JPS58133581A - Controller for flow rate - Google Patents
Controller for flow rateInfo
- Publication number
- JPS58133581A JPS58133581A JP1672182A JP1672182A JPS58133581A JP S58133581 A JPS58133581 A JP S58133581A JP 1672182 A JP1672182 A JP 1672182A JP 1672182 A JP1672182 A JP 1672182A JP S58133581 A JPS58133581 A JP S58133581A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- cooling medium
- pipe
- refrigerant
- capillary tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/05—Compression system with heat exchange between particular parts of the system
- F25B2400/052—Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
Landscapes
- Flow Control (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、流量制御装置、特に冷凍サイクルにおける
冷媒流臘制御のための流m制御装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow control device, and particularly to a flow control device for controlling refrigerant flow in a refrigeration cycle.
妃1図は、従来の冷凍装置の冷凍サイクルの一例を示す
図で、また第2図は配圧装置の構造図であり、第1図中
の(1)は圧緬懺、(2)は凝縮器、(3)は毛細管、
(4)は蒸発! (5)は流域調整弁、(6)は弁リフ
ト調整装−1(7)は熱交換部でるる。第2図にお0て
(8)はパイプ、(9)はげ熱材でるる。Figure 1 is a diagram showing an example of the refrigeration cycle of a conventional refrigeration system, and Figure 2 is a structural diagram of a pressure distribution device. condenser, (3) is a capillary tube;
(4) is evaporation! (5) is the flow area adjustment valve, (6) is the valve lift adjustment device-1, and (7) is the heat exchange section. In Figure 2, (8) is a pipe, and (9) is a bald heat material.
このような従来の冷凍装−においては、圧縮幅(1)で
高温高圧となった冷媒ガスは、凝縮器(2)で冷却され
て液化し、毛細管(3)で低温低圧になって蒸発器(4
)に導かれる。そして蒸発器(4)内では冷媒液がガス
化する除に、周囲から収態して冷凍を行う。In such conventional refrigeration systems, refrigerant gas that has become high temperature and high pressure in the compression width (1) is cooled and liquefied in the condenser (2), becomes low temperature and low pressure in the capillary tube (3), and is then transferred to the evaporator. (4
). In the evaporator (4), the refrigerant liquid is not only gasified but also collected from the surroundings and frozen.
この後冷媒ガスは圧紀th (1)に吸入される。After this, the refrigerant gas is sucked into the pressure chamber th (1).
このような冷凍装置では、蒸発温度によって認正冷媒流
鎗が異なり通常では蒸発温度が高くなるにつれて大きな
冷媒流量が必要であることが知られている。そこで、例
えば蒸発しく4)出入口のmMを測定して、蒸発器(4
)の出口温度が入口の温度よシ少し高くなるように、つ
まり、蒸発器(4)出口で冷奴が完全にガス化してわず
かに渦熟度がつくように毛細管(3)の冷却−を調整す
れは、當に適正な冷媒流量が維持される。It is known that in such a refrigeration system, the certified refrigerant flow rate varies depending on the evaporation temperature, and normally, as the evaporation temperature increases, a larger refrigerant flow rate is required. Therefore, for example, measure the mM at the entrance and exit of the evaporator (4).
) The cooling of the capillary tube (3) is adjusted so that the temperature at the outlet of the evaporator (4) is slightly higher than the temperature at the inlet. As a result, a proper refrigerant flow rate is maintained.
この冷却−の関係は納8図に示すように、冷却臘が大き
くなるに従って冷鉢流−が増大する。これは毛細管(3
)の中で発生している冷媒の2相めし中ノカス含有−が
、冷却域が多くなるに従って少なくなるためbtt体抵
抗抵抗少して冷媒流ねか増加するためである。As shown in Figure 8, this cooling relationship increases as the cooling capacity increases. This is a capillary (3
This is because the amount of refrigerant generated in the two-phase refrigerant, which contains scum in the refrigerant, decreases as the number of cooling regions increases, so the refrigerant flow rate increases as the resistance of the btt body increases.
この特性を利用して、従来の装置では、たとえは蒸発器
(4)の出入口の温度をともに、弁リフト制kl 4j
eim 161により流欺稠整弁(5)の弁リフトを制
御して凝縮器(2)からの冷媒流量を島整し、低温とな
っ1こ冷媒が熱交換器部(9)で毛細管(3)内の冷媒
を冷却する。その冷却量を増減することで毛細管を通る
冷如・の流量を@卸していた。Utilizing this characteristic, in a conventional device, for example, the temperature at both the entrance and exit of the evaporator (4) is controlled by valve lift control.
eim 161 controls the valve lift of the flow regulating valve (5) to regulate the flow rate of refrigerant from the condenser (2), and the refrigerant reaches a low temperature and flows through the capillary tube (3) in the heat exchanger section (9). ) to cool the refrigerant inside. By increasing or decreasing the amount of cooling, the flow rate of cold through the capillary was controlled.
従来の冷凍@画は以上のように構成されていたか、毛細
管(3)をパイプ(8)に接触させてコイル状にさいて
いるため、毛細幅(3)とパイプ(8)との接触面倒が
十分確保できず、また接触が不十分をなって十分な性能
が得られないという欠点があった。Conventional refrigeration systems are constructed as described above, or because the capillary tube (3) is coiled in contact with the pipe (8), the contact between the capillary width (3) and the pipe (8) is troublesome. However, there were disadvantages in that sufficient contact could not be ensured and sufficient performance could not be obtained due to insufficient contact.
この発明は、上記のような従来のものの欠点を除去すべ
くなされたもので、以下、この発明の一実施か1につい
て説明する。すなわち、第4図に示すように直状のパイ
プ(8)内に直状で、所定長の毛細管(3)を挿通させ
て二重管(至)を形成すると共にこの二重物(ハ)の途
中をコイル状にも6回し、毛細幅(3)とパイプ(8)
との1田には冷却媒体の流通路…、また、毛細管(3)
内には仮冷却媒体の流辿謔(財)か形成されている。そ
して、パイプ(8)の−嶋には冷却媒体の入口(80a
)を有する配管継手−が接続されておυ、毛細管(3)
の入口(8a)が配貨継手−〇管支接部(sob)を貫
通して外部へ導出されると共にこの毛細!r (3)の
入口(8a)は凝縮器(2〕に接続され、また冷却量、
体の入口(80a)は流重印、墳整弁(5)に接続され
る。一方、パイプ(8)の他嶋には配管継手Wllが接
続されており、この配管継手−の出口(81m)は蒸発
器(4)に接続される。また、この配愉継手βυ内には
毛#il官(3)の出口(8b)が開口しておシ、ここ
で、各流通b GlJ @からの冷却媒体、および被冷
却媒体が合流し、蒸発器(4)へ流入する。This invention was made to eliminate the drawbacks of the conventional ones as described above, and one embodiment of the invention will be described below. That is, as shown in FIG. 4, a straight capillary tube (3) of a predetermined length is inserted into a straight pipe (8) to form a double tube (C). 6 times in the middle of the coil, capillary width (3) and pipe (8)
There is a flow path for the cooling medium... and a capillary tube (3).
A temporary cooling medium flow path is formed inside. The pipe (8) has a cooling medium inlet (80a).
) is connected to the pipe fitting υ, capillary tube (3)
The inlet (8a) of the pipe passes through the distribution joint-〇 pipe support part (sob) and is led out to the outside, and this capillary! The inlet (8a) of r (3) is connected to the condenser (2), and the cooling amount,
The inlet (80a) of the body is connected to the flow-up seal and the burial valve (5). On the other hand, a pipe joint Wll is connected to the other end of the pipe (8), and the outlet (81m) of this pipe joint is connected to the evaporator (4). In addition, an outlet (8b) of the hair shaft (3) is opened in this distribution joint βυ, where the cooling medium from each distribution b GlJ @ and the medium to be cooled join, It flows into the evaporator (4).
これらの作用については従来の装置と同様であるが、こ
の発明では毛細管(3)内に流れる冷媒とパイプ(8)
円を流れる冷媒は、毛細管(3)の表面全lで熱交換す
ることができるとともに、パイプ(8) Pi jk流
れる冷奴は、冷却媒体の流通路(ホ)の内径が比較υソ
小、さいため、(通常、毛細管(3)外径の利2倍柱曳
の内径)冷媒流速が速(7,、′シ、熱伝達か促進され
、極めて艮好な性能を確保することができる。These actions are similar to those of conventional devices, but in this invention, the refrigerant flowing in the capillary tube (3) and the pipe (8)
The refrigerant flowing in the circle can exchange heat over the entire surface of the capillary tube (3), and the inner diameter of the cooling medium flow path (e) is relatively small. Therefore, the refrigerant flow rate is increased (usually, the inner diameter of the capillary tube (3) is doubled by the outer diameter of the capillary tube (3)), and heat transfer is promoted, thereby ensuring extremely good performance.
以上の例では、簡単な冷凍装置について示したが、ヒー
トポンプ装置に用いてもよく本減圧装置をf!I!M
+[(受用することによシ、制卸範囲を広くすることも
できる。In the above example, a simple refrigeration system was shown, but this decompression device may also be used in a heat pump system. I! M
+[(By accepting it, you can also widen the range of control.
以上のよう1こ、この発明によれば、毛細管を、別の流
註調整弁にて冷却した冷U〃を流通させる管(ハ)に押
通して二本管を形成すると共にこの二重管をコイル状に
巻回したので、毛細管の表面が全面に歿って伝熱部とな
υ、かつ比較的狭い冷却媒体流通路のため、流速が速く
なυ、熱伝達か促進されるものであシ、製作も容易で安
価に、しかも流−制仙;において十分な性能を発抑させ
ることができる効果がある。As described above, according to the present invention, a capillary tube is forced through a tube (c) through which cold U cooled by another flow control valve is passed through to form a double tube. Since the capillary is wound into a coil, the entire surface of the capillary tube becomes a heat transfer area υ, and because the coolant flow path is relatively narrow, the flow rate is fast υ, which promotes heat transfer. It is easy to manufacture and inexpensive, and has the effect of suppressing sufficient performance in the flow control process.
第1図は従来の冷凍装置のサイクル図、第2図は従来の
減圧装置の構造図、第8図は減圧装置入口の過冷却度と
冷媒流りの関係を示す図、第4図はこの発明の一実施例
を示す減圧装置の構造図を示す。
図中、(1)・・・圧相機、(2)・・・IR紬器、(
3)・・・鼠圧装に1(4)・・・蒸発器、(5)・・
・流′M調整弁、(6)・・・弁リフト調整装置、(7
)・・・熱交換部、(8)・・・パイプ、(9)・・・
断熱材、叫・・・冷却媒体流通路、(ハ)・・・被冷却
棹体流通路、(3)・・・二重管である。
向、図中同一符号は同−又は相当部分を示す。
代理人 葛野信−
第1図
第2図
第3図
澄即量−Figure 1 is a cycle diagram of a conventional refrigeration system, Figure 2 is a structural diagram of a conventional pressure reducing system, Figure 8 is a diagram showing the relationship between the degree of subcooling and refrigerant flow at the inlet of the pressure reducing system, and Figure 4 is a diagram of this system. 1 shows a structural diagram of a pressure reducing device showing an embodiment of the invention. In the figure, (1)... pressure phase machine, (2)... IR pongee, (
3)... In the inguinal pressure system (4)... Evaporator, (5)...
・Flow'M adjustment valve, (6)... Valve lift adjustment device, (7
)...Heat exchange section, (8)...Pipe, (9)...
Insulating material, cooling medium flow path, (c)...cooled rod flow path, (3)...double pipe. The same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Fig. 1 Fig. 2 Fig. 3 Clear quantity -
Claims (1)
よシ冷却される被冷却媒体をに通させる毛細1と、上記
冷却媒体の泳鎗を調整する手段とを鋪え、上記冷却媒体
の冷却−を調整することにより、上記被冷却媒体の流域
を制御するようにしたものにおいて、上記冷却媒体流通
路を形成するパイプ内に上記毛細管を挿通して二本管を
構成し、この二重管をコイル状に巻回してなる流量制御
装置A cooling medium flow path through which a cooling medium flows, a capillary 1 through which a medium to be cooled to be cooled by the cooling medium passes, and means for adjusting the swimming spear of the cooling medium are provided, In the device in which the flow area of the medium to be cooled is controlled by adjusting the cooling, the capillary tube is inserted into the pipe forming the cooling medium flow path to form a double pipe. Flow rate control device made by winding a tube into a coil shape
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1672182A JPS58133581A (en) | 1982-02-03 | 1982-02-03 | Controller for flow rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1672182A JPS58133581A (en) | 1982-02-03 | 1982-02-03 | Controller for flow rate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58133581A true JPS58133581A (en) | 1983-08-09 |
Family
ID=11924123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1672182A Pending JPS58133581A (en) | 1982-02-03 | 1982-02-03 | Controller for flow rate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58133581A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112351A (en) * | 2009-11-30 | 2011-06-09 | Sanyo Electric Co Ltd | Refrigerating device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4722788U (en) * | 1971-03-01 | 1972-11-14 | ||
JPS533815A (en) * | 1976-06-30 | 1978-01-13 | Ibuki Kogyo Co Ltd | High strength ultrasonic wave vibrator and method of producing same |
-
1982
- 1982-02-03 JP JP1672182A patent/JPS58133581A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4722788U (en) * | 1971-03-01 | 1972-11-14 | ||
JPS533815A (en) * | 1976-06-30 | 1978-01-13 | Ibuki Kogyo Co Ltd | High strength ultrasonic wave vibrator and method of producing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112351A (en) * | 2009-11-30 | 2011-06-09 | Sanyo Electric Co Ltd | Refrigerating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3051420B2 (en) | Air conditioner and method of manufacturing indoor heat exchanger used for the device | |
US6591902B1 (en) | Apparatus for applying controllable, multipurpose heat pipes to heating, ventilation, and air conditioning systems | |
US2775683A (en) | Heat exchangers for vaporizing liquid refrigerant | |
US3566615A (en) | Heat exchanger with rolled-in capillary for refrigeration apparatus | |
US3638446A (en) | Low ambient control of subcooling control valve | |
DK161855B (en) | COOLING CIRCUIT WITH AN UNCOLDER ORGANIZATION | |
US2481348A (en) | Air-conditioning apparatus with defrosting means | |
US20190041069A1 (en) | An air conditioner | |
JP6491791B2 (en) | Double pipe | |
US5095711A (en) | Method and apparatus for enhancement of heat pump defrost | |
US5109677A (en) | Supplemental heat exchanger system for heat pump | |
JP3662238B2 (en) | Cooling device and thermostatic device | |
JPS58133581A (en) | Controller for flow rate | |
JPH0536704B2 (en) | ||
US5913891A (en) | Thermal expansion valve and system including such device and method for making such device | |
USRE26695E (en) | Air conditioning systems with reheat coils | |
JP2001317854A (en) | Refrigerator | |
JPS58120068A (en) | Controller for flow rate | |
JPH10115495A (en) | Heat transfer tube for in-pipe condensation | |
US5163304A (en) | Refrigeration system efficiency enhancer | |
GB2040428A (en) | Improvements in or relating to compressor refrigeration circuits | |
JPS58120066A (en) | Controller for flow rate | |
JPS6343660B2 (en) | ||
JPS58120069A (en) | Controller for flow rate | |
JP2001174078A (en) | Controlling device of outlet-side refrigerant of evaporator |