JPS58131551A - Sensor - Google Patents

Sensor

Info

Publication number
JPS58131551A
JPS58131551A JP57013261A JP1326182A JPS58131551A JP S58131551 A JPS58131551 A JP S58131551A JP 57013261 A JP57013261 A JP 57013261A JP 1326182 A JP1326182 A JP 1326182A JP S58131551 A JPS58131551 A JP S58131551A
Authority
JP
Japan
Prior art keywords
oxide
sensor
oxide film
humidity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57013261A
Other languages
Japanese (ja)
Other versions
JPS6228420B2 (en
Inventor
Naomasa Sunano
砂野 尚正
Naotatsu Asahi
朝日 直達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Shinei KK
Original Assignee
Hitachi Ltd
Shinei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shinei KK filed Critical Hitachi Ltd
Priority to JP57013261A priority Critical patent/JPS58131551A/en
Priority to EP82106505A priority patent/EP0070551B1/en
Priority to DE8282106505T priority patent/DE3275409D1/en
Priority to US06/399,858 priority patent/US4608232A/en
Priority to CA000407632A priority patent/CA1191897A/en
Publication of JPS58131551A publication Critical patent/JPS58131551A/en
Publication of JPS6228420B2 publication Critical patent/JPS6228420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To obtain a highly reliable sensor which is prevented from pollution due to impurities and has stable characteristics and detects oxygen concentration or humidity in atmosphere by forming an oxide film including fine cracks on a gas detecting part by flame spray. CONSTITUTION:An oxide film including fine cracks consisting of oxide with <=20mum grain size is formed on a semiconductor detecting part 4 of a measuring gas detecting part of an electric insulating base 6 made of a highly heat-conductive material such as alumina which is stable at a high temp. by flame spray of plasma such as perovskite structure LaCrO3. Thus the highly reliable sensor which is prevented from pollution due to impurities and has stable characteristics and detects oxygen concentration and humidity is obtained.

Description

【発明の詳細な説明】 本発明は新規なセンサに係り、特に気体中の酸素濃度又
は湿度を検出し制御する丸めのセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel sensor, and more particularly to a round sensor for detecting and controlling oxygen concentration or humidity in a gas.

最近、大気、自動車等の排出ガス中の酸素11度又は湿
度を検出するセンサ、特にガスや石油バーナ等の燃燐機
器における空燃比の制御、不完全一φおよび失火防止用
安全装置、自動車用排気ガス中の酸素濃度を検出し、空
燃比の制御等罠適用できる高信頼性かつ安価な酸素濃度
検出センサの開発が望まれている。
Recently, sensors that detect oxygen 11 degrees or humidity in the atmosphere and exhaust gas from automobiles, control of air-fuel ratio in phosphorus combustion equipment such as gas and oil burners, safety devices for preventing incomplete 1φ and misfires, and for automobiles. It is desired to develop a highly reliable and inexpensive oxygen concentration detection sensor that can detect the oxygen concentration in exhaust gas and can be used for controlling the air-fuel ratio.

従来、この種のセンサとしては、安定化ジルコニア、セ
リア等の酸素濃淡電池方式が実用化されているが、構造
設計および設置上に難点があるとともに、350C以下
で安定に作動できない欠点がめる。それらの欠点は、酸
素濃度差による抵抗変化を利用するA30.等のペロブ
スカイト型結晶を用いたセンサの開発によって克服され
た。しかし、この型のセンサの特性は、酸化物組成九強
く依存し微量の不純分の存在に大きく左右される。
Conventionally, as this type of sensor, oxygen concentration cell systems using stabilized zirconia, ceria, etc. have been put into practical use, but these have drawbacks in terms of structural design and installation, as well as inability to operate stably at temperatures below 350C. The disadvantage of these is that A30. This problem was overcome by the development of sensors using perovskite crystals. However, the characteristics of this type of sensor depend strongly on the oxide composition and are greatly influenced by the presence of trace impurities.

そこで、この型のセンサ基体Fi、製作過程での汚染を
避けるために、#!!結又はガラス質との混合による竣
成により作成されている。焼結法では、ある大きさの塊
状体に製作後所定の薄小片に切り出すが、一般に焼結性
不良のためペロプスカイト系酸化物単独では脆弱で応答
速度が遅く耐久性ある製品を得がたいとともに見掛けの
表面積が大きくするような微細クラックを形成すること
が困難であり、応答速度の精度が低い。一方、焼成法で
は。
Therefore, in order to avoid contamination during the manufacturing process of this type of sensor substrate Fi, #! ! It is made by mixing with crystalline or glassy material. In the sintering method, a block of a certain size is produced and then cut into predetermined thin pieces. However, due to poor sintering properties, peropskite oxide alone is brittle, has a slow response time, makes it difficult to obtain a durable product, and has a poor appearance. It is difficult to form microscopic cracks that increase the surface area of the metal, and the accuracy of the response speed is low. On the other hand, with the firing method.

不純物の混入により特性が広範囲にばらつき、また1歩
留り、長時間使用時の特性劣化などにも問題がある。
Characteristics vary over a wide range due to the inclusion of impurities, and there are also problems with one yield and characteristic deterioration during long-term use.

本発明は、上記の状況に対応して、不純物による汚染の
少ない安定した特性を有する高信頼性のセンサ、特に酸
素又は湿度センサを提供することを目的としている。本
発明は、電気絶縁性基体上に%特に、微細クラックを含
む酸化物皮膜が形成されてなることである。この酸化物
として酸素濃度、湿度の変化により電気抵抗が1〜4桁
程度変化スるものがよく、ペロブスカイト構造の酸化物
が好ましい。
In response to the above-mentioned situation, it is an object of the present invention to provide a highly reliable sensor, particularly an oxygen or humidity sensor, which has stable characteristics with less contamination by impurities. In the present invention, an oxide film containing particularly fine cracks is formed on an electrically insulating substrate. This oxide is preferably one whose electrical resistance changes by about 1 to 4 orders of magnitude depending on changes in oxygen concentration and humidity, and an oxide having a perovskite structure is preferable.

本発明において、電気絶縁性基体としてはアルミナ系や
炭化ケイ素系などのような高温で安定な高熱伝性材料が
好ましい。基板の厚さは0.5W程度でよ(,0,3m
以下でめれげ一層好ましい、これは、熱伝導率が低く、
あるいは厚すぎると、高温に急熱されあるいは加熱冷却
の反復などの熱衝撃によって亀裂しやすく1耐久性に劣
る故である。
In the present invention, the electrically insulating substrate is preferably a highly thermally conductive material that is stable at high temperatures, such as alumina or silicon carbide. The thickness of the board should be about 0.5W (0.3m)
It is more preferable to have less heat conductivity, which has lower thermal conductivity.
Alternatively, if it is too thick, it is likely to crack due to thermal shocks such as rapid heating to high temperatures or repeated heating and cooling.1 Durability will be poor.

ペロブスカイト構造酸化物として、燃情状態を検知、感
応、応答する部分には一般にp型酸化物半導体が適用さ
れ、その主な例をあげるとLACrOJLm、Cub、
、CeTi0m+PrTi0.、NdTiQ、。
As a perovskite structure oxide, a p-type oxide semiconductor is generally applied to the part that detects, senses, and responds to the fuel condition, and the main examples are LACrOJLm, Cub,
, CeTi0m+PrTi0. , NdTiQ,.

L JIN ’Om+ L a’l” OH@ La、
 −x 8 ’wc0OB (0,1≦X≦0.5 )
 # :La1−x Sr*VO1(0≦X≦0.5)
など力(める、これらは、一般的な製法によって所望の
組成に調製され、微粉末化される。粒子の太きさ力ζ特
に重要である。その粒子は約25μm以下、望ましくは
0.1〜5βm程度の寸法がよい、その理由は、ペロプ
スカイト構造酸化物系センナにおい 。
L JIN 'Om+ L a'l” OH@ La,
-x 8 'wc0OB (0,1≦X≦0.5)
#: La1-x Sr*VO1 (0≦X≦0.5)
These particles are prepared to the desired composition by conventional manufacturing methods and pulverized. The size of the particles is particularly important. The reason why a size of about 1 to 5 βm is preferable is that in perovskite structure oxide-based senna.

ては、応答速度および感度には皮膜の厚さ、微細クラッ
クの状態に依存したためである。一方製造法であるが各
糧方法を検討した結果ある粒度範囲の粉末を用いてプラ
ズマ溶射法で吹付け、被膜表面に多数の微細なりラック
を形成させることが望ましいことが明らかになった。す
なわち、厚さ数ミクロンないし数十ミクロンの範囲では
、薄い微細クラックが多いほど高い応答速度と感度とを
示す、一般的溶射用粒径である10〜44μmでは安定
した特性を示す均一な微細クラックと薄膜を形成するこ
とが困難なことにある。溶射法としては、酸素−アセチ
レンによる火炎法、プラズマ法があるが、プラズマ法が
望ましい。
This is because the response speed and sensitivity depended on the thickness of the film and the state of fine cracks. On the other hand, as for the manufacturing method, as a result of examining various methods, it became clear that it is desirable to use powder in a certain particle size range and spray it by plasma spraying to form a large number of fine racks on the surface of the coating. In other words, in the thickness range of several microns to several tens of microns, the more thin microcracks there are, the higher the response speed and sensitivity will be.In the particle size range of 10 to 44 μm, which is a typical thermal spray particle size, uniform microcracks will exhibit stable characteristics. This is because it is difficult to form a thin film. Thermal spraying methods include a flame method using oxygen-acetylene and a plasma method, and the plasma method is preferable.

プラズマ溶射のための安定化ガスとしては、一般にアル
ゴン、窒素、水素などの混合ガスが使用されるが1本発
明においては、該気体中に酸素が含まれることが望まし
い。それは、溶射作業中に高温プラズマによって、複合
酸化物が還元されて特性が大きく変化を生ずることがあ
るためである。
As a stabilizing gas for plasma spraying, a mixed gas of argon, nitrogen, hydrogen, etc. is generally used, but in the present invention, it is desirable that the gas contains oxygen. This is because the composite oxide may be reduced by high-temperature plasma during thermal spraying, resulting in a large change in properties.

酸素を含む雰囲気中で溶射することによって、安定した
特性をもつ被膜が形成される。その際、膜厚は、前述の
ように特性に影響するので、約1〜500μmの範囲内
でなるべく薄く数μm以下のクラックが選ばれる。
Coatings with stable properties are formed by thermal spraying in an oxygen-containing atmosphere. At this time, since the film thickness affects the characteristics as described above, a crack of several micrometers or less is selected as thin as possible within the range of approximately 1 to 500 μm.

溶射に当っては、前記した電気絶縁性基板を約500C
以上に予熱し溶射中も高温に保つこと力!好ましい。そ
うすることKよって、被膜表面に多数のクラックを設は
該基板と酸化物被膜との間を密着させ、耐久性をもたせ
ることができる。
During thermal spraying, the electrically insulating substrate described above was heated to about 500C.
Ability to preheat and maintain high temperature even during thermal spraying! preferable. By doing so, it is possible to create a large number of cracks on the surface of the coating, thereby allowing close contact between the substrate and the oxide coating, thereby providing durability.

また、溶射時の基板温度を前記よりも低く保持して、し
かも使用時に剥−や消耗の少ない密着性酸化物被膜を形
成することも可能である。それは。
It is also possible to maintain the substrate temperature during thermal spraying lower than the above and form an adhesive oxide film that is less likely to peel off or wear out during use. it is.

電気絶縁性基板の表面を粗くして、酸化物被膜を設け、
さらKその上を微細な亀裂ないし多孔質の嗅で被覆する
ことによってなされる。基板はその製造時に所望の粗さ
を付与されてもよく、あるいは平滑な基板上に溶射等の
方法によって粗い被膜を形成してもよい。例えばアルミ
ナ、アルミナ・マグネシア系スピネルなどをもって溶射
法によシ基板を薄く被覆し、あるいはさらにその被覆層
に微細な亀裂を生じさせる。そのような基板上にガス雰
囲気で電気抵抗が大幅に変化する酸化物被膜を形成する
と熱サイクルによる基板から剥離することのない耐久性
の優れたセンサが得られる。さらに応答速度を高め耐久
性を向上させるためKは。
The surface of the electrically insulating substrate is roughened and an oxide film is provided.
This is done by covering the surface with fine cracks or porous layers. The substrate may be provided with a desired roughness during manufacture, or a rough coating may be formed on a smooth substrate by a method such as thermal spraying. For example, the substrate is thinly coated with alumina, alumina-magnesia spinel, etc. by a thermal spraying method, or fine cracks are further generated in the coating layer. If an oxide film whose electrical resistance changes significantly in a gas atmosphere is formed on such a substrate, a highly durable sensor that will not peel off from the substrate due to thermal cycles can be obtained. Furthermore, K is used to increase response speed and improve durability.

該酸化物被膜の表面に、アルミナ系、ジルコニア系等よ
りも高い電気抵抗と低い反応性を有する酸化物被膜を設
け、該被膜に微細な亀裂を形成させる。表面の酸化物層
は、使用時の消耗から内側の酸化物被膜の保嚢又は触媒
の作用とともに抵抗変化の安定化作用もする。なお、こ
のアルミナなどに、酸化物の微細粉末を混合して、被膜
を形成することによっても同様の効果を得ることができ
る。
An oxide film having higher electrical resistance and lower reactivity than alumina-based, zirconia-based, etc. is provided on the surface of the oxide film, and fine cracks are formed in the oxide film. The surface oxide layer acts as a protector or catalyst for the inner oxide film from wear and tear during use, and also functions to stabilize resistance changes. Note that the same effect can also be obtained by forming a film by mixing fine oxide powder with this alumina or the like.

実施例 第1図は本発明による酸素センサの1例であって、アル
ミナ基板6の表面に、白金印刷電極4゜4′が熔付けら
れている。この電極の間に。
Embodiment FIG. 1 shows an example of an oxygen sensor according to the present invention, in which platinum printed electrodes 4° 4' are welded to the surface of an alumina substrate 6. between this electrode.

LaNtQ、を生成分とするペロプスカイト構造酸化物
の粉末(粒径1〜5μm)が、酸素を含むプラズマ流で
溶射されて厚さ約5μmの該酸化物被膜の1000倍の
顕微鐘写真である。表面に0.2声m以下のクラックが
形成されている。このものをプロパン燃焼炎中に設定し
て、空気/燃料比をパラメータとしてその電気抵抗値変
化を測定し九、なおその結果は第3図のようであった。
This is a 1000x microscopic photograph of a perovskite-structured oxide powder (particle size 1 to 5 μm) containing LaNtQ, which is sprayed with an oxygen-containing plasma stream and has a thickness of about 5 μm. . A crack of 0.2 m or less is formed on the surface. This product was placed in a propane combustion flame and the change in electrical resistance was measured using the air/fuel ratio as a parameter.The results were as shown in Figure 3.

空気/燃料比1.05の位置を中心にして、抵抗値が約
3桁変化している。すなわち、温度400〜900Cの
範囲で空燃比の増大につれて、抵抗値は指数関数的に減
少している。この現象は可逆的で極めて高い再現性をも
ってくり返された。また、炎内の温度400〜900C
の広い範囲にわ九り、それぞれの空気/燃料比九ついて
の抵抗値の変化の状況を測定した結果は、第4図に示さ
れる。さらK。
The resistance value changes by about three orders of magnitude around the position where the air/fuel ratio is 1.05. That is, the resistance value decreases exponentially as the air-fuel ratio increases in the temperature range of 400 to 900C. This phenomenon was reversible and repeated with extremely high reproducibility. Also, the temperature inside the flame is 400-900C.
The results of measuring the change in resistance value for each air/fuel ratio over a wide range are shown in FIG. Sara K.

LSI−x 8r、COO,もしくはLlll−x S
 ’*VO1から構成された場合にも、類イ以の傾向が
得られ念。
LSI-x 8r, COO, or Lllll-x S
I'm sure a similar trend can be obtained even when it is composed of '*VO1.

次に、第1図に示されるように、アルミナ基板上に焼付
けられた白金電極の間KLaNム0.からなる被膜を形
成するに当って、次のような溶射条件ならびに構成を採
用した。
Next, as shown in FIG. 1, KLaN film 0.0. The following thermal spraying conditions and configuration were used to form the coating.

(a)  基板を100Cに予熱して該酸化物を溶射。(a) Preheat the substrate to 100C and spray the oxide.

(b)  基板を700Cに予熱して溶射。(b) Preheat the substrate to 700C and spray.

(C)  基板を100Cに予熱しアルミナ(粒径5〜
37μm)を10μm以下の厚さに溶射したのち、該酸
化物を溶射。
(C) Preheat the substrate to 100C and add alumina (particle size 5~
37 μm) to a thickness of 10 μm or less, and then the oxide was sprayed.

(a)、 (b)、 (c)で形成されたLaNi0.
被膜の厚さは5〜15μmの115にあった。
LaNi0. formed in (a), (b), (c).
The thickness of the coating was 115 μm between 5 and 15 μm.

(d)  (C)と同仕様で酸化物被膜を形成したのち
、さらにアルミナ(粒径同前)を5〜20μmの範囲の
厚さに被覆。
(d) After forming an oxide film with the same specifications as in (C), coat with alumina (same particle size) to a thickness in the range of 5 to 20 μm.

(e)  基板を200CK予熱しLaNiOsとアル
ミナの混合物(重量比 50対50)を溶射して。
(e) Preheat the substrate to 200 CK and spray a mixture of LaNiOs and alumina (weight ratio 50:50).

厚さ20.amの被膜を形成。Thickness 20. Forms a film of am.

(f)  (a)又は(b)で複合酸化物を形成後、表
面に5〜20μmの厚さのAJ?tOs 、 MgOス
ピネル酸化物を被覆。
(f) After forming the composite oxide in (a) or (b), a 5-20 μm thick AJ? tOs, coated with MgO spinel oxide.

製作されたこれらの試験片に、プロパン炎で900Cに
5秒加熱、室温まで急冷して5秒間保持の繰返し試験を
10万回課した。その結果、試料(Jl)は比較的早い
回で表面層から消耗されて使用不能となった。10万回
終了後の特性では(d)が最も優れ、 (el)、 (
C)、 (旬の順であった。
These manufactured test pieces were subjected to a repeated test of heating to 900C for 5 seconds with a propane flame, rapidly cooling to room temperature, and holding for 5 seconds 100,000 times. As a result, the surface layer of sample (Jl) was consumed relatively quickly and became unusable. In terms of characteristics after 100,000 cycles, (d) is the best, (el), (
C), (in order of season).

第5図は複合酸化物膜上に安定酸化物膜を設けない(m
、 (be、 (C)の空気/燃料比による抵抗値変化
を示すグラフである0表面に安定酸化物膜がない場合は
長時間使用すると外部因子による抵抗値変化の振動を生
じる。この変化は安定化膜によって防止される。
Figure 5 shows that no stable oxide film is provided on the composite oxide film (m
, (be, (C) is a graph showing the change in resistance value depending on the air/fuel ratio.0 If there is no stable oxide film on the surface, when used for a long time, the change in resistance value will oscillate due to external factors. This change will be This is prevented by a stabilizing membrane.

以下1本発明の応用例を示す。An example of application of the present invention will be shown below.

第6図は自動車等の振動の強い所に取り付ける場合の酸
素センサの取付構造を示す断面構成図である。
FIG. 6 is a cross-sectional configuration diagram showing the mounting structure of the oxygen sensor when it is mounted in a place with strong vibrations such as an automobile.

感応素体は8U8306金属ナツト本体5及び穴あき8
U8306 金属カバー2.金属(真鍮)コネクター1
2.シリコンケーブル電線8を連結固定するために、耐
熱金属ビン3.3’、耐熱セメント充填101カシメ1
1が設けられている。ケーブル電線の一部は絶縁及び耐
熱のために3つ穴アルミナ外管7を通過して外部に導出
され、一方の先4は感応素体の白金電極の他端に電気的
に接続されている。金属コネクター12と5U8306
金属ナツト本体5とはネジによって機械的に連結される
。この様な治具付枠センサは温度及び機械的な耐久力が
ある。第8図の様に取り付けると内燃機関への応用が可
能になる。
Sensitive element body is 8U8306 metal nut body 5 and hole 8
U8306 Metal cover 2. Metal (brass) connector 1
2. In order to connect and fix the silicon cable electric wire 8, heat-resistant metal bottle 3.3', heat-resistant cement filling 101 and caulking 1
1 is provided. A part of the cable wire is led out through a three-hole alumina outer tube 7 for insulation and heat resistance, and one tip 4 is electrically connected to the other end of the platinum electrode of the sensing element. . Metal connector 12 and 5U8306
It is mechanically connected to the metal nut body 5 by a screw. Such a jig-equipped frame sensor has high temperature and mechanical durability. When installed as shown in Fig. 8, it becomes possible to apply it to an internal combustion engine.

自動車用センナの場合、ヒータと組合せアイドリンクの
低温域での動作をヒータによる加熱により一定温度で行
うことができる。
In the case of an automotive senna, the operation of the idle link in combination with a heater in a low temperature range can be performed at a constant temperature by heating with the heater.

本発明の感応素体及び感応センサ2は第7図に示す様な
燃焼安全装置にも応用される。この応用例では素体又は
センサからの信号は制御回路19に入力され、制御回路
19で燃焼状態が常に完全燃焼にいたらしめる様に、空
気送風機20或いは燃料供給機21の制御を行うもので
、空気送風機20、燃料供給機21で制御を行っても、
完全燃焼レベルに達しない場合又は失火の場合に燃焼を
停止する装置である。又第8図に示す様に、内燃機関へ
の応用例について述べると、排気マニホールドに感応セ
ンサ15を取9付け、シリコンケーブル電線32をケー
ブル保持金具34で本体ペース又は車体26に保持固定
され、コネクター33で制御回路又は制御装置へ連結導
かれるもので。
The sensitive element body and sensitive sensor 2 of the present invention can also be applied to a combustion safety device as shown in FIG. In this application example, the signal from the element body or the sensor is input to the control circuit 19, and the control circuit 19 controls the air blower 20 or the fuel supply device 21 so that the combustion state is always in complete combustion. Even if the control is performed using the air blower 20 and the fuel supply machine 21,
This is a device that stops combustion if the complete combustion level is not reached or if there is a misfire. As shown in FIG. 8, an example of application to an internal combustion engine will be described. A sensitive sensor 15 is attached to the exhaust manifold, and a silicon cable wire 32 is held and fixed to the main body pace or vehicle body 26 with a cable holding fitting 34. Connector 33 connects to a control circuit or control device.

22は燃焼室、23は点火プラグ、24はエアーポンプ
、25は燃料噴射ポンプ、30は混合室、27は排気マ
ニホールド%28は触媒マフラー、29は排気口である
。制御電気回路の応用例としては、第9図に示す様に、
Eは電源、R1# R。
22 is a combustion chamber, 23 is a spark plug, 24 is an air pump, 25 is a fuel injection pump, 30 is a mixing chamber, 27 is an exhaust manifold, 28 is a catalyst muffler, and 29 is an exhaust port. As an application example of the control electric circuit, as shown in Fig. 9,
E is the power supply, R1#R.

は固定抵抗、■、は集積回路又はマイコ7、L、*L、
は負荷である。ここでRPはP散酸化物半導体膜の電気
抵抗値で、燃焼状態に対応して酸素濃度に対応して変化
するもので、R−は中性酸化物膜の電気抵抗値である。
is a fixed resistor, ■ is an integrated circuit or Mico 7, L, *L,
is the load. Here, RP is the electrical resistance value of the P-dispersed oxide semiconductor film, which changes depending on the combustion state and the oxygen concentration, and R- is the electrical resistance value of the neutral oxide film.

図に於て、RP、R−の変化に対応してプログラムされ
たICからの機能信号を受けたLm −Lmが動作する
もので、その応用例を示すものである。
In the figure, Lm-Lm operates upon receiving a function signal from an IC programmed in response to changes in RP and R-, and shows an example of its application.

第10図は上述の(f)で製作したセンサを温度センサ
に応用した例を示すものである。相対1度50%以下で
電気抵抗が直線的に急激に変化し。
FIG. 10 shows an example in which the sensor manufactured in the above (f) is applied to a temperature sensor. Electrical resistance changes rapidly in a linear manner when relative 1 degree is less than 50%.

湿度センサとして有効であることがわかる。It can be seen that it is effective as a humidity sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素センサの1例を示す平面図、第2図は酸化
物層表面の顕微儒写真、第3図は空気/燃料比と酸素セ
ンサの抵抗値との関係を示す。第4図は種々の空気/燃
料比における雰囲気の温度とセンサの抵抗値との関係を
示す線図、第5図はセンサ抵抗値と空気/燃料比との関
係を示す線図、第6図は強い振動を受ける場合の酸素セ
ンサの取付構造を示す断面構成図、第7図は燃焼安全装
置の例を示すブロック図、第8図は内燃機関に適用した
例を示す構成図及び第9図は制御電気回路の例を示す回
路図、第1O図はセンサ抵抗値と相対湿度との関係を示
す線図である、 1.1′・・・半導体感応部% 494′・・・白金電
極。 6・・・アルミナ基板、9・・・リード線、10・・・
耐熱セ穿 1 )] (恍) (1)) 乙 4′ 第5図 空@絨料几 茅6 口 第 7 図 yIJ8  図 第71刀 猶10図 相対湿贋(’/、) =271−
FIG. 1 is a plan view showing an example of an oxygen sensor, FIG. 2 is a microphotograph of the surface of an oxide layer, and FIG. 3 is a diagram showing the relationship between the air/fuel ratio and the resistance value of the oxygen sensor. Figure 4 is a diagram showing the relationship between ambient temperature and sensor resistance at various air/fuel ratios, Figure 5 is a diagram showing the relationship between sensor resistance and air/fuel ratio, and Figure 6 is a diagram showing the relationship between sensor resistance and air/fuel ratio. 7 is a block diagram showing an example of a combustion safety device, FIG. 8 is a block diagram showing an example applied to an internal combustion engine, and FIG. is a circuit diagram showing an example of a control electric circuit, and Figure 1O is a diagram showing the relationship between sensor resistance value and relative humidity. 1.1'... Semiconductor sensitive part % 494'... Platinum electrode. 6... Alumina substrate, 9... Lead wire, 10...
Heat resistant separator 1)] (恍) (1)) Otsu 4' Figure 5 Sky @ Carpet 6 Mouth 7 Figure yIJ8 Figure 71 Sword Figure 10 Relative humidity ('/,) = 271-

Claims (1)

【特許請求の範囲】 1、 電気絶縁性基体表面の被測定物質のガスを検知す
る部分に酸化物の溶射皮膜が形成されていることを特徴
とするセンサ。 2 岐記皮mu、粒径20μm以下のペロブスカイト構
造酸化物の粉末をプラズマ溶射によって形成され微細な
りラックが形成されている特許請求の範囲第1項記載の
センサ。 3、 前記溶射は、前記電気絶縁性基体を500C以五
の温度に保持して形成された特許請求の範囲第1項もし
くは第2項記載のセンサ。 4、 酌記絶縁性基体が多孔質表面層を有する特許請求
の範囲第1項ないし第3項のセンサ。 5、 前記ペロブスカイト構造の酸化物層は他の安定な
セラミックを含む特許請求の範囲第1項記載のセ〕/+
0、 S、岐紀酸化物の皮膜の表面が、他のセラミック膜て被
eさね、ている特許請求の範囲第1項記載のセンサ。
[Scope of Claims] 1. A sensor characterized in that a sprayed oxide coating is formed on a portion of the surface of an electrically insulating substrate that detects a gas of a substance to be measured. 2. The sensor according to claim 1, wherein the perovskite structure oxide powder having a particle size of 20 μm or less is formed by plasma spraying to form a fine rack. 3. The sensor according to claim 1 or 2, wherein the thermal spraying is performed by maintaining the electrically insulating substrate at a temperature of 500C or higher. 4. The sensor according to claims 1 to 3, wherein the insulating substrate has a porous surface layer. 5. The cell according to claim 1, wherein the perovskite-structured oxide layer contains another stable ceramic.
2. The sensor according to claim 1, wherein the surface of the 0, S, oxide film is covered with another ceramic film.
JP57013261A 1981-07-21 1982-02-01 Sensor Granted JPS58131551A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57013261A JPS58131551A (en) 1982-02-01 1982-02-01 Sensor
EP82106505A EP0070551B1 (en) 1981-07-21 1982-07-19 Method of manufacturing a gas sensor
DE8282106505T DE3275409D1 (en) 1981-07-21 1982-07-19 Method of manufacturing a gas sensor
US06/399,858 US4608232A (en) 1981-07-21 1982-07-19 Gas sensor
CA000407632A CA1191897A (en) 1981-07-21 1982-07-20 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013261A JPS58131551A (en) 1982-02-01 1982-02-01 Sensor

Publications (2)

Publication Number Publication Date
JPS58131551A true JPS58131551A (en) 1983-08-05
JPS6228420B2 JPS6228420B2 (en) 1987-06-19

Family

ID=11828271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013261A Granted JPS58131551A (en) 1981-07-21 1982-02-01 Sensor

Country Status (1)

Country Link
JP (1) JPS58131551A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205343A (en) * 1984-03-30 1985-10-16 Fuigaro Giken Kk Air-fuel ratio detector for lean burn
JPS60205342A (en) * 1984-03-30 1985-10-16 Fuigaro Giken Kk Exhaust gas sensor and its production
JP2003065989A (en) * 2001-08-27 2003-03-05 Uchiya Thermostat Kk Metal oxide semiconductor gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157123A1 (en) * 2008-06-26 2009-12-30 株式会社 村田製作所 Sensor device and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269693A (en) * 1975-12-09 1977-06-09 Asahi Glass Co Ltd Preparation process for gas detecting elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269693A (en) * 1975-12-09 1977-06-09 Asahi Glass Co Ltd Preparation process for gas detecting elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205343A (en) * 1984-03-30 1985-10-16 Fuigaro Giken Kk Air-fuel ratio detector for lean burn
JPS60205342A (en) * 1984-03-30 1985-10-16 Fuigaro Giken Kk Exhaust gas sensor and its production
JPH0417376B2 (en) * 1984-03-30 1992-03-25 Figaro Eng
JPH0417377B2 (en) * 1984-03-30 1992-03-25 Figaro Eng
JP2003065989A (en) * 2001-08-27 2003-03-05 Uchiya Thermostat Kk Metal oxide semiconductor gas sensor
JP4659295B2 (en) * 2001-08-27 2011-03-30 ウチヤ・サーモスタット株式会社 Metal oxide semiconductor gas sensor

Also Published As

Publication number Publication date
JPS6228420B2 (en) 1987-06-19

Similar Documents

Publication Publication Date Title
US4608232A (en) Gas sensor
CA1117789A (en) Temperature compensated resistive exhaust gas sensor construction
US4688015A (en) Gas sensor with ceramics substrate having surface-carried ceramics particles
US4851105A (en) Oxygen sensing element and method for producing the same
JPS58124943A (en) Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor
JP2002116172A (en) Humidity sensor
US5171721A (en) Ceramic green sheet for porous layer, electrochemical element using the green sheet, and method of producing the element
EP1346210A2 (en) Gas sensor
US7893510B2 (en) High temperature-stable sensor
EP0059933B1 (en) Solid electrolyte oxygen sensing element of laminated structure with gas diffusion layer on outer electrode
JPH0418261B2 (en)
JPS58131551A (en) Sensor
GB2200460A (en) Solid electrolyte oxygen concentration detector
JPH04303753A (en) Electrochemical element
JPS6145962A (en) Threshold current type oxygen sensor
US4961957A (en) Method of producing an electrochemical cell having a porous electrode or electrodes
US4835009A (en) Method of producing oxygen sensing element
US4946577A (en) Oxygen sensor
Howarth et al. A simple titania thick film exhaust gas oxygen sensor
CN110118813A (en) Gas sensor element
JPS5824850A (en) Film type oxygen sensor with heater and oxygen detector employing said sensor
EP0360159B1 (en) Method of producing thick-film gas sensor element having improved stability
US5202154A (en) Method of producing thick-film gas sensor element having improved stability
EP0001511A1 (en) Thermistor and method of fabrication
KR0158561B1 (en) Method of manufacturing thick-film for one-fired inflammability gas sensor