JPS58133543A - Hot water supply device for air conditioning - Google Patents

Hot water supply device for air conditioning

Info

Publication number
JPS58133543A
JPS58133543A JP57016722A JP1672282A JPS58133543A JP S58133543 A JPS58133543 A JP S58133543A JP 57016722 A JP57016722 A JP 57016722A JP 1672282 A JP1672282 A JP 1672282A JP S58133543 A JPS58133543 A JP S58133543A
Authority
JP
Japan
Prior art keywords
hot water
heat pump
heat exchanger
circuit
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57016722A
Other languages
Japanese (ja)
Other versions
JPS6251370B2 (en
Inventor
Hiroaki Hama
浜 宏明
Masami Imanishi
正美 今西
Koji Ishikawa
石川 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57016722A priority Critical patent/JPS58133543A/en
Publication of JPS58133543A publication Critical patent/JPS58133543A/en
Publication of JPS6251370B2 publication Critical patent/JPS6251370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to perfomer a comfortable air conditioning operation and to supply hot water of a sufficiently high temperature by a method wherein the air conditioning operation of a heat pump is performed by controlling the capacity of the heat pump in proportion to the air conditioning load applied on the pump while the hot water supply operation of the heat pump is performed without controlling the capacity of the pump. CONSTITUTION:A circulation pump 3 circulates the hot water obtained by the heat pump 1 through a supply hot water heat exchanger via a supply hot water circuit 7 and also circulates hot water obtained by a service side heat exchanger 13 of the heat pump 1, through a fan coil unit 4. Further, changeover valves 5 and 6 switch selectively the hot water circuit 7 and a cold water circuit 8 such that the circuit 7 is operated at the time of hot water supply while the circuit 8 is operated at the time of cooling operation. In addition, a capacity control means comprising high and low temperature side contacts of a thermostat 10 for heating and high and low temperature side contacts of a thermostat 9 for cooling is provided so that the capacity of the heat pump 1 is controlled in proportion to the amount of load applied on the heat pump at the time of cooling and heating operations while the heat pump is operated to the full capacity by a full capacity operating means comprising the high temperature side contact of the thermostat 10 at the time of hot water supply.

Description

【発明の詳細な説明】 この発明は、ヒートポンプ装置を用い、且つ水回路切換
えにまり、給湯および冷暖房を行う冷暖房給湯装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-conditioning/heating/water supply system that uses a heat pump device and switches water circuits to supply hot water and perform air conditioning/heating.

従来、圧縮機、四方切換弁、・利用側熱交換器、絞り装
置、非利用側熱交換器を順次配管接続し、周知のヒート
ポンプサイクルにより冷温水を供給するヒートポンプ装
置と、このヒートポンプ装置と水配管接続される給湯タ
ンクとファンコイルユニットとを用いて冷暖房並びに給
湯を行う冷暖房給湯装置において、ファンコイルユニッ
トを用イル冷暖房運転時には負荷の変動に応じてこのヒ
ートポンプ装置の容量(能力)を制御し、快適な冷d房
を経済的に行うための容量制御手段を備えているのが一
般的であり、普通ヒートポンプ装置の復水温度を検出し
て容量制御している。しかしながら、前述の容量制御手
段を備えた冷暖房給湯装置にまり、給湯タンクを用いる
給湯運転を行った場合、給湯タンク内の温水温度が比較
的高くなると、ヒートポンプ装置への復水温度が高くな
り、前述 ・の容量制御手段が作用してしまうので、−
一トポンプ装置の加熱能力が小さくなり、ヒートポンプ
装置の温水出口温度が低くな□る。その結果として給湯
タンク内の貯湯温度が低くなってしまうといった整置が
あった。
Conventionally, a heat pump device connects a compressor, a four-way switching valve, a heat exchanger on the user side, a throttling device, and a heat exchanger on the non-user side in sequence, and supplies cold and hot water through a well-known heat pump cycle. In an air-conditioning and water-heating system that uses a piping-connected hot water tank and a fan coil unit to perform cooling, heating, and hot water supply, the capacity (capacity) of the heat pump device is controlled according to load fluctuations during air-conditioning and heating operation using the fan coil unit. Generally, the heat pump device is equipped with a capacity control means to provide comfortable cooling economically, and the capacity is usually controlled by detecting the condensate temperature of the heat pump device. However, when using an air conditioning/heating water heater equipped with the above-mentioned capacity control means and performing hot water supply operation using a hot water tank, when the hot water temperature in the hot water tank becomes relatively high, the condensate temperature to the heat pump device becomes high. Since the capacity control means mentioned above comes into play, -
The heating capacity of the heat pump device becomes smaller, and the hot water outlet temperature of the heat pump device becomes lower. As a result, the temperature of the hot water stored in the hot water tank became low.

この発明は前述の如き欠点を除去すべくなされたもので
あり、冷暖房運転時には容量制御機能により快適な空調
を行い、且つ給湯運転時には容量制御機能を解除して出
湯温度の十分に高い給湯を可能ならしめる冷暖房給湯装
置を提供するものである。
This invention was made to eliminate the above-mentioned drawbacks, and provides comfortable air conditioning using the capacity control function during cooling/heating operation, and releases the capacity control function during hot water supply operation to supply hot water with a sufficiently high hot water temperature. The purpose is to provide an air conditioning, heating, and hot water supply system that adjusts the temperature.

以ト、この発明の一実施例を図Cと基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on FIG.

第1図において、(l)は互いに独立したふたつのヒー
トポンプサイクルより構成されているヒートポンプ装置
であり、aυおよびMはそれぞれ第1の圧縮機おまび第
2の圧縮機、卯およびQηはそれぞれ第1の四方切換弁
おまび第2の四方切換弁、明おまびQ9はそれぞれ第1
の非利用側熱交換器および第2の非利用側熱交換器、α
尋おまび(至)はそれぞ。
In FIG. 1, (l) is a heat pump device composed of two mutually independent heat pump cycles, aυ and M are the first and second compressors, respectively, and rabbit and Qη are the heat pumps, respectively. The four-way switching valve No. 1, the second four-way switching valve, and the Akomabi Q9 are the first four-way switching valve, respectively.
of non-use side heat exchanger and second non-use side heat exchanger, α
Hiroomabi (to) is each.

れ第1の絞り装置および第2の絞り装置である。These are a first diaphragm device and a second diaphragm device.

Q1はそれぞれのヒートポンプサイクルを共有している
利用側熱交換器であり、第1の熱交換器(18c)おま
び第2の熱交換器(18d)の水回路が並列接続されて
おり、水流入口(18a)より水を取り入れ、第1おま
び第2の熱交換器(18c)(18d)内でヒートポン
プサイクルの冷媒回路と熱交換した水を水流出口(18
b)より取り出すよう構成している。(2)はヒートポ
ンプ装置(1)の利用側熱交換器Q3.!り供給される
温水と給湯用熱交換器(2a)を介し、熱交換して得ら
れる給湯水を貯える給湯タンクであり、補給水管(2b
)、おまび出湯管(2c)を有し、補給水管(2b)よ
り取り入れられた給湯水は、給湯熱交換器(2a)に謙
り昇温され、出湯管(2c)より給湯水として使用され
る。(3)は冷温水を循環するため、後述の水回路途中
に設けられた循環ポンプ、(4)は室内に設置され、ヒ
ートポンプ装置(1)より供給された冷温水にまり室内
の冷暖房を行うファンコイルユニットである。(5)お
よび(6)はそれぞれ後述の水回路途中に設けられた第
1の回路切換弁および第2の回路切換弁であり、第1の
回路切換弁(5)が開、第2の回路切換弁(6)が閉の
場合には、水回路はヒートポンプ装置(1)の利用側熱
交換器(至)と給湯タンク12)の給湯熱交換器(2a
)とを連通し、給湯水回路(7)を形成する。また、第
1の回路切換弁(5)が閉、第2の回路切換弁(6)が
開の場合には、水回路はヒートポンプ装置(1)の利用
側熱交換器(至)とファンコイルユニット(4)とを連
通し、冷温水回路(3)を形成する。すなわち、給湯用
熱交換器(2a)とファンコイルユニット(4)は互い
に並列接続され、各回路切換弁f5) (61の切換え
にまり選択的に作用する。(9)おまび(1(lはそれ
ぞれヒートポンプ装置(1)の水流入口(18a)に設
置された冷房用サーモスタットおまび暖房用サーモスタ
ット、(イ)は給湯タンク(2]内に設けられた給湯サ
ーモスタットであり、上記各サーモスタット(91QG
と共にヒートポンプ装置(1)および循環ポンプ(3)
の運転を制御する。また、上記冷房用サーモスタット(
9)おまび暖房用サーモスタットQ(Iは2ステツプの
温度調節が可能となっており、独立したふたつのヒート
ポンプサイクルの運転制御を個別にできるまうになって
いる。なお、図中実線矢印おまび破線矢印はそれぞれヒ
ートポンプ装置(1)の加熱運転時および冷却運転時の
冷媒流れ方向を示し、また白ぬき矢印および黒ぬり矢印
はそれぞれ給湯運転時および冷暖房運転時の水流れ方向
を示している。
Q1 is a user-side heat exchanger that shares the respective heat pump cycles, and the water circuits of the first heat exchanger (18c) and the second heat exchanger (18d) are connected in parallel, and the water flow is Water is taken in from the inlet (18a), heat exchanged with the refrigerant circuit of the heat pump cycle in the first and second heat exchangers (18c) (18d), and the water is then transferred to the water outlet (18).
b) It is configured to be taken out from the (2) is the user-side heat exchanger Q3 of the heat pump device (1). ! This is a hot water tank that stores hot water obtained by exchanging heat with the hot water supplied by the hot water supply via the hot water heat exchanger (2a), and the makeup water pipe (2b).
), has a hot water outlet pipe (2c), hot water taken in from the make-up water pipe (2b) is heated in the hot water heat exchanger (2a), and used as hot water from the hot water outlet pipe (2c). be done. (3) is a circulation pump installed in the middle of the water circuit, which will be described later, to circulate cold and hot water, and (4) is installed indoors, and the cold and hot water supplied from heat pump device (1) is used to cool and heat the room. It is a fan coil unit. (5) and (6) are a first circuit switching valve and a second circuit switching valve, respectively, which are provided in the middle of the water circuit, which will be described later. When the first circuit switching valve (5) opens, the second circuit When the switching valve (6) is closed, the water circuit is connected to the user-side heat exchanger (to) of the heat pump device (1) and the hot water supply heat exchanger (2a) of the hot water supply tank 12).
) to form a hot water supply circuit (7). In addition, when the first circuit switching valve (5) is closed and the second circuit switching valve (6) is open, the water circuit is connected to the user-side heat exchanger (to) of the heat pump device (1) and the fan coil. It communicates with the unit (4) to form a cold/hot water circuit (3). That is, the hot water supply heat exchanger (2a) and the fan coil unit (4) are connected in parallel with each other, and act selectively depending on the switching of each circuit switching valve f5) (61. are a cooling thermostat and a heating thermostat installed at the water inlet (18a) of the heat pump device (1), respectively, (a) is a hot water thermostat installed in the hot water tank (2), and each of the above thermostats (91QG
together with heat pump device (1) and circulation pump (3)
control the operation of In addition, the above cooling thermostat (
9) Omabi Heating Thermostat Q (I is capable of 2-step temperature adjustment, and can independently control the operation of two independent heat pump cycles. In the figure, the solid line arrow Broken line arrows indicate the refrigerant flow direction during heating operation and cooling operation of the heat pump device (1), respectively, and white arrows and black arrows indicate the water flow direction during hot water supply operation and cooling/heating operation, respectively.

次に、電気回路について説明する。第2図において、脅
および(イ)はそれぞれ第1の圧縮機αυおまび第2の
圧縮機αQの電動機、骨は循環ポンプ(3)の電動−、
(ハ)、gB、−は順次運転スイッチ、冷暖切換スイッ
チおよび給湯指令スイッチである。弼おまび(27a)
はそれぞれ第1の圧縮機Qη用電磁接触器コイルおまび
その接点、(ト)および(28a)はそれ” ぞれ第2
の圧縮機α0用電磁接触器コイルおよびその接点、翰お
よび(29a)(29b)はそれぞれ循環ポンプ(3)
用電磁接触器コイルおよびその接点である。
Next, the electric circuit will be explained. In Fig. 2, the electric motors of the first compressor αυ and the second compressor αQ are indicated by (a) and the electric motor of the circulation pump (3), respectively.
(c), gB, - are sequential operation switches, cooling/heating changeover switches, and hot water supply command switches. Niomabi (27a)
are the magnetic contactor coil and its contacts for the first compressor Qη, respectively, (g) and (28a) are the second
The electromagnetic contactor coil for the compressor α0, its contacts, and (29a) and (29b) are the circulation pump (3), respectively.
electromagnetic contactor coil and its contacts.

(至)おまび(ロ)はそれぞれ第1の回路切換弁(5)
および第2の回路切換弁(6)の電磁コイルであり、コ
イル通電時に水回路を開路する。(至)および(至)は
ヒートポンプ装置(1)内の冷媒流路を切換えることに
よりヒートポンプ装置(1)の加熱運転および冷却運転
を可能にならしめる第1の四方切換弁口および第2の四
方切換弁αηのそれぞれコイルであり、通電時には第1
図における実線矢印の如き冷媒流れ方向に切換えて加熱
運転を非通電時には破線矢印の如き冷媒流れ方向に切換
えて冷却運転を行わせる。
(to) and (b) are respectively the first circuit switching valves (5)
and an electromagnetic coil of the second circuit switching valve (6), which opens the water circuit when the coil is energized. (To) and (To) are a first four-way switching valve port and a second four-way switching valve port that enable heating operation and cooling operation of the heat pump device (1) by switching the refrigerant flow path in the heat pump device (1). Each of the switching valves αη is a coil, and when energized, the first
The heating operation is performed by switching to the refrigerant flow direction as shown by the solid line arrow in the figure, and the cooling operation is performed by switching to the refrigerant flow direction as shown by the broken line arrow when the power is not energized.

■おまび(84a)はそれぞれ運転指令用補助継電器コ
イルおよびその接点、(7)および(85a)(85f
 )はそれぞれ給湯指令用補助継電器コイルおよびその
接点、(至)おまび(86a)=(86d)はそれぞれ
暖房運転指令用補助継電器コイルおまびその接点である
■The supplements (84a) are the auxiliary relay coil for operation command and its contacts, (7) and (85a) (85f).
) are the auxiliary relay coil for hot water supply command and its contacts, and (to) (86a) = (86d) are the auxiliary relay coil for heating operation command and its contacts, respectively.

(ロ)および(87a)はサーモ短絡用補助継電器コイ
ルおよびその接点である。(至)および■は暖房用サー
モスタットαQおよび冷房用サーモスタット(9)の接
点であり、それぞれ高温側接点(88a )(89a 
)および低温側接点(88b)(89b)を有する。輪
は給湯タンク(2)内に設けられた給湯サーモスタット
(ホ)の接点である。
(b) and (87a) are a thermo-short circuit auxiliary relay coil and its contacts. (to) and ■ are the contacts of the heating thermostat αQ and the cooling thermostat (9), and are the high temperature side contacts (88a) (89a), respectively.
) and low temperature side contacts (88b) (89b). The ring is the contact point of the hot water thermostat (E) installed in the hot water tank (2).

次に;かかる構成の冷暖房給湯装置の動作について説明
する。初めに、夏季の冷房運転においては、冷暖切換ス
イッチ(ハ)および給湯指令スイッチ(7)は開路して
いるので、補助継電器コイル(7)は消勢されており、
その接点(85a )は閉路、接点(85c)は開路し
ている。従って、第1の回路切換弁コイルωは消勢筒2
の回路切換弁コイル(2)は付勢されるので、水回路は
ヒートポンプ装置′(1)、第2の回路切換弁(6)、
ファンコイルユニット(4)、循環ポンプ(3)と連通
する冷温水回路(8)を形成している。この状態より、
運転スイッチ(財)を投入すると、補助継電器コイル−
は付勢され、その接点(a4a)が閉路し、また接点(
85b)が閉路しているので、ポンプ用電磁接触器コイ
ル(2)が付勢されその接点(29a)が閉路し、循環
ポンプ(3)の電動機四に通電され、循環ポンプ(3)
は運転を開始して冷温水回路(83内の水を第1図の黒
ぬり矢印の如く循環する。一方、循環ポンプ(3)用電
磁接触器コイル(2)の接点(29b)が閉路、補助継
電器コイル(至)の接点(86a)(86b)は閉路、
接点(86c)(86d)#(開略しているので、冷房
用サーモスタット(9)の接点−が閉路している場合に
は、圧縮機東、(至)の用電磁接触器コイル@(ホ)が
付勢され、接点(27a)(28a)が閉路して、圧縮
機aυaSの用電動機(2)(2)が通電され、圧縮機
α1)a*は運転を開始する。なお、冷暖切換スイッチ
(2)および給湯指令スイッチ(7)が投入されていな
いので、四方切換弁コイル(至)(2)は非通電の状態
にあり、ヒートポンプ装置(11の冷媒流れ方向は第1
図の破線矢印のようになる。つまり、圧縮機aυa・は
り吐出された高温高圧ガス冷媒は、四方切換弁Q207
)を経由して非利用側熱交換器aSO*に導かれ、凝縮
潜熱を放熱して高圧液冷媒となり、絞り装置a4(7)
で減圧され低圧液冷媒となり熱交換器(18c)(18
d)に導かれ、利用側熱交換器(2)内に流入してくる
水より吸熱し低圧ガス冷媒となり、四方切換弁UQ7)
を経由して圧縮機(財)af)に戻るという周知の冷却
運転サイクルを形成する。そして、利用側熱交換器(2
)にて冷温水回路(8)内の水を冷却して、ファンコイ
ルユニット(4)へ循環ポンプ(3)により冷水を供給
し、室内の冷房を行うものである。前述の状態よりファ
ンコイルユニット(4)の運転台数の減少などの要因に
より冷房負荷が減少すると、冷温水回路(8)の復路水
温が低下し、冷房用サーモスタット(9)の高温側接点
(89a)が最初に開路し、第1の圧縮機仰用電磁接触
器コイル(財)が消勢されて第1の圧縮機東の運転が停
止し、容量制御運転に入る。更に、冷房負荷が減少し、
冷温水回路(81の復り路水温が更に低下すると、冷房
用サーモスタット(9)の低温側接点(89b)が開略
し、第2の圧縮機時用電磁接触器コイル(ト)が消勢さ
れて第2の圧゛縮機O・の運転は停止する。そして、冷
房負荷が増加するまで運転停止状態を維持し、冷房負荷
の増加に伴う冷温水回路(81の復路水温の上昇があれ
ば、冷房用サーモスクット(9)の接点−が閉路するの
で圧縮機QηQlGは運転を開始する。なお、運転開始
の順序は、最初に第2の圧縮機QQで、次に第1の圧縮
機αυという順序であり、以後、前述の冷房用サーモス
タット(9)により圧縮機QIIQ・、つまりヒートポ
ンプ装置(1)の運転は負荷に応じて制御される。次に
、冬季の暖房運転について説明する。水回路は、給湯指
令スイッチ(7)が投入されていないので、冷房運転時
同様、第1図の黒ぬく矢印の如く水が循環する冷温水回
路(8)を形成しており、ヒートポンプ装置(1)内の
冷媒流れ方向は、冷暖切換スイッチ(至)の投入にはり
各四方切換弁コイル(至)(至)が通電されるので、四
方切換弁Q2Q″hが暖房サイクルに切換わり、第1図
の実線矢印の如き冷媒流れ方向となり、利用側熱交換器
−は凝縮器として作用するので、利用側熱交換器圓に導
かれた水は昇温され温水となり、ファンコイルユニット
(4)にまり暖房を行うわけである。
Next, the operation of the air-conditioning, heating, and hot-water supply apparatus having such a configuration will be explained. First, in summer cooling operation, the cooling/heating selector switch (c) and the hot water supply command switch (7) are open, so the auxiliary relay coil (7) is deenergized.
The contact (85a) is closed, and the contact (85c) is open. Therefore, the first circuit switching valve coil ω is
Since the circuit switching valve coil (2) is energized, the water circuit is connected to the heat pump device' (1), the second circuit switching valve (6),
A hot and cold water circuit (8) is formed which communicates with the fan coil unit (4) and the circulation pump (3). From this state,
When the operation switch is turned on, the auxiliary relay coil
is energized, its contact (a4a) is closed, and its contact (a4a) is closed.
85b) is closed, the pump electromagnetic contactor coil (2) is energized and its contact (29a) is closed, energizing the electric motor 4 of the circulation pump (3), and the circulation pump (3)
starts operation and circulates water in the cold/hot water circuit (83) as shown by the black arrow in Figure 1.On the other hand, the contact (29b) of the magnetic contactor coil (2) for the circulation pump (3) is closed; The contacts (86a) (86b) of the auxiliary relay coil (to) are closed,
Contacts (86c) (86d) # (open), so if the contact - of the cooling thermostat (9) is closed, the electromagnetic contactor coil for the compressor east (to) @ (e) is energized, the contacts (27a) and (28a) are closed, the motors (2) and (2) of the compressor aυaS are energized, and the compressor α1)a* starts operating. Note that since the cooling/heating selector switch (2) and the hot water supply command switch (7) are not turned on, the four-way switching valve coil (to) (2) is in a de-energized state, and the refrigerant flow direction in the heat pump device (11) is in the non-energized state. 1
It will look like the dashed arrow in the figure. In other words, the high-temperature, high-pressure gas refrigerant discharged from the compressor aυa and the four-way switching valve Q207
) to the non-use side heat exchanger aSO*, which radiates the latent heat of condensation and becomes a high-pressure liquid refrigerant, which is then passed through the expansion device a4 (7).
The pressure is reduced in the heat exchanger (18c) and it becomes a low-pressure liquid refrigerant.
d), which absorbs heat from the water flowing into the user side heat exchanger (2) and becomes a low-pressure gas refrigerant, causing the four-way switching valve UQ7)
A well-known cooling operation cycle is formed in which the air is returned to the compressor (af) via the air. Then, the user side heat exchanger (2
) cools the water in the cold/hot water circuit (8) and supplies the cold water to the fan coil unit (4) by the circulation pump (3) to cool the room. When the cooling load decreases due to factors such as a decrease in the number of operating fan coil units (4) in the above-mentioned state, the return water temperature of the cold/hot water circuit (8) decreases, and the high temperature side contact (89a) of the cooling thermostat (9) decreases. ) is first opened, the first compressor upper electromagnetic contactor coil is deenergized, the operation of the first compressor east is stopped, and capacity control operation begins. Furthermore, the cooling load is reduced,
When the return path water temperature of the cold/hot water circuit (81) further decreases, the low temperature side contact (89b) of the cooling thermostat (9) opens and the second compressor magnetic contactor coil (T) is deenergized. Then, the operation of the second compressor O is stopped.Then, the operation is maintained in the stopped state until the cooling load increases, and if there is a rise in the return water temperature in the cold/hot water circuit (81) due to the increase in the cooling load, , the contact point - of the cooling thermocut (9) is closed, so the compressor QηQlG starts operating.The order of starting operation is first the second compressor QQ, then the first compressor αυ From then on, the operation of the compressor QIIQ, that is, the heat pump device (1) is controlled according to the load by the cooling thermostat (9) described above.Next, the heating operation in winter will be explained. Since the hot water supply command switch (7) is not turned on, the circuit forms a cold/hot water circuit (8) in which water circulates as shown by the black arrow in Figure 1, just like during cooling operation, and the heat pump device (1) ), the four-way switching valve coils (to) and (to) are energized when the cooling/heating selector switch (to) is turned on, so the four-way switching valve Q2Q''h switches to the heating cycle, and the first The refrigerant flow direction is as shown by the solid arrow in the figure, and the user-side heat exchanger acts as a condenser, so the water led to the user-side heat exchanger circle is heated and becomes hot water, which flows into the fan coil unit (4). Therefore, heating is performed.

この暖房運転の場合にヒートポンプ装置(1)の運転を
制御するのは、冷温水回路(81の復水温度を検出する
暖房用サーモスタットαGで、このサーモスタット叫に
よる圧縮機aηaOのサーモ停止順序およびサーモ復帰
順序は、冷房運転の場合と逆となる。
In the case of this heating operation, the operation of the heat pump device (1) is controlled by the heating thermostat αG that detects the condensate temperature in the cold/hot water circuit (81). The return order is the opposite of that for cooling operation.

つまり、サーモ停止の場合には、暖房用サーモスタッ)
 QGの低温側接点(88b)と第2の圧縮機(イ)用
電磁接触器コイル(ト)が、また、暖房用サーモスタッ
トαQの高温側接点(88a)と第1の圧縮機東用電磁
接触器コイル(財)がそれぞれ直列に接続されているの
で、第2の圧縮機a6が最初に停止し、次に第1の圧縮
機αηが停止する。また、サーモ復帰の場合は、第1の
圧縮機αυが運転し、次いで第2の圧縮機α@が運転す
る。
In other words, if the thermostat stops, the heating thermostat)
The low temperature side contact (88b) of the QG and the electromagnetic contactor coil (g) for the second compressor (a) are connected to the high temperature side contact (88a) of the heating thermostat αQ and the electromagnetic contact for the first compressor east. Since the compressor coils are connected in series, the second compressor a6 stops first, and then the first compressor αη. In addition, in the case of thermoreturn, the first compressor αυ is operated, and then the second compressor α@ is operated.

次に、給湯指令スイッチ四の投入にはる給湯運転時につ
いて説明する。給湯指令スイッチ(至)の投入にまり補
助継電器コイル−が付勢され、その接点(85a)(8
5b)は開路、接点(85’c )−(85f )は閉
路する。従って、第1の回路切換弁コイル(至)は付勢
、第2の回路切換弁コイル01は消勢されて水回路は、
ヒートポンプ装置′口)、第1の回路切換弁(5)、給
湯熱交換器(2a)、循環ポンプ(3)を連通ずる給湯
水回路(7)を形成する。また、ヒートポンプ装置(1
)内の冷媒流れ方向は、接点(85e )の閉路により
冷暖切換スイッチ(ハ)の操作に関係なく四方切換弁コ
イル(2)儲が通電されるので、第1図の実線矢印の如
き冷媒流れ方向、つまり、加熱運転サイクルを形成する
。一方、ヒートポンプ装置(11の運転は、補助継電器
コイル(至)が付勢され、その接点(86a)(86b
)は開路、接点(86c)(86d)が閉路しているの
で、第1の圧縮機011は暖房用サーモスタットα〔の
高温側接点(88a )により制御され、第2の圧縮機
Q6は暖房用サーモスタットaOの低温側接点(asb
)と、補助継電器接点(85f )と接点(87a )
との直列回路との並列回路により制御される。つまり、
かかる水回路および冷媒流れ方向にある冷暖房給湯装置
において、利用側熱交換器(至)にて昇温された給湯水
回路(7)内の温水は、循環ポンプ(3]にまり給湯熱
交換器(2a)に供給され、この給湯熱交換器(2a)
で給湯タンク+2)内の比較的低温の給湯水を昇温する
と − いう給湯運転を行っているわけである。この状態より、
ヒートポンプ装置(1)の運転を続行して給湯タンク+
23内の水温が上昇するにつれて、給湯水回路(7)内
のヒートポンプ装[(1)への復水温度が上昇し、暖房
用サーモスタット叫の低温側接点(88b)が作動する
。しかしながら、この場合暖房用サーモスタットQGの
高温側接点(88a )が閉路しているので補助継電器
コイル匈が付勢されており、その接点(87a)が閉路
し、且つ給湯指令用補助継電器接点(85f)が閉路し
ているので、第2の圧縮機QQ用電磁接触器コイル(至
)の付勢状態は維持され、第・2の圧縮機Qlの運転は
続行する。そして、さらに給湯タンク(2]内の温水温
度が上昇すると、暖房用サーモスタット(IQの高温側
接点(88a)も開路して、第1の圧縮機aη用電磁接
触器コイル(ロ)は消勢、第2の圧縮機aQ用電磁接触
器コイル(ト)も補助継電器接点(87a)の開路によ
り消勢″r、するので、各圧縮機aηa・は同時に運転
を停止する。ただし、前述の運転停止状態は給湯タンク
12)内の温水温度の沸き上がり完了を意味するもので
はなく、給湯タンク+2)内温水温度と給湯水回路(7
)内温水温度との温度差が小さくなることにまる給湯熱
交換器(2a)の熱交換能力の低下に伴ない、給湯水回
路+7)内温水の給湯熱交換器(2a)での水温低下量
が減少することに起因するものである。つまり、給湯熱
交換器(2a)の出入口温度差が小さくなるために、ヒ
ートポンプ装置(1)への復水温度が比較的高くなって
しまい、暖房用サーモスタットαQの高温側接点(88
a )が開路している状態にあるわけであるが、給湯指
令用補助継電器接点(85d)および給湯サーモスタッ
トい)の接点−を介して循環ポンプ(3)は運転を続行
しているので給湯熱交換器(2a)での熱交換は維持さ
tlており、復水温度は次第に低下し、所定温度まで低
下すれば、再び暖房用サーモスタットαOの高温側接点
(88a)が閉路し、各圧縮機αηa6は運転を開始し
給湯運転を行い、以後前述の如き運転サイクルを繰り返
し、給湯タンク(2]内給湯水の平均温間は次第に上昇
していく。そして、遂には給湯タンク(21内温水平均
温度が所定温度(例えば50’C)に達すると、給湯サ
ーモスタット(ホ)の接点−が開路するので、ポンプ用
電磁接触器コイル翰が消勢され、その接点(29a)(
29b)が開路して、循環ポンプ(3)、各圧縮機α1
1QGの運転、は完全に停止する。なお、前述の給湯サ
ーモスタット(ホ)の設定温度、つまり給湯タンク(2
]内温水平均温度の上限値は、利用側熱交換器□□□の
水流出口(18b )部温水温度にまり決まるもので、
水流出口(18b)部温水温度より2〜8”(m <と
るのが一般的である。
Next, a description will be given of the hot water supply operation when the hot water supply command switch 4 is turned on. When the hot water supply command switch (to) is turned on, the auxiliary relay coil is energized, and its contacts (85a) (8
5b) is open, and contacts (85'c)-(85f) are closed. Therefore, the first circuit switching valve coil (to) is energized, the second circuit switching valve coil 01 is deenergized, and the water circuit is
A hot water supply circuit (7) is formed which communicates the heat pump device's opening), the first circuit switching valve (5), the hot water supply heat exchanger (2a), and the circulation pump (3). In addition, heat pump equipment (1
), the refrigerant flow direction is as shown by the solid arrow in Fig. 1 because the four-way switching valve coil (2) is energized by closing the contact (85e) regardless of the operation of the cooling/heating selector switch (c). direction, thus forming a heating operating cycle. On the other hand, in operation of the heat pump device (11), the auxiliary relay coil (to) is energized, and its contacts (86a) (86b
) is open, and the contacts (86c) and (86d) are closed, so the first compressor 011 is controlled by the high temperature side contact (88a) of the heating thermostat α, and the second compressor Q6 is controlled by the heating thermostat α. Low temperature side contact of thermostat aO (ASB
), auxiliary relay contact (85f) and contact (87a)
Controlled by a series circuit and a parallel circuit. In other words,
In such a water circuit and an air-conditioning/heating/water heater located in the direction of refrigerant flow, the hot water in the hot water supply circuit (7) whose temperature has been raised by the user-side heat exchanger (to) gets stuck in the circulation pump (3) and passes through the hot water heat exchanger. (2a), and this hot water heat exchanger (2a)
The hot water supply operation is performed by raising the temperature of the relatively low temperature hot water in the hot water tank +2). From this state,
Continue to operate the heat pump device (1) and open the hot water tank +
As the water temperature in the hot water supply circuit (7) rises, the condensate temperature to the heat pump device (1) in the hot water supply circuit (7) rises, and the low temperature side contact (88b) of the heating thermostat operates. However, in this case, since the high temperature side contact (88a) of the heating thermostat QG is closed, the auxiliary relay coil is energized, its contact (87a) is closed, and the hot water supply command auxiliary relay contact (85f) is energized. ) is closed, the energized state of the electromagnetic contactor coil (to) for the second compressor QQ is maintained, and the operation of the second compressor Ql continues. Then, when the hot water temperature in the hot water tank (2) further rises, the high temperature side contact (88a) of the heating thermostat (IQ) also opens, and the magnetic contactor coil (b) for the first compressor aη is deenergized. , the electromagnetic contactor coil (g) for the second compressor aQ is also deenergized by the opening of the auxiliary relay contact (87a), so each compressor aηa stops operating at the same time.However, the operation described above The stopped state does not mean that the temperature of the hot water in the hot water tank 12) has finished rising, but rather the temperature of the hot water in the hot water tank +2) and the hot water circuit (7).
) The water temperature in the hot water supply circuit + 7) decreases in the water temperature in the hot water heat exchanger (2a) due to the decrease in the heat exchange capacity of the hot water heat exchanger (2a) due to a decrease in the temperature difference between the internal hot water temperature and the internal hot water temperature. This is due to a decrease in the amount. In other words, since the temperature difference between the entrance and exit of the hot water heat exchanger (2a) becomes small, the condensate temperature to the heat pump device (1) becomes relatively high, and the high temperature side contact (88
a) is open, but the circulation pump (3) continues to operate via the hot water supply command auxiliary relay contact (85d) and the hot water supply thermostat contact (a), so the hot water is not heated. The heat exchange in the exchanger (2a) is maintained, and the condensate temperature gradually decreases, and when it drops to a predetermined temperature, the high temperature side contact (88a) of the heating thermostat αO closes again, and each compressor αηa6 starts operating and performs hot water supply operation, and thereafter repeats the operation cycle as described above, and the average temperature of the hot water in the hot water tank (2) gradually increases.Finally, the average temperature of the hot water in the hot water tank (21) increases. When the temperature reaches a predetermined temperature (for example, 50'C), the contact of the hot water supply thermostat (E) opens, so the pump electromagnetic contactor coil wire is deenergized, and its contact (29a) (
29b) is opened, and the circulation pump (3) and each compressor α1
1QG operation will stop completely. Note that the set temperature of the hot water thermostat (E) mentioned above, that is, the hot water tank (2
] The upper limit of the average internal hot water temperature is determined by the hot water temperature at the water outlet (18b) of the user-side heat exchanger □□□.
Generally, the temperature is 2 to 8 inches (m) lower than the temperature of the hot water at the water outlet (18b).

また、この発明では、給湯運転時の運転制御を暖房用サ
ーモスタットQQ高温側接点(88a)で兼用して使用
したが、給湯専用サーモスタットを別に利用側熱交換器
(13に取付けてもよく、また温度検出器としてサーモ
スタット以外にサーミスタ等の無接点温度検出素子を用
いても同様である。さらに、上記実施例では独立した複
数のヒートポンプサイクルの各々を発停させ容量制御す
るようにしたが、互いに並列接続された複、懺の圧縮機
を有する単一のヒートポンプサイクルを形成し、冷暖房
負荷に応じて順次圧縮機を発停させるか、あるいは単一
圧縮機を有するヒートポンプサイクルを形成し、圧縮機
の回転数制御により容量制御するまうにしても同様の効
果がある。
Further, in this invention, the high temperature side contact (88a) of the heating thermostat QQ is also used to control the operation during hot water supply operation, but a dedicated hot water supply thermostat may be separately attached to the user side heat exchanger (13). The same effect can be obtained by using a non-contact temperature detection element such as a thermistor in addition to a thermostat as the temperature detector.Furthermore, in the above embodiment, each of a plurality of independent heat pump cycles was started and stopped to control the capacity, but the Either form a single heat pump cycle with multiple compressors connected in parallel and turn the compressors on and off sequentially depending on the heating and cooling load, or form a heat pump cycle with a single compressor and A similar effect can be obtained even if the capacity is controlled by controlling the rotation speed.

以上のようにこの発明では、ヒートポンプ装置を空調運
転時には空調負荷に応じて容量制御運転を行い、給湯運
転時には容量制御を解除し全容量で運転するようにした
ので、空調運転時には空調負荷に見合った効率のよい空
調かできると共に給湯運転時にヒートポンプ装置の利用
側熱交換器で昇温される温水出口温度を高く維持するこ
とができ、給湯タンク内の到達給湯水温度を高くするこ
とができる。
As described above, in this invention, the heat pump device performs capacity control operation according to the air conditioning load during air conditioning operation, and releases capacity control and operates at full capacity during hot water supply operation. In addition to efficient air conditioning, the outlet temperature of the hot water raised by the heat exchanger on the user side of the heat pump device during hot water supply operation can be maintained high, and the ultimate hot water temperature in the hot water tank can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ、この発明の一実施例を
示す冷暖房給湯装置の系統図および要部の電気回路図で
ある。 図中、C1)はヒートポンプ装置、(2)は給湯タンク
、(2a)は給湯熱交換器、(3)は循環ポンプ、(4
)はファンコイルユニット、(5)および(6)は第1
の回路切換弁おまび第2の回路切換弁、(7)は給湯水
回路、(3)は冷温水回路、ancuiは圧縮機、叩α
ηは四方切換弁、05Q9は非利用側熱交換器、Q41
Qalは絞り装置、餞は利用側熱交換器(9)および■
は冷房用サーモスタット、および暖房用サーモスタット
、(88a)および(88b )は暖房用サーモスタッ
ト高温側接点および低温側接点、(89a)および(8
9b)は冷房用サーモスタット高温側接点および低温側
接点、翰おまび−は給湯サーモスタットおよびその接点
である。 代理人 島野信−
FIG. 1 and FIG. 2 are a system diagram and an electric circuit diagram of essential parts of an air-conditioning, heating, and hot-water supply system, respectively, showing an embodiment of the present invention. In the figure, C1) is a heat pump device, (2) is a hot water tank, (2a) is a hot water heat exchanger, (3) is a circulation pump, and (4) is a hot water supply tank.
) is the fan coil unit, (5) and (6) are the first
circuit switching valve and second circuit switching valve, (7) is the hot water supply circuit, (3) is the cold/hot water circuit, ancui is the compressor, and the
η is a four-way switching valve, 05Q9 is a heat exchanger on the non-use side, Q41
Qal is the diaphragm, and 餞 is the user-side heat exchanger (9) and ■
(88a) and (88b) are the heating thermostat high temperature side contact and low temperature side contact, (89a) and (88b) are the heating thermostat high temperature side contact and low temperature side contact.
9b) is a high-temperature side contact and a low-temperature side contact of a cooling thermostat, and 9b is a hot water supply thermostat and its contacts. Agent Makoto Shimano

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方切換弁、利用側熱交換器、絞り装置、おJ
び波利用側熱交換器からなるヒートポンプ装置と給湯時
にこのヒートポンプ装置の利用側熱交換器で得た温水に
より給湯熱交換器を介して昇温した給湯水を貯える給湯
タンクと、暖房あるいは冷房時に上記ヒートポンプ装置
の利用側熱交換器で得た温水あるいは冷水にまり暖房あ
るいは冷房を行なうファンコイルユニットと、上記ヒー
トポンプ装置の利用側熱交換器と上記給湯熱交換器とを
連通ずる給湯水回路と、上記ヒートポンプ装置の利用側
熱交換器と上記ファンコイルユニットを連通ずる冷温水
回路と、上記ヒートポンプ装置で得た温水を上記給湯水
回路を介して上記給湯熱交換器へ、また上記ヒートポン
プ装置の利用側熱交換器で得た温水あるいは冷水を上記
ファンコイルユニットへ循環させる循環ポンプと、上記
給湯時は上記給湯水回路を、また上記暖房および冷房時
は冷温水回路を選択的に作用させるJうに回路切換を行
なう切換弁と、上記暖房あるいは冷房時に、暖房あるい
は冷房負荷の大きさに応じて上記ヒートポンプ装置の容
量を制御する容量制御用手段と、上記給湯時に、上記容
量制御用手段の作動を無効化して上記ヒートポンプ装置
を全容量で運転させる全容量運転用手段とを備えた冷暖
房給湯装置。
Compressor, four-way switching valve, heat exchanger on the user side, throttling device,
A heat pump device consisting of a heat exchanger on the use side of the heat pump device, a hot water tank that stores hot water heated through the hot water heat exchanger by the hot water obtained by the heat exchanger on the user side of the heat pump device during hot water supply, and a hot water tank that stores hot water heated through the hot water heat exchanger during heating or cooling. A fan coil unit that performs heating or cooling by being filled with hot water or cold water obtained by the heat exchanger on the user side of the heat pump device, and a hot water supply circuit that communicates the heat exchanger on the user side of the heat pump device with the hot water heat exchanger. , a cold/hot water circuit that communicates the user-side heat exchanger of the heat pump device with the fan coil unit; and a cold/hot water circuit that connects the heat exchanger of the heat pump device with the fan coil unit; A circulation pump that circulates hot water or cold water obtained by the heat exchanger on the user side to the fan coil unit, and selectively operates the hot water circuit when supplying hot water and the cold/hot water circuit during heating and cooling. a switching valve for switching the circuit; a capacity control means for controlling the capacity of the heat pump device according to the size of the heating or cooling load during the heating or cooling; and an operation of the capacity control means during the hot water supply. and full capacity operation means for operating the heat pump device at full capacity by disabling the heat pump device.
JP57016722A 1982-02-03 1982-02-03 Hot water supply device for air conditioning Granted JPS58133543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57016722A JPS58133543A (en) 1982-02-03 1982-02-03 Hot water supply device for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016722A JPS58133543A (en) 1982-02-03 1982-02-03 Hot water supply device for air conditioning

Publications (2)

Publication Number Publication Date
JPS58133543A true JPS58133543A (en) 1983-08-09
JPS6251370B2 JPS6251370B2 (en) 1987-10-29

Family

ID=11924152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016722A Granted JPS58133543A (en) 1982-02-03 1982-02-03 Hot water supply device for air conditioning

Country Status (1)

Country Link
JP (1) JPS58133543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309566A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Heating and cooling system
CN102269457A (en) * 2011-07-15 2011-12-07 广东同益电器有限公司 Direct current heat exchange full effective hot water air conditioning system
CN102287979A (en) * 2010-06-17 2011-12-21 东莞市精科冷气工程有限公司 New-energy icing-heating energy-storing and energy-saving system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309566A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Heating and cooling system
CN102287979A (en) * 2010-06-17 2011-12-21 东莞市精科冷气工程有限公司 New-energy icing-heating energy-storing and energy-saving system
CN102269457A (en) * 2011-07-15 2011-12-07 广东同益电器有限公司 Direct current heat exchange full effective hot water air conditioning system

Also Published As

Publication number Publication date
JPS6251370B2 (en) 1987-10-29

Similar Documents

Publication Publication Date Title
US3590910A (en) Heating-cooling air-conditioning system control
US3627030A (en) Heating cooling dehumidifying airconditioning system control
US4102390A (en) Control system for heat pump and furnace combination
JPS6237303B2 (en)
TWI588424B (en) Heat pump air condition system and control method thereof
US2135285A (en) Heat pump
US2748572A (en) Air conditioning system
US2713250A (en) Control for reversible refrigeration systems
JPS58133543A (en) Hot water supply device for air conditioning
JPS6244164B2 (en)
JP4169454B2 (en) Hot water storage hot water source
JPS6028895Y2 (en) Air conditioning/heating water heater
JP7221541B2 (en) outside air conditioner
JPS58124133A (en) Airconditioning equipment combined with hot water supply device
JP4390403B2 (en) Heating medium circulation type heating device
JP2001296051A (en) Hot water storage type hot water heater source device
JPS59161654A (en) Air cooling heat pump type air conditioner
JPH09243193A (en) Heat accumulative type air conditioner
JPS6323465B2 (en)
JPS58130913A (en) Air conditioning and hot water supplying apparatus
JPS58124134A (en) Airconditioning equipment combined with hot water supply device
JPH07151359A (en) Refrigerant circulation type air conditioning system
JPH05187735A (en) Heat pump
JPS6024370B2 (en) Air conditioning equipment
JPS5919602Y2 (en) Vehicle air conditioner