JPS58133764A - Manufacture of positive electrode for organic electrolyte battery - Google Patents

Manufacture of positive electrode for organic electrolyte battery

Info

Publication number
JPS58133764A
JPS58133764A JP57015837A JP1583782A JPS58133764A JP S58133764 A JPS58133764 A JP S58133764A JP 57015837 A JP57015837 A JP 57015837A JP 1583782 A JP1583782 A JP 1583782A JP S58133764 A JPS58133764 A JP S58133764A
Authority
JP
Japan
Prior art keywords
carbon
battery
discharge
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015837A
Other languages
Japanese (ja)
Inventor
Kenichi Morigaki
健一 森垣
Ryoji Okazaki
良二 岡崎
Hisaaki Otsuka
大塚 央陽
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57015837A priority Critical patent/JPS58133764A/en
Publication of JPS58133764A publication Critical patent/JPS58133764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a battery with improved electric-discharge characteristic and preservation characteristic by using a carbon fluoride as a main active material, and mixing a specified carbon into said main active material. CONSTITUTION:A thin battery is constituted by using a negative lithium electrode 2, a separator 3 made of a non-woven polypropylene fabric, and a resin gasket 4. A positive pellet 5 for such a battery is prepared by mixing carbon with a specific surface area of over 500m<2>/g into a carbon fluoride containing a large amount of fluorine with a weak binding strength, and subjecting the mixture to heat treatment at 200-400 deg.C. As a result, the electric-discharge voltage of the battery can be maintained high, and the preservation characteristic of the battery can be improved.

Description

【発明の詳細な説明】 本発明は、フッ化炭素を主活物質とし、これに炭素を混
合した有機電解質電池用正極の製造法に関するもので、
放電特性、保存特性の良好な電池をFM供することを目
的としている・ 炭素筒を直接フッ素化することにより生成される7ツ化
炭素は、 (11Polycarbonmonofluoride
    (OF)n(21Po1yt@tracarb
onmonofluoride  (04F)nの21
4のものが知られていたが、最近、新たに式%式% が見い出されている(特開昭53−102893号公報
)。この(02F)nは、(CF)n、(04F)nと
同様に、有機電解質系電池の正極活物質として有用であ
ることが知られている(特開昭66−28246号公報
)。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a positive electrode for an organic electrolyte battery in which carbon fluoride is used as the main active material and carbon is mixed therein.
The purpose is to provide FM batteries with good discharge and storage characteristics. Carbon heptide, which is produced by directly fluorinating a carbon cylinder, is (11 Polycarbon monofluoride).
(OF)n(21Po1yt@tracarb
onmonofluoride (04F)n 21
4 was known, but recently, a new formula % has been discovered (Japanese Patent Application Laid-Open No. 102893/1983). This (02F)n, like (CF)n and (04F)n, is known to be useful as a positive electrode active material for organic electrolyte batteries (Japanese Unexamined Patent Publication No. 66-28246).

(02F )nは(OF)nと比較して、種々の特性を
有しており、例えば、(02F )nは第2次ステージ
(2nd  stage  )化合物である点、層間距
離が(OF)nの約6ム0に対して、約9ム0と大きい
点などがあり、電気化学的な特性も異なっている。一般
に、(02F )nは(OF)nよりも放電電圧が高電
圧である特徴を有するが、電圧の平坦性は(CF)nに
比較して、やや劣る傾向である。
(02F)n has various properties compared to (OF)n. For example, (02F)n is a 2nd stage compound, and the interlayer distance is (OF)n. It has a larger value of about 9 mu0 compared to about 6 mu0, and its electrochemical properties are also different. In general, (02F)n has a feature that the discharge voltage is higher than that of (OF)n, but the flatness of the voltage tends to be slightly inferior compared to (CF)n.

フッ化炭素は、(CF)n、((lj2F)n共に、そ
の原料炭素、製造条件により、リチウム電池の正極活物
質としての特性が異なり、放電初期の電圧は高いが、電
圧の平坦性が悪く、放電により電圧が徐々に降下する場
合がある。この場合、放電の利用率も劣っており、高温
保存後の容量劣化も犬である。この放電初期の高電圧部
は、主にフッ化炭素中に含まれている結合力の弱いフッ
素の放電反応によると考えられる。このような結合力の
弱いフッ素は、単なるフッ素分子又は原子の吸着、吸蔵
等によるものだけでなく、化学的及び電気化学的に活性
なフッ素と考えられる。このような例として、比表面積
が大きい活性炭を、室温でフッ素と接触させると、化学
吸着等によりフッ素化された活性炭が得られる。これを
リチウムと組み合わせて電池を構成すると、高い放電電
圧が得られるが、電圧の平坦性は悪く、さらに、有機溶
液中に保存しておくと、自己放電により放電容量は大き
く減少する。また、空気中に放置した場合にも、同様に
フッ素の遊離が生じる。しかし、活性炭を適切な温度範
囲でフッ素と反応させると、上記の如く結合力の弱いフ
ッ素をほとんど含まない、安定なフッ化炭素が得られる
Carbon fluoride, both (CF)n and ((lj2F)n, has different characteristics as a positive electrode active material for lithium batteries depending on the raw material carbon and manufacturing conditions. Although the voltage at the initial stage of discharge is high, the flatness of the voltage is Unfortunately, the voltage may gradually drop due to discharge.In this case, the utilization rate of discharge is also poor, and the capacity deterioration after high temperature storage is also poor.The high voltage part at the beginning of this discharge is mainly caused by fluoride. This is thought to be due to a discharge reaction of fluorine, which has a weak bonding force, contained in carbon.Fluorine, which has a weak bonding force, is not only caused by adsorption and occlusion of fluorine molecules or atoms, but also by chemical and electrical reactions. It is considered to be chemically active fluorine.For example, when activated carbon with a large specific surface area is brought into contact with fluorine at room temperature, fluorinated activated carbon can be obtained by chemical adsorption.If this is combined with lithium, fluorinated activated carbon can be obtained. Although a high discharge voltage can be obtained by constructing a battery, the flatness of the voltage is poor, and furthermore, if it is stored in an organic solution, the discharge capacity will be greatly reduced due to self-discharge.Also, if it is left in the air, Similarly, fluorine is liberated. However, if activated carbon is reacted with fluorine at an appropriate temperature range, stable fluorinated carbon containing almost no fluorine, which has a weak bonding force as described above, can be obtained.

本発明者らは、結合力の弱いフッ素を多く含むフ・ン化
炭素に、比表面積500 rn”7g以上の炭素、例え
ば活性炭、カーボンブラック類を混合し、さことにより
、放電電圧を高く維持し、保存特性が改良できることを
見い出した。
The present inventors mixed carbon with a specific surface area of 500rn"7g or more, such as activated carbon or carbon black, into fluorinated carbon containing a large amount of fluorine, which has a weak bonding force, and thereby maintained a high discharge voltage. It was discovered that the storage properties could be improved.

以下、フッ化炭素((32F)n  を例にとり、実施
例により詳細に説明する。
Hereinafter, fluorocarbon ((32F)n) will be taken as an example and explained in detail with reference to Examples.

第1図は、評価のだめに用いた扁平形電池である。1は
封目板、2はリチウム負極、3はポリプロピレン不織布
製のセパレータ、4は樹脂製ガスケットである。5は直
径14mm、厚み0.60 mmの正極合剤ペレット、
6は正極集電体、7はケースである。電解液は、プロピ
レンカーボネートとジメトキシエタンとの体積比1:1
の混合溶媒にホウフッ化リチウムを1モル/lの濃度に
溶解させたものを用いた。
FIG. 1 shows a flat battery used for evaluation. 1 is a sealing plate, 2 is a lithium negative electrode, 3 is a separator made of polypropylene nonwoven fabric, and 4 is a resin gasket. 5 is a positive electrode mixture pellet with a diameter of 14 mm and a thickness of 0.60 mm;
6 is a positive electrode current collector, and 7 is a case. The electrolyte has a volume ratio of propylene carbonate and dimethoxyethane of 1:1.
Lithium fluoroborate was dissolved at a concentration of 1 mol/l in a mixed solvent.

正極ベレット6は、フッ化炭素(CI)n 1o。The positive electrode pellet 6 is made of fluorocarbon (CI) n1o.

重量部に対して、比表面積が既知の炭素を10重量部加
えて良く混合し、この混合物をそのまま、として6重量
部とを加え、良く混練した後、乾燥。
Add 10 parts by weight of carbon having a known specific surface area to the parts by weight, mix well, leave the mixture as it is, add 6 parts by weight, knead well, and then dry.

成形したものである。It is molded.

電池の特性評価は、全て2’O’Cで6にΩ定抵抗放電
で行ない、放電容量は終止電圧を2.4vとして計算し
た。
All battery characteristics evaluations were conducted at 2'O'C and 6 Ω constant resistance discharge, and the discharge capacity was calculated with a final voltage of 2.4V.

第2図は、 (02F)n  と炭素の混合物を200
’Cで2時間熱処理した場合の、放電容量とこの混合物
中の炭素の比表面積との関係を、電池組立直後および6
0’C,1力月保存後で示したものである。
Figure 2 shows a mixture of (02F)n and carbon at 200%
The relationship between the discharge capacity and the specific surface area of carbon in this mixture when heat treated for 2 hours at
This is shown after storage at 0'C and 1 month.

比表面積が80 mVgの炭素は、従来例のアセチレン
ブラックを用いたもので、電池組立直後の放電容量にお
いても、500 mVg以上の比表面積をもつ炭素(活
性炭など)を用いた方が大きく、さらに1go℃、1カ
月保存稜では、従来例の容縫劣化は大であるが、比表面
積が6oom2/g以トの炭素を用いた場合は、容蒙劣
化は小さく、はとんど組立直後と同様の容量が得られる
Carbon with a specific surface area of 80 mVg is the one used in the conventional example, acetylene black, but the discharge capacity immediately after battery assembly is also greater when using carbon (activated carbon, etc.) with a specific surface area of 500 mVg or more. When stored at 1go℃ for 1 month, the conventional example shows a large degree of deterioration in volume, but when carbon with a specific surface area of 6oom2/g or more is used, the deterioration in volume is small, and most of the time, immediately after assembly. Similar capacity is obtained.

第2図から明らかなように、放甫容情は、混合炭素の比
表面積との間に相関性があり、比表面積が大きい#1ど
放電容量は大となる。また、その傾向は60℃、1力月
保存後により顕著となる。
As is clear from FIG. 2, there is a correlation between the discharge capacity and the specific surface area of the mixed carbon, and #1, which has a large specific surface area, has a large discharge capacity. Moreover, this tendency becomes more pronounced after storage at 60° C. for 1 month.

比表面積が犬である炭素としては、活性炭、カーボンブ
ラック類があり、特に米国アクゾ社のファーネスブラッ
クは、比表面積が700〜1oOomVgと大きく、か
つ導電性も従来の乾電池用導電材のアセチレンブラック
と同程度であシ、本発明の実施例として好ましいもので
ある。
Examples of carbon that have a similar specific surface area include activated carbon and carbon black.In particular, Furnace Black manufactured by Akzo Corporation in the United States has a large specific surface area of 700 to 1000mVg, and its conductivity is higher than that of acetylene black, a conventional conductive material for dry batteries. This is about the same level, which is preferable as an embodiment of the present invention.

第3図は、フッ化炭素(CzF)nと比表面積700m
ゾgの炭素を混合した後、この混合物の熱処理温度と2
0℃、sKΩ放電の60時間後の端子電圧との関係を組
立直後と60℃、1力月保存後において示したものであ
る。組立直後では、端子電圧はいずれも2.86V前後
で、処理温度による差はみられないが、60℃、1力月
保存後では、200℃以上で混合物を熱処理したものは
、端子電圧が2.83〜2.84Vと組立直後と比較し
てその差は小であるが、室温(26℃)、110℃で混
合物を放置したものでは、それぞれ、2,78V。
Figure 3 shows fluorocarbon (CzF)n and specific surface area 700m
After mixing the carbon of zog, the heat treatment temperature of this mixture and 2
The relationship between the terminal voltage after 60 hours of sKΩ discharge at 0°C is shown immediately after assembly and after storage at 60°C for 1 month. Immediately after assembly, the terminal voltage was around 2.86V in all cases, and there was no difference due to the treatment temperature, but after storage at 60℃ for 1 month, the terminal voltage was 2.86V for the mixtures heat-treated at 200℃ or higher. The difference is small compared to .83 to 2.84V immediately after assembly, but when the mixture was left at room temperature (26°C) and 110°C, it was 2.78V, respectively.

2.8vと組立直後と比較して大きく電圧が降下し、保
存による劣化が大であることが分かる。
It can be seen that the voltage has dropped significantly compared to 2.8V immediately after assembly, indicating that the deterioration due to storage has been significant.

第4図は、本発明の実施例の1つと従来例の電池を20
℃、5にΩで放電し、比較したものである。ムは比表面
積700 m”7gの炭素を(CzF)nと混合後、2
00’Cで2時間加熱処理したものに粘結材を加えたも
のを正極合剤とした電池の放電曲線である。Bは従来例
のアセチレンブラックを(02F)nと混合後、直ちに
粘結材を加えて正極合剤とした電池の放電曲線である。
FIG. 4 shows one of the embodiments of the present invention and a conventional battery of 20
A comparison was made by discharging at 5Ω at ℃. After mixing carbon with a specific surface area of 700 m''7g with (CzF)n,
This is a discharge curve of a battery in which the positive electrode mixture was heat-treated at 00'C for 2 hours and a binder was added thereto. B is a discharge curve of a battery of a conventional example in which acetylene black was mixed with (02F)n and then a binder was immediately added to prepare a positive electrode mixture.

また、ム′、B′t1それぞれム、Bの電池の60”l
:、1力月保存後の放電曲線である。
In addition, the 60"l of the batteries Mu' and B't1, respectively,
: is a discharge curve after storage for one month.

第4図より明らかなように、ム、A′はともにB。As is clear from Figure 4, both M and A' are B.

B′よりも放電電圧が高く、電圧の平坦性も良好であり
、かつ放電容量も犬である。さらに、従来例Bit、6
0℃、1力片保存後(B′)の劣化度は大であるのに対
して、本発明の実施個人では、60’C。
The discharge voltage is higher than that of B', the voltage flatness is also good, and the discharge capacity is also comparable. Furthermore, conventional example Bit, 6
While the degree of deterioration after storage at 0°C and one force (B') was large, the degree of deterioration after storage at 0°C was 60'C.

1力月惺存後(A′)でも、初度とほとんど同じ特例・
を示し、高温における保存特性も大きく改良さノしてい
ることが分かる。
Even after 1 Rikizuki's existence (A'), there are almost the same special provisions as at the beginning.
It can be seen that the storage properties at high temperatures are also greatly improved.

以上のように、本発明によれば、フッ化炭素(CzF)
n  を正極主活物質とする電池の放N電圧きる。
As described above, according to the present invention, carbon fluoride (CzF)
The discharge N voltage of a battery using n as the main active material for the positive electrode is:

また、フッ化炭素(OF)n及び(OF)nと(CzF
)nの混合物においても、以下の理由によシ同様の効果
が得られる。
In addition, fluorocarbon (OF)n and (OF)n and (CzF
)n mixtures also provide similar effects for the following reasons.

即ち、第2図から分かるように、(02F)nに比表面
積がs o Orn”/g以上の炭素を混合することに
よる、放電容量の増大と保存特性の改良、及び第3図か
ら分かる(02F)nと比表面積が大である炭素を混合
後200℃以上の温度で熱処理を行うことによる保存特
性の改良は、次のように考えることができる。
That is, as can be seen from Figure 2, by mixing carbon with a specific surface area of s o Orn''/g or more into (02F)n, the discharge capacity is increased and the storage characteristics are improved, and as can be seen from Figure 3 ( Improvement in storage properties by heat treatment at a temperature of 200° C. or higher after mixing 02F)n and carbon having a large specific surface area can be considered as follows.

一般に、フッ化炭素はその原料炭素と製造条件によって
、構造、物性及び電気化学的特性も大きく異なることが
知られており、条件によっては、吸着、吸蔵等により結
合力の弱いフッ素を多量に含有する場合もある。(02
F)nには、このような吸着、吸蔵等のフッ素や、化学
的、電気化学的に活性なフッ素、即ち結合力の弱いフッ
素が比較的多量に含まれやすい。このことはヨードメト
リーによる、ヨウ化カリウムからヨウ素を遊離させる酸
化力を有するフッ素量が、(02F)nでは(OF)n
の1−数倍多い場合が多数あることから明らかである1
、ところで、このよりなフッ化炭素に含まれる結合力の
弱い7ノ素は、放電中、保存中に、自己放電的にIF極
集電体あるいは電解質等と反応し消耗されるだけでなく
、電池の内部抵抗を増大させることが考えられ、従って
放電容量も低下する。
In general, it is known that the structure, physical properties, and electrochemical properties of fluorocarbon vary greatly depending on its raw material carbon and manufacturing conditions. In some cases. (02
F)n tends to contain a relatively large amount of adsorbed and occluded fluorine, as well as chemically and electrochemically active fluorine, that is, fluorine with weak binding strength. This means that the amount of fluorine, which has the oxidizing power to liberate iodine from potassium iodide, is determined by iodometry to be
It is clear from the fact that there are many cases where the number is one to several times higher than 1.
By the way, the 7 atoms with weak bonding strength contained in this strong fluorocarbon not only react with the IF electrode current collector or electrolyte in a self-discharge manner during discharge and storage, and are also consumed. It is conceivable that the internal resistance of the battery will increase, and therefore the discharge capacity will also decrease.

し2かし、例えば(02F、)nを比表面積の大きい炭
素と混合することにより、ヨウ化カリウムと反応するの
と同様に、(C2F)n中に含まれる結合力の弱いフッ
素が、炭素に吸着固定されたため、より安定化された状
態で、かつ導電性も良好であるので+l’:常に放電さ
れるだめ、放電容量が増大すると考えられる。また、フ
ッ化炭素と炭素との混合比率を一定とすると、当然炭素
は比表面積が大きく、吸l/、能力が大であるものが望
ましく、上記から明らかなように比表面積がs o o
 H)t7g以上の炭素を混合することが有用である。
However, for example, when (02F,)n is mixed with carbon having a large specific surface area, the weakly bonding fluorine contained in (C2F)n reacts with potassium iodide. Since it is adsorbed and fixed, it is in a more stable state and has good conductivity, so +l': It is thought that the discharge capacity increases because it is constantly discharged. Furthermore, assuming that the mixing ratio of fluorocarbon and carbon is constant, it is naturally desirable that carbon has a large specific surface area and a large absorption capacity; as is clear from the above, the specific surface area is so
H) It is useful to mix t7g or more of carbon.

また混合する炭素の導電性が良い方が望ましいが、導電
性の悪い炭素であっても、比表面積が大であれば、導電
性の良好な炭素と混合することによって解決できる。
Further, it is desirable that the carbon to be mixed has good conductivity, but even carbon with poor conductivity can be solved by mixing it with carbon having good conductivity, as long as it has a large specific surface area.

次に(02F)nと炭素の混合物を200℃以上で熱処
理を行うことにより、保存特性が改良されることは、炭
素に吸着固定されたフッ素を熱処理することにより、よ
り安定で強固な結合にするとともに、(02F)n中に
含まれる結合力の弱いフッ素をより完全に炭素に吸着固
定し、安定化させるためと考えられる。単に混合しただ
けでは、炭素に吸着固定されたフッ素は、保存中に再び
遊離し、正極集電体、電解質と反応し、電池の内部抵抗
を増大させ、放電特性が劣化するが、フッ化炭素と炭素
の混合物を200℃以上で熱処理することによって、炭
素中のフッ素をより安定化でき、保存による劣化を小さ
くできると考えられる。あるいは、比表面積が大である
活性炭、カーボンブラック等の炭素を、フッ化炭素に含
まれる結合力の弱いフッ素をフッ素源として、炭素の一
部のフッ素化を行っているとも考えられる。
Next, by heat-treating the mixture of (02F)n and carbon at a temperature of 200°C or higher, the storage properties are improved.By heat-treating the fluorine adsorbed and fixed on carbon, it becomes more stable and strong. At the same time, it is thought that this is to more completely adsorb and fix fluorine contained in (02F)n, which has a weak bonding force, to carbon, thereby stabilizing it. If the fluorine is simply mixed, the fluorine adsorbed and fixed on carbon will be liberated again during storage and react with the positive electrode current collector and electrolyte, increasing the internal resistance of the battery and deteriorating the discharge characteristics. It is thought that by heat-treating a mixture of carbon and carbon at 200° C. or higher, fluorine in carbon can be further stabilized and deterioration due to storage can be reduced. Alternatively, it is also possible that part of the carbon, such as activated carbon or carbon black, which has a large specific surface area, is fluorinated using fluorine, which has a weak bonding force and is contained in fluorinated carbon, as a fluorine source.

従って、混合物の熱処理温度範囲は、活性灰等を原料と
するフッ化炭素が安定である領域でなければならない。
Therefore, the temperature range for heat treatment of the mixture must be within a range in which fluorocarbon made from activated ash or the like is stable.

活性炭等を原料とするフッ化炭素の熱分解開始湯度は、
大体350〜400℃であることから混合物の処理温度
範囲は200℃以上400’Cリド75:望ましく、よ
り詳しくは混合する炭素を原料としたフッ化炭素の熱分
解開始温度以トである。
The temperature at which fluorocarbon starts to decompose using activated carbon, etc. as a raw material is:
Since the temperature is approximately 350 to 400°C, the processing temperature range of the mixture is preferably 200°C or higher (400'C Lido 75), more specifically, the temperature at which the fluorocarbon starts to decompose from the carbon to be mixed is the starting temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の扁平形電池の縦断面図、第
2図は正極混合炭素の比表面積と放電容I11°の関係
を、組立直後と60’l:、1力月保存後で!1;シた
グラフ、第3図は炭素と(CzF)nの混合後の処理温
度と端子電圧との関係を、組立直後と60℃、1力月後
で示したグラフ、第4図は本発明の実施例と従来例の電
池の放電特性の比較を示しだグラフである。 1・・・・・・封口板、2・・・・・・9極、3・・・
・・・セパレータ、6・・・・・・正極、7・・・・・
・ケース。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
図 第2図 工省門炭衆の比表面積(層シバ 弯3図 処メ嗜−シ羨!L c−c〉 第41Xl 詩 4ft−1187IQ (&s>
Fig. 1 is a longitudinal cross-sectional view of a flat battery according to an embodiment of the present invention, and Fig. 2 shows the relationship between the specific surface area of the positive electrode mixed carbon and the discharge capacity I11°, immediately after assembly and after storage at 60 liters for one month. later! 1; Figure 3 is a graph showing the relationship between processing temperature and terminal voltage after mixing carbon and (CzF)n, immediately after assembly and after 1 month at 60°C. Figure 4 is a graph showing the relationship between the processing temperature and terminal voltage after mixing carbon and (CzF)n. 1 is a graph showing a comparison of discharge characteristics of batteries according to an embodiment of the invention and a conventional example. 1... Sealing plate, 2... 9 poles, 3...
...Separator, 6...Positive electrode, 7...
·Case. Name of agent: Patent attorney Toshio Nakao and 1 other person11
Figure 2 Specific surface area of the Ministry of Industry and Trade (Layer Shiba 3) I envy! L c-c> No. 41Xl Poem 4ft-1187IQ (&s>

Claims (1)

【特許請求の範囲】[Claims] フッ化炭素を生活物質とし炭素を含む正極の製昂法であ
って、ifl記炭素が比表面積500 rn’/g以上
であり、この炭素とフッ化炭素との混合物を200〜4
00℃の温度で熱処理する工程を有することを特徴とす
る有機電解質電池用正極の製造法−
A method for producing a positive electrode containing carbon using fluorocarbon as a living material, in which carbon has a specific surface area of 500 rn'/g or more, and a mixture of this carbon and fluorocarbon is
A method for producing a positive electrode for an organic electrolyte battery, characterized by comprising a step of heat treatment at a temperature of 00°C.
JP57015837A 1982-02-02 1982-02-02 Manufacture of positive electrode for organic electrolyte battery Pending JPS58133764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015837A JPS58133764A (en) 1982-02-02 1982-02-02 Manufacture of positive electrode for organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015837A JPS58133764A (en) 1982-02-02 1982-02-02 Manufacture of positive electrode for organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS58133764A true JPS58133764A (en) 1983-08-09

Family

ID=11899944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015837A Pending JPS58133764A (en) 1982-02-02 1982-02-02 Manufacture of positive electrode for organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58133764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Similar Documents

Publication Publication Date Title
JPH08213053A (en) Lithium secondary battery
JP2711545B2 (en) Non-aqueous battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JPS5981869A (en) Manufacture of lithium battery
JP3052314B2 (en) Lithium battery
JPH08329985A (en) Non-water rechargeable lithium battery using phosphorus pentoxide
JPS58133764A (en) Manufacture of positive electrode for organic electrolyte battery
JPS60131768A (en) Organic electrolyte battery
JPS5987762A (en) Organic electrolyte battery
JP2844303B2 (en) Lithium secondary battery
JPH0329135B2 (en)
JP3115080B2 (en) Non-aqueous electrolyte battery
JP3443217B2 (en) Non-aqueous electrolyte battery
JPH0258738B2 (en)
JPH0338702B2 (en)
JP2714078B2 (en) Non-aqueous electrolyte battery
JPS58123663A (en) Nonaqueous electrolyte battery
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
JPS5826457A (en) Manufacture of positive pole active substance for non-acqueous electrolytic cell
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JPS60182664A (en) Nonaqueous electrolyte battery
JPH02262246A (en) Organic electrolyte battery
JPH0320861B2 (en)
JPH02253560A (en) Battery
JPH03219559A (en) Organic electrolyte battery