JPS5813184A - Scroll type compressor - Google Patents

Scroll type compressor

Info

Publication number
JPS5813184A
JPS5813184A JP11136681A JP11136681A JPS5813184A JP S5813184 A JPS5813184 A JP S5813184A JP 11136681 A JP11136681 A JP 11136681A JP 11136681 A JP11136681 A JP 11136681A JP S5813184 A JPS5813184 A JP S5813184A
Authority
JP
Japan
Prior art keywords
fluid
spiral
pressure
scroll
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11136681A
Other languages
Japanese (ja)
Other versions
JPS6037319B2 (en
Inventor
Kiyoshi Terauchi
清 寺内
Masaharu Hiraga
平賀 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Denki Co Ltd
Sanden Corp
Original Assignee
Sankyo Denki Co Ltd
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Denki Co Ltd, Sanden Corp filed Critical Sankyo Denki Co Ltd
Priority to JP11136681A priority Critical patent/JPS6037319B2/en
Publication of JPS5813184A publication Critical patent/JPS5813184A/en
Priority to US06/595,645 priority patent/US4490099A/en
Publication of JPS6037319B2 publication Critical patent/JPS6037319B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0246Details concerning the involute wraps or their base, e.g. geometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To restrain the leakage of fluid caused by the difference of the change of thermal expansion by changing the thickness of the wall of a scroll body between its central and circumferential part to construct the wall thickness of the circumferential part a little thinner for ensuring the linear contact between scroll bodies in a pocket part of high-pressure fluid. CONSTITUTION:Walls of two scroll bodies near their central parts are constructed a little thicker than in other parts for obtaining perfect linear contact. In this construction, even if a small error is given in the wall processing in other part, it cannot influence the seal at the central part, and even for the leakage of the non-contact part in the circumferential part, the small difference of pressure allows to restrain the influence to the volumetric efficiency at a low level. meanwhile, even when the temperature is risen during the operation of a compressor, since perfect linear contact can be obtained in the parts almost equal in the thermal rising rate, the generation of a gap caused by the difference of the change of thermal expansion at a high-pressure part can be prevented for also restraining the leakage of fluid.

Description

【発明の詳細な説明】 本発明は容積式流体圧縮装置、特に側板の一面上にうず
巻体を形成した一対のスクロール部材を両うず巻体が互
いに角度をずらせてかみ合うよう重ね合せ一方のスクロ
ール部材の相対的な円軌道運動によって両うず巻体間に
形成される密閉された流体ポケットを容積の減少を伴な
わせてうず巻体の中心へ移動させ、流体の圧縮作用を行
なうスクロール型圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive displacement fluid compression device, in particular, a pair of scroll members each having a spiral body formed on one surface of a side plate, which are stacked one on top of the other so that both spiral bodies mesh with each other at different angles. Scroll-type compression in which the sealed fluid pocket formed between both spiral bodies is moved to the center of the spiral body by the relative circular motion of the members, reducing the volume and compressing the fluid. It's about machines.

どのようなスクロール型圧縮機の動作原理は古くから公
知であシ第1図を参照して説明する。
The operating principle of a scroll compressor has been known for a long time and will be explained with reference to FIG.

二つのうず巻体1,2を角度をずらせて両うず巻体1,
2の間にうず巻体の相互接触部から相互接触部にわたる
限定された流体ポケット3を形成するよう互いにかみ合
い状態に配置し、一方のうず巻体1を他方のうず巻体2
に対して一方のうず巻体1の中心(0)が他方のうず巻
体2の中心(0)の周)を半径O−0′をもって公転す
るようにうず巻体1の自転を禁止しながら動かすと、流
体ポケット3はその容積を徐々に減少しつつ中央部へ移
動する。即ち、第1図(a)の状態からうず巻体1の公
転角が90°を示す第1図(b)、180°を示す第1
図(C)、270°を示す第1図(d)に示される如く
、一方のうず巻体(1)を移動させるとうす巻体の径方
向外周で形成された流体ポケット3の容積は中央に移動
するにしたがって徐々に減少して行く、360°回転し
た第1図(a)では両ポケットは中央部に移シ互いに接
続し、更に90°ずつ移動した第1図(b)(C)(d
)に示すように、流体ポケット6は狭まシ、第1図(d
)でほとんど零と力る。この間第1図(b)で開き始め
た外側の流体ポケットが第1図(C)(d)から(a)
に移る過程で新たな流体を取り込んで流体ポケットを作
る。
The two spiral winding bodies 1 and 2 are arranged at different angles to form a spiral winding body 1,
One spiral 1 is connected to the other spiral 2 in an interdigitated manner so as to form a confined fluid pocket 3 between the mutual contacts of the spirals 2.
While prohibiting the rotation of the spiral winding body 1, so that the center (0) of one spiral winding body 1 revolves around the center (0) of the other spiral winding body 2 with a radius O-0'. Upon movement, the fluid pocket 3 moves toward the center while gradually decreasing its volume. That is, from the state of FIG. 1(a), FIG. 1(b) shows that the revolution angle of the spiral body 1 is 90°, and
As shown in FIG. In Figure 1 (a), which is rotated 360 degrees, both pockets are moved to the center and connected to each other, and then further moved by 90 degrees in Figures 1 (b) and (C). (d
), the fluid pocket 6 is narrowed, as shown in FIG.
), the force is almost zero. During this time, the outer fluid pocket that started to open in Figure 1(b) changes from Figure 1(C)(d) to (a).
In the process of transferring, new fluid is taken in and a fluid pocket is created.

従って、うず巻体1,2の軸方向両端にシールした円板
状の側板を設は一方の側板の中央部に第1図中4で示す
如き吐出孔を設けておけば、径方向外周で取シ込まれた
流体が圧縮され、吐出孔4:1 から吐出されることとなる。
Therefore, if sealed disc-shaped side plates are provided at both ends of the spiral bodies 1 and 2 in the axial direction, and a discharge hole as shown in 4 in Fig. 1 is provided in the center of one of the side plates, the outer periphery in the radial direction can be The fluid taken in is compressed and discharged from the discharge hole 4:1.

即ち、このようなスクロール型圧縮機においては両うず
巻体間に形成される流体ポケットの移動による容積の減
少によって流体圧縮が行なわれている。この流体ポケッ
トは両うず巻体の線接触及、びうず巻体の先端面と他方
の側板の表面との接触がら移動し、流体ポケット内の流
体を圧縮している。
That is, in such a scroll type compressor, fluid compression is performed by reducing the volume due to movement of a fluid pocket formed between both spiral bodies. This fluid pocket moves due to the line contact between both spiral bodies and the contact between the tip end surface of the spiral body and the surface of the other side plate, thereby compressing the fluid within the fluid pocket.

゛ここで、第2図をも参照して圧縮サイクルについて説
明すると、第2図はクランク角に対する流体ポケット内
の圧力状態を示すもので一つの圧縮サイクルがクランク
回転で2回転となる場合を例示している。
゛Here, to explain the compression cycle with reference to Fig. 2, Fig. 2 shows the pressure state in the fluid pocket with respect to the crank angle, and exemplifies the case where one compression cycle consists of two revolutions of the crank. are doing.

圧縮サイクルはまず、うず巻体の最外端が対向するうず
巻体の壁面に接触し、吸入が終了した時点(第2図中A
点)で始まり、クランク角が2πとなる点(Q点)まで
は流体ポケット内の容積を減少しつつ内部圧力が序々に
上昇する。しかしρ点の直後(m点)でここまで圧縮さ
れてきた二つ      1の流体ポケットが吐出室に
連通ずる中央室に連通し一つのポケットとなる。この瞬
間吐出孔に弁装置が設けられていない場合にはポケット
内の圧力は吐出圧力と一致するまで急激に上昇すること
と゛なるが、弁装置が設けられている場合には、中央室
内の高圧流体とポケット内の圧縮流体が混合されて若干
の圧力上昇となシ、吐出圧力に達する点(n点)までう
ず巻体の運動によって圧縮され、吐出圧に達すると弁装
置が動作して中央室内の高圧流体を吐出室内に流出させ
ることとなる。従って中央室は吐出室と連通したのちは
一定の圧力を維持しつつ0点に至る。このようにクラン
ク角4πで一つの圧縮サイクルが完了するとトモに一つ
の圧縮サイクルの途中(第2図の例示ではクランク角2
πの時)で別の圧縮サイクル(a’T  、*−m#−
・・・)が始まシ順次サイクルが継続されることによシ
圧縮動作を行なうこととなるが、うず巻体間の線接触は
複数対で行なわれるためすべての接触を完全に行なうこ
とは難しい。もしこれらの接触点におい七間隙を生ずる
と圧岸動作中に圧縮流′体の漏れが生じ体積効率即ち冷
凍能力の低下を招くこととなる。この流体漏れは特に接
触点前後の圧力差の大きいところで問題となる。また中
央室の高圧部から次の室への流体漏れが増大すると第2
図中斜線で示すように流体ポケット内が圧力上昇し圧縮
動作の消費馬力即ち圧縮動作に要するトルクが増大する
ため中央室付近でのシール性を向上させる必要があった
The compression cycle begins when the outermost end of the spiral body comes into contact with the opposing wall surface of the spiral body, and the suction ends (A in Figure 2).
The internal pressure gradually increases while the volume inside the fluid pocket decreases until the crank angle becomes 2π (point Q). However, immediately after point ρ (point m), the two fluid pockets that have been compressed up to this point communicate with the central chamber that communicates with the discharge chamber, forming one pocket. If this instantaneous discharge hole is not equipped with a valve device, the pressure inside the pocket will rise rapidly until it matches the discharge pressure, but if a valve device is installed, the high-pressure fluid in the central chamber will The compressed fluid in the pocket is mixed, causing a slight pressure rise, and is compressed by the movement of the spiral body until the discharge pressure is reached (point n). When the discharge pressure is reached, the valve device operates and the central chamber of high-pressure fluid flows into the discharge chamber. Therefore, after the central chamber communicates with the discharge chamber, it reaches the zero point while maintaining a constant pressure. In this way, when one compression cycle is completed at a crank angle of 4π, there is a gap in the middle of one compression cycle (in the example shown in Fig. 2, the crank angle is 2π).
π) and another compression cycle (a'T , *-m#-
...) starts and the cycle continues sequentially to perform the compression operation, but since the wire contact between the spiral coils is made in multiple pairs, it is difficult to make all the contacts perfectly. . If a gap is created at these points of contact, compressed fluid will leak during the banking operation, resulting in a reduction in volumetric efficiency, ie, refrigeration capacity. This fluid leakage becomes a problem especially where there is a large pressure difference before and after the contact point. Also, if fluid leakage from the high pressure part of the central chamber to the next chamber increases, the second
As shown by diagonal lines in the figure, the pressure inside the fluid pocket increases and the horsepower consumption for the compression operation, that is, the torque required for the compression operation increases, so it was necessary to improve the sealing performance near the central chamber.

ところで、うず巻体の曲線は通常ピッチ(第2図中斜線
 −a2、a2−anあるいはす、−b2、b2−bn
間の一距離)が一定となる円の伸開線を用い二つのうず
巻体をa1〜an及びす、〜bn点で線接触させている
がうず巻体の部材を組合せ、スイングリンクあるいは偏
心プツシ−等の従動クランクによシ一方のスクロール部
材に相対的な円軌道運動を与えると、スクロール部材の
所要節回半径は誤差のなかで最も小さなピッチを有する
接触点により決定されてしまう。換言すると最も小さな
ピッチを有するうず巻体の壁面は対向する他方のうず巻
体の壁面に接触するのみで他の全ての接触すべき点では
間隙を生ずることとなり、圧縮流体の漏れが発生する。
By the way, the curve of the spiral body is usually pitched (diagonal lines -a2, a2-an or -b2, b2-bn in Fig. 2).
The two spiral bodies are brought into line contact at points a1 to an and ~bn using a circular expansion line with a constant distance (distance between When a driven crank such as a pusher gives relative circular orbital motion to one scroll member, the required turning radius of the scroll member is determined by the contact point having the smallest pitch among the errors. In other words, the wall surface of the spiral wound body having the smallest pitch only contacts the wall surface of the opposite spiral wound body, and gaps are created at all other points where contact should be made, resulting in leakage of compressed fluid.

これを避けようとするとうす巻体の加工に極めて高い精
度が要求されることになる。
If this is to be avoided, extremely high precision will be required in processing the thin roll.

一方、限られた精度の範囲では、うず券種のどの点で軌
道半径が決定されるかについては部品の個々のバラツキ
によって異なるため、流体漏れの発生箇所が中央室から
次の室までのものやより吸入面に近い側の室で発生する
ものもある。
On the other hand, within a limited range of accuracy, the point at which the trajectory radius is determined for the spiral type differs depending on individual variations in the parts, so if the fluid leak occurs from the central chamber to the next chamber, Some occur in chambers closer to the suction surface.

従って個々の圧縮機の性能(体積効率および成績係数)
のバラツキが非常に大きいものとなるので量産には不適
であるら また上述のような誤差のないスクロール部材を組合せて
圧縮動作を行なわせる場合でさえも動作中に発熱を生じ
スクロール部材周辺の温度が上昇し、スクロール部材も
当然熱膨張することとなるが温度上昇がスクロール部材
全体に対して一様であれば、うず巻体間の線接触部は均
等に変化するため問題を生ずることはない、が、実際の
使用状態にあっては、吐出部付近の、潟、、p上昇が外
周部の温度上昇に比してより大きくなるため熱膨張によ
シうず巻にひずみが発生し、線接触部に間隙が生じるこ
とがあり、またこの間隙は上記うず巻体壁面間の間隙と
相オって高圧流体ポケット内の流体漏れの原因となって
いた。
Therefore the performance of the individual compressor (volume efficiency and coefficient of performance)
It is not suitable for mass production because the variation in the temperature is very large, and even when the above-mentioned error-free scroll members are combined to perform compression operation, heat is generated during operation and the temperature around the scroll members decreases. As the temperature rises, the scroll member will naturally expand thermally, but if the temperature rise is uniform for the entire scroll member, no problem will occur because the line contact between the spirals will change evenly. However, in actual use, the rise in temperature near the discharge part is greater than the rise in temperature at the outer periphery, which causes distortion in the spiral due to thermal expansion, and the wire A gap may be formed at the contact portion, and this gap, together with the gap between the walls of the spiral body, causes fluid leakage in the high-pressure fluid pocket.

本発明は、このようなスクロール部材加工時に生ずるう
ず巻体の壁面加工誤差あるいは温度上昇に伴なう熱膨張
ひずみによる流体漏れが中央室付近で発生しないように
するため、意識的に流体漏れをその影響の少ない部分に
発生させ、これによシ製品性能を安定させることを目的
とするものである。
The present invention intentionally prevents fluid leakage in order to prevent fluid leakage from occurring in the vicinity of the central chamber due to errors in wall surface machining of the spiral body or thermal expansion strain caused by temperature rise. The purpose of this is to generate it in areas that are less affected by it, thereby stabilizing the performance of the product.

以下に本発明を実施例を示す図面を参照して説明する。The present invention will be explained below with reference to the drawings showing embodiments.

第4図は本発明の実施例を示すスクロ−1tし型圧縮機
の断面図で、圧縮機はフロントエンドプレー) 11寺
4とこれに設置されたカップ状部分12とから成る圧縮
機ノ・ウジング10を有している。
FIG. 4 is a sectional view of a scroll type compressor showing an embodiment of the present invention. It has Uzing 10.

該ハウジング10の内部には固定スクロール部材13と
可動スクロール部材14とが配設されて′L いる。ここで、固定スクロール部材13は一般に側板1
61とその一面上に形成したうず巻体132及び該うず
巻体132とは反対側の側板131上−に設けた脚部1
33とより構成され、該脚部163をカップ状部分12
の外方より該カップ状部分12を貫通して螺合するポル
ト15によってカップ状部分12の底部121内壁上に
固定している。またカップ状部分12内に固定された固
定スクロール部材13の側板161は、その外周面とカ
ップ状部分12の内壁間をシールすることにより該カッ
プ状部分12の内部空間を吐出室16と吸入室′17と
に仕切っている。
A fixed scroll member 13 and a movable scroll member 14 are disposed inside the housing 10. Here, the fixed scroll member 13 generally includes the side plate 1
61, a spiral body 132 formed on one surface thereof, and a leg portion 1 provided on the side plate 131 on the opposite side from the spiral body 132.
33, and the leg portion 163 is connected to the cup-shaped portion 12.
It is fixed onto the inner wall of the bottom part 121 of the cup-shaped part 12 by a port 15 which penetrates the cup-shaped part 12 from the outside and is screwed into the hole. Furthermore, the side plate 161 of the fixed scroll member 13 fixed within the cup-shaped portion 12 seals between its outer peripheral surface and the inner wall of the cup-shaped portion 12, thereby dividing the internal space of the cup-shaped portion 12 into the discharge chamber 16 and the suction chamber. '17.

可動スクロール部材14は側板141とその一面上に形
成したうず巻体142よ多構成され、該うず巻体142
は固定スクロール部材16のうず巻体162に対し、第
1図で説明したような作用を行なえるように組合されて
いる。そして可動スクロール部材14はフロントエンド
プレー)11に回転自在となるよう貫通、支承されてい
る主軸18の回転にしたがって自転することなく第1図
で説明したように円軌道上を公転運動する如く主軸18
に接合されている。ここで可動スクロール部材14の自
転を禁止しつつ公転運動させる機構については、種々の
公知機構にて実施され得るため詳細な説明は省略する。
The movable scroll member 14 includes a side plate 141 and a spiral body 142 formed on one surface thereof.
are combined with the spiral body 162 of the fixed scroll member 16 so as to be able to perform the action as explained in FIG. The movable scroll member 14 rotates in accordance with the rotation of the main shaft 18, which is rotatably supported by the front end play (11). 18
is joined to. Here, a detailed description of the mechanism for causing the movable scroll member 14 to revolve while inhibiting its rotation will be omitted since it can be implemented by various known mechanisms.

可動スクロール部材14が駆動されると、カップ状部材
12上に形成した吸入ポート19からケーシング10内
の吸入室17に流入された流体は両うず巻体132,1
42間に形成される流体ポケットに取り込まれ、可動ス
クロール部材14の運動に伴なって徐々に圧縮されつつ
中央部へ送られ、固定スクロール部材16の側板131
上に穿設した吐出口134から吐出室16へ圧送され、
さらに吐出ポート20からケーシング10外へ送シ出さ
れる。
When the movable scroll member 14 is driven, the fluid flowing into the suction chamber 17 in the casing 10 from the suction port 19 formed on the cup-shaped member 12 flows into both spiral bodies 132,1.
42 and is gradually compressed as the movable scroll member 14 moves, and is sent to the center of the side plate 131 of the fixed scroll member 16.
It is fed under pressure to the discharge chamber 16 from the discharge port 134 bored at the top,
Further, it is delivered out of the casing 10 from the discharge port 20.

ここで両スクロ゛−ル部材13.14のうず巻体132
.142は第5図(a)に示すように、それぞれの外壁
のみ内端Aより、伸開角で約2πラジアンはど巻き戻し
た点Cで段差をつけ、A−C部分をC−E部分よシ僅か
(a)だけ厚く形成し接触を行なうがC−E部はaだけ
間隙が生ずることになる。しかし、スクロール型圧縮機
の圧縮線でC−E部に対応するのは第2図(これは弁装
置を有する場合の特性図である)ではし」の比較的圧力
の低い部分であるため、接線前後の圧力差は小さく間隙
(α)が微小であれば流体漏れによる影響は少ない。実
施例では高圧圧縮を行なうm−1間が第5図(a)のA
 −’ C部に相当するがこの部分A−Cは上記間隙(
α)により良好なシールが維持される。
Here, the spiral body 132 of both scroll members 13 and 14
.. 142, as shown in Fig. 5(a), only the outer wall has a step at point C, which is unwound by about 2π radians at the expansion and opening angle from the inner end A, and the A-C part is connected to the C-E part. Although it is formed to be slightly thicker (a) to effect contact, there will be a gap (a) at the C-E portion. However, in the compression line of a scroll compressor, the part C-E corresponds to the relatively low pressure part in Figure 2 (this is a characteristic diagram for the case with a valve device). If the pressure difference before and after the tangent is small and the gap (α) is minute, the influence of fluid leakage will be small. In the example, the section m-1 where high-pressure compression is performed is A in Fig. 5(a).
-' Corresponds to part C, but this part A-C is the above gap (
α) maintains a good seal.

第2図においてうず券種の高圧部のシールが不良の場合
、A−ρ1m’−n’のようにガスブローバイにより内
部圧力が早く上昇する。このとき斜線部が圧縮時のエネ
ルギー損失に対応する。したがって高圧(m−n)部の
シールはエネルギー損失低減上重要であり、実施例は、
この重要領域のシールを確保しようとするものである。
In FIG. 2, if the seal in the high-pressure part of the spiral banknote type is defective, the internal pressure will rise quickly due to gas blow-by, as shown by A-ρ1m'-n'. At this time, the shaded area corresponds to energy loss during compression. Therefore, sealing the high pressure (m-n) part is important for reducing energy loss, and the embodiments are as follows:
The aim is to ensure the sealing of this important area.

ところで上記C点や後述のB点の位M″::は厳密なも
のである必要はない。
By the way, the position M'':: of the above-mentioned point C and the below-mentioned point B does not need to be exact.

また、ここで段差は必ずしも第5図(a)に示すよう−
にうず巻体132,142の外壁側に設ける必要はなく
、同図(b)に示すようにC点に対応する内壁側のB点
にのみ各々設けても全く同じ効果が期待できる。まだこ
れら段差は必ずしも第5図(a)(b)のような階段状
変化でなく任意の変化曲線でよい。実際には、うず巻体
132゜142をフライス盤で加工する場合、使用する
エンドミル100は第5図(C)のような形状であるた
め、うず巻体132.j42を階段状に加工することは
不可能であり、同図のような形状となる。
In addition, here, the level difference is not necessarily as shown in Fig. 5(a).
It is not necessary to provide them on the outer walls of the spiral bodies 132, 142, and the same effect can be expected even if they are provided only at point B on the inner wall side corresponding to point C, as shown in FIG. 2(b). However, these steps are not necessarily step-like changes as shown in FIGS. 5(a) and 5(b), but may be arbitrary change curves. Actually, when the spiral wound body 132.degree. 142 is processed by a milling machine, the end mill 100 used has a shape as shown in FIG. It is impossible to process j42 into a step-like shape, resulting in a shape as shown in the figure.

さらに第5図(d)のようにB点あるいは0点付近から
E点までうず巻体132,142の壁厚を漸次減少して
い゛くように加工してもよい。勿論B−E問およびC−
E間を徐々に減少させてもよい。この場合(α′)はB
点またはC点で0、それよりも外側で徐々に増加してい
くような伸開角の関数となる。こ一実施例で壁厚減少の
少ない部分では寸法誤差吸収効果は少ないが、との壁厚
変化は第2図中し1部での圧力変化に応じた合理的な隙
間変化である。さらに温度膨張が中央部付近はど大きい
ことを考えて、温度膨張による寸法変化を補償するよう
な割合でαを変化させることもできる。
Furthermore, as shown in FIG. 5(d), the wall thickness of the spiral bodies 132, 142 may be processed to gradually decrease from near point B or zero point to point E. Of course questions B-E and C-
The distance between E may be gradually decreased. In this case (α′) is B
It is a function of the expansion/opening angle that is 0 at the point or point C and gradually increases outside of it. In this embodiment, the dimensional error absorption effect is small in the portion where the wall thickness decreases little, but the change in wall thickness between and is a reasonable gap change in response to the pressure change in the first part in FIG. Furthermore, considering that the temperature expansion is large near the center, α can be changed at a rate that compensates for the dimensional change due to the temperature expansion.

このような構成にて成る本発明は、両うず巻体132 
、−142の中央部付近の壁厚を他の部分より僅か厚く
形成し、完全な線接触が得られるようにしであるため、
他の部分の壁面加工に僅かな誤差△Eが生じたとしても
、△E < aである限り中央部のシールには影響を与
えず、外周部の非接触部からの漏れについても圧力差が
小さいため体積効率に与える影響は小さく抑えることが
できる。
In the present invention having such a configuration, both spiral bodies 132
, -142, the wall thickness near the center is made slightly thicker than other parts to ensure perfect line contact.
Even if a slight error △E occurs in the wall surface machining of other parts, it will not affect the seal in the center as long as △E < a, and there will be no pressure difference even if there is leakage from non-contact parts on the outer periphery. Since it is small, the effect on volumetric efficiency can be kept small.

また、圧縮機の駆動中に発生する温度上昇についても、
上昇率がほぼ同じとなる部分を完全な線接触が得られる
部分としているため高圧部における熱膨張による変化差
異で間隙が発生することを防げる。
Also, regarding the temperature rise that occurs while the compressor is operating,
Since the parts where the rate of rise is almost the same are the parts where perfect line contact can be obtained, it is possible to prevent gaps from occurring due to differences in changes due to thermal expansion in the high pressure part.

以上のように本発明はスクロール部材を構成するうず巻
体の壁厚をうず巻体の中央部と外周部とで変化させ、外
周部の壁厚を僅か薄く形成することにより、高圧流体ポ
ケット部におけるうず巻体間の線接触を確実に行なわせ
ているので、スクロール部材の加工上半ずる誤差による
圧縮動力損失及びそれによる温度上昇の度合を減少させ
、又体積効率の低下を抑えることができるとともに誤差
のバラツキによる性能のバラツキも小さく抑えることが
できるものである。
As described above, the present invention changes the wall thickness of the spiral body constituting the scroll member between the central part and the outer peripheral part, and by forming the wall thickness of the outer peripheral part slightly thinner, the high-pressure fluid pocket is Since the line contact between the spiral bodies is ensured, it is possible to reduce compression power loss due to errors in machining of the scroll member and the degree of temperature rise caused by this, and also to suppress a decrease in volumetric efficiency. At the same time, variations in performance due to variations in errors can also be suppressed.

また圧縮機の駆動中に発生する温度上昇に伴なう熱膨張
変化の差異による流体漏れも抑えることができるもので
ある。
It is also possible to suppress fluid leakage due to differences in thermal expansion changes due to temperature rise that occurs during operation of the compressor.

さらにうず巻体間の線接触による摺動部が限られるため
摺動部の摩耗対策は局部的に行なえばよく容易に対策が
行なえるものである。
Further, since the sliding portion due to the line contact between the spiral winding bodies is limited, countermeasures against wear of the sliding portion can be easily taken by localized measures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明に係るスクロール型圧縮
機の圧縮原理を説明するための図で、(a)〜(d)は
異なった角度位置の状態を示す図、第2図はスクロール
型圧縮機の圧縮サイクルを説明するだめの図、第3図は
従来のうず巻体を用いた場合の接触状態を示す説明図、
第4図は本発明の一実施例を示すスクロール型圧縮機の
縦断面図、第5図(a)(b)(C)(d)は本発明の
いくつかの実施例を示す説明図である。 (16)、(14)・・・スクロール部材(131)、
(141)・・・側板 (132)、(142)・・・うず巻体第1図 (a) ル) 第1図 (C) 、7!/。 (d)
FIGS. 1(a) to 1(d) are diagrams for explaining the compression principle of the scroll compressor according to the present invention; FIGS. 1(a) to 1(d) are diagrams showing states at different angular positions; The figure is a diagram explaining the compression cycle of a scroll type compressor, and Figure 3 is an explanatory diagram showing the contact state when using a conventional spiral wound body.
FIG. 4 is a longitudinal sectional view of a scroll compressor showing one embodiment of the present invention, and FIGS. 5(a), (b), (C), and (d) are explanatory diagrams showing several embodiments of the present invention. be. (16), (14)...scroll member (131),
(141)... Side plate (132), (142)... Spiral body Fig. 1 (a)) Fig. 1 (C), 7! /. (d)

Claims (1)

【特許請求の範囲】[Claims] 側板の一面上にうず巻体を形成した一対のスクロール部
材を両うず巻が互いに角度をずらせてかみ合い、かつ壁
面が接触してうず巻体間に密閉された流体ポケットが形
成されるよう重ね合せ、一方のスクロール部材を自転を
防止しながら相対的な円軌道運動させることによシ該流
体ポケットをうず巻体の中心方向へ容積の減少を伴なわ
せながら移動させ、一方向性流体圧縮作用を行なわせる
スクロール型圧縮機において、うず巻体の内端から、流
体ポケットが吐出室に連通ずる瞬間に両うず巻体の壁面
が接触している部分付近までの間よシ以降のうず巻体の
壁厚を漸次減少するようもしくは内壁側のみあるいは外
壁側のみ薄くするよう形成したことを特徴とするスクロ
ール型圧縮機。
A pair of scroll members each having a spiral body formed on one surface of a side plate are stacked so that both spirals mesh with each other at different angles, and the wall surfaces are in contact to form a sealed fluid pocket between the spiral bodies. By moving one of the scroll members in a relative circular orbit while preventing rotation, the fluid pocket is moved toward the center of the spiral body with a decrease in volume, thereby producing a unidirectional fluid compression effect. In a scroll compressor that performs 1. A scroll compressor characterized in that the wall thickness is gradually reduced, or only the inner wall side or the outer wall side is thinner.
JP11136681A 1980-10-03 1981-07-16 Scroll compressor Expired JPS6037319B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11136681A JPS6037319B2 (en) 1981-07-16 1981-07-16 Scroll compressor
US06/595,645 US4490099A (en) 1980-10-03 1984-04-03 Scroll type fluid displacement apparatus with thickened center wrap portions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136681A JPS6037319B2 (en) 1981-07-16 1981-07-16 Scroll compressor

Publications (2)

Publication Number Publication Date
JPS5813184A true JPS5813184A (en) 1983-01-25
JPS6037319B2 JPS6037319B2 (en) 1985-08-26

Family

ID=14559366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136681A Expired JPS6037319B2 (en) 1980-10-03 1981-07-16 Scroll compressor

Country Status (1)

Country Link
JP (1) JPS6037319B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463682A (en) * 1987-09-04 1989-03-09 Toshiba Corp Scroll compressor
JPH03160180A (en) * 1989-11-17 1991-07-10 Toyota Autom Loom Works Ltd Scroll type compressor
JPH04124483A (en) * 1990-09-13 1992-04-24 Toyota Autom Loom Works Ltd Scroll type compressor
EP0855508A1 (en) 1997-01-22 1998-07-29 Sanden Corporation Scroll for scroll compressor
US5944500A (en) * 1996-06-20 1999-08-31 Sanden Corporation Scroll-type fluid displacement apparatus having a strengthened inner terminal end portion of the spiral element
US6193488B1 (en) 1998-06-12 2001-02-27 Denso Corporation Scroll type compressor
JP2002213372A (en) * 2001-01-16 2002-07-31 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2002257058A (en) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd Scroll type compressor
US6527526B2 (en) * 2000-12-07 2003-03-04 Lg Electronics, Inc. Scroll compressor having wraps of varying thickness
US6776592B2 (en) * 2002-08-05 2004-08-17 Kabushiki Kaisha Toyota Jidoshokki Scroll type compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275456A (en) * 1986-05-22 1987-11-30 帝三製薬株式会社 Wound protective material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463682A (en) * 1987-09-04 1989-03-09 Toshiba Corp Scroll compressor
JPH03160180A (en) * 1989-11-17 1991-07-10 Toyota Autom Loom Works Ltd Scroll type compressor
JPH04124483A (en) * 1990-09-13 1992-04-24 Toyota Autom Loom Works Ltd Scroll type compressor
US5944500A (en) * 1996-06-20 1999-08-31 Sanden Corporation Scroll-type fluid displacement apparatus having a strengthened inner terminal end portion of the spiral element
EP0855508A1 (en) 1997-01-22 1998-07-29 Sanden Corporation Scroll for scroll compressor
US6193488B1 (en) 1998-06-12 2001-02-27 Denso Corporation Scroll type compressor
US6527526B2 (en) * 2000-12-07 2003-03-04 Lg Electronics, Inc. Scroll compressor having wraps of varying thickness
JP2002213372A (en) * 2001-01-16 2002-07-31 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2002257058A (en) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd Scroll type compressor
US6776592B2 (en) * 2002-08-05 2004-08-17 Kabushiki Kaisha Toyota Jidoshokki Scroll type compressor

Also Published As

Publication number Publication date
JPS6037319B2 (en) 1985-08-26

Similar Documents

Publication Publication Date Title
US4490099A (en) Scroll type fluid displacement apparatus with thickened center wrap portions
JPS586075B2 (en) Scroll compressor
JP4310960B2 (en) Scroll type fluid machinery
US3884599A (en) Scroll-type positive fluid displacement apparatus
US4141677A (en) Scroll-type two stage positive fluid-displacement apparatus with intercooler
JPS5862395A (en) Scroll type compressor
JPH07197891A (en) Scroll type fluid machinery
JPS5968583A (en) Scroll type fluid device
JPS5813184A (en) Scroll type compressor
EP0475538B1 (en) Scroll type fluid machinery
JPH0656081B2 (en) Scroll machine
US6345967B1 (en) Scroll type fluid machine having different wrap side surface clearances
JPS6342082B2 (en)
JP2001323881A (en) Compressor
JP3542144B2 (en) Scroll type fluid machine and its processing method
US6179593B1 (en) Displacement fluid machine
US6527531B2 (en) Scroll compressor having step portions for reducing leakage of fluid
GB2143904A (en) Scroll-type rotary positive- displacement fluid machine
EP3482079B1 (en) Rotary compressor arrangement
JPS5819351Y2 (en) Scroll compressor
KR100313895B1 (en) scroll type compressor
JPS5810586B2 (en) positive displacement fluid compression device
JP2560867B2 (en) Scroll compressor
GB2034409A (en) Rotary positive-displacement fluid-machines
JPH0979149A (en) Scroll compressor