 (en) | 2010-07-02 | 2017-11-14 | Solarcity Corporation | Pivot-fit connection apparatus and system for photovoltaic arrays |
US9831818B2 (en) | 2009-07-02 | 2017-11-28 | Solarcity Corporation | Pivot-fit frame, system and method for photovoltaic modules |
USRE47733E1 (en) | 2004-02-05 | 2019-11-19 | Tesla, Inc. | Method and apparatus for mounting photovoltaic modules |
-
1983
- 1983-01-19 JP JP700683A patent/JPS58133945A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4880282A (en) * | 1987-08-30 | 1989-11-14 | Nippondenso Co., Ltd. | Braking system with apparatus for controlling pressure to be accumulated in accumulator for braking motor vehicle |
JPH0558912U (en) * | 1991-01-16 | 1993-08-03 | 本田技研工業株式会社 | Failure diagnosis device for accumulator in pressure source for pressure equipment |
JPH04101003U (en) * | 1991-02-04 | 1992-09-01 | 本田技研工業株式会社 | Failure diagnosis device for pressure equipment control equipment |
USRE47733E1 (en) | 2004-02-05 | 2019-11-19 | Tesla, Inc. | Method and apparatus for mounting photovoltaic modules |
JP2006339601A (en) * | 2005-06-06 | 2006-12-14 | Fujikura Ltd | Solar cell module |
KR100785338B1 (en) | 2005-11-11 | 2007-12-17 | 정보문 | A brake control system for vehicle and control method thereof |
US8109048B2 (en) | 2008-02-11 | 2012-02-07 | Zap Solar, Inc. | Apparatus for forming and mounting a photovoltaic array |
US9831818B2 (en) | 2009-07-02 | 2017-11-28 | Solarcity Corporation | Pivot-fit frame, system and method for photovoltaic modules |
US9853597B2 (en) | 2009-07-02 | 2017-12-26 | Solarcity Corporation | Pivot-fit connection apparatus, system, and method for photovoltaic modules |
US9816731B2 (en) | 2010-07-02 | 2017-11-14 | Solarcity Corporation | Pivot-fit connection apparatus and system for photovoltaic arrays |
Also Published As
Publication number | Publication date |
---|---|
JPS6253385B2 (en) | 1987-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970001502B1 (en) | Brake system | |
US4354715A (en) | Hydraulic anti-skid braking systems for vehicles | |
EP0950593B1 (en) | Hydraulic braking system with pressure assisted master cylinder piston | |
JPH0295958A (en) | Anti-lock hydraulic brake gear | |
JPH0369742B2 (en) | ||
US3975061A (en) | Powered brake system for vehicles | |
EP1538047B1 (en) | Vehicle braking system | |
JPS58133945A (en) | Control device for anti-lock brake device | |
EP1538048B1 (en) | Vehicle braking system | |
US4657315A (en) | Hydraulic motor vehicle servo brake | |
US5114216A (en) | Anti-lock brake system having flow restrictor | |
US4636010A (en) | Antiskid apparatus for vehicles | |
US5947566A (en) | Brake booster system | |
US9827962B2 (en) | Master cylinder and master cylinder apparatus | |
US5291675A (en) | Fluid pressure control system with an accumulator responsive to a loss of system pressure | |
US5065573A (en) | Hydraulic power booster including backup actuator in addition to lever device, for booster control valve | |
JPH01160769A (en) | Braking pressure regulator | |
JPS6118545A (en) | Hydraulic brake gear | |
US5983637A (en) | Hydraulic brake booster having piston travel limit feature | |
JPH08104217A (en) | Brake system | |
KR100612472B1 (en) | Hydraulic shuttle valve of brake traction control system | |
KR100413257B1 (en) | Normal open type solenoid valve for ABS | |
US5180212A (en) | Dual brake pressure reducing valve assembly using single inertia responsive member | |
EP0482941B1 (en) | Hydraulic braking pressure control system | |
US5193345A (en) | Distributor of a fluid under pressure |