JPS58131522A - Spectroscopic device - Google Patents

Spectroscopic device

Info

Publication number
JPS58131522A
JPS58131522A JP1375682A JP1375682A JPS58131522A JP S58131522 A JPS58131522 A JP S58131522A JP 1375682 A JP1375682 A JP 1375682A JP 1375682 A JP1375682 A JP 1375682A JP S58131522 A JPS58131522 A JP S58131522A
Authority
JP
Japan
Prior art keywords
mirror
monitoring
feed screw
light
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1375682A
Other languages
Japanese (ja)
Other versions
JPH049247B2 (en
Inventor
Shigehiro Takahata
高畑 重弘
Masahito Koike
雅人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP1375682A priority Critical patent/JPS58131522A/en
Publication of JPS58131522A publication Critical patent/JPS58131522A/en
Publication of JPH049247B2 publication Critical patent/JPH049247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To minimize the swing angle of a mirror by making a moving direction of a mirror for monitoring zero light orthogonal with a direction of zero light in a wavelength position in the center of a diffraction grating and by having very little moving distance and making a reflecting direction by the monitoring mirror parallel with the moving direction of the mirror. CONSTITUTION:A feed screw 1 is orthogonal with the center of luminous flux of zero light D in the center wavelength position of a diffraction grating G, and a mirror M for monitoring is fitted to nut 2 screwed into this feed screw 1 freely rotatably. The feed screw follows the zero light from the diffraction grating of the mirror M for monitoring which is driven by interlocking with wavelength scanning. The mirror makes an angle of 45 deg. with the feed screw 1, therefore an incident angle of the zero light to the mirror is made 45 deg. at the position of the monitoring mirror M against the center wavelength position of the grating G. The zero light made incident to the mirror is reflected to a direction parallel with the feed screw 1 and is made incident to an optical trap T and absorbed. As the reflecting direction of the zero light by the monitoring mirror is made parallel to a moving direction of the mirror, the swing angle of the mirror is extremely small, and an off-plane Eagle type sepectral device having a simple constitution is obtained.

Description

【発明の詳細な説明】 本発明は回折格子の0次光を受光して光源等の変動をモ
ニタするようになっている分光装置に関し、特に入射光
と同じ方向に目的波長の光を出射させるようにしたオフ
プレーンイーグル型(0ff−plane Eagl’
e )分光装置に適するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectroscopic device that receives zero-order light from a diffraction grating and monitors fluctuations in a light source, etc., and in particular, it emits light of a target wavelength in the same direction as the incident light. Off-plane Eagle type (0ff-plane Eagle type)
e) Suitable for spectroscopic equipment.

回折格子の0次光によって光源の変動等をモニタするよ
うにすると別途光源の光をモニタ用に分割する手段が不
要になる利点があり、気体の吸収を測定するような場合
によく用いられている。所で第6図に示すようなボーダ
型(Vodar)分光器の場合0次光を受光してモニタ
するだめの構成は比較的簡単である。第6図について説
明すると、81は入射スリット、S2は出射スリット、
Gは凹面回折格子で、Sl、82.Gは成る一つの波長
の光を取出す場合の入出射スリット及び回折格子の配置
を示し、0はその場合のローランド円の中心である。S
 1’、  S 2. G’は他の波長に対する入出射
スリット及び回折格子の配置を示し、01はそのときの
ローランド円の中心である。ボーダ型分光器の特徴は出
射スリットS2が固定されており、格子Gが直線移動を
行い、かつ一定半径のローランド円上に入出対画スリッ
ト及び格子が位置するように格子Gと入射スリットとが
連結してあって、格子Gに対する光の入射角αが一定で
ある点にある。回折格子の0次光は格子面に関し入射光
に対する正反射光の方向であるから、格子Gに対する0
次光の出射角α°は波長走査の過程で一定でありαと等
しい。従って格子Gとの位置関係を固定させて0次光を
受光する位置に鏡Mを設け、Mによる0次光の反射光を
光トラップTで吸収してしまうようにする。光トラップ
Tも格子Gに対し位置関係が固定されている。即ち格子
GとO次光モニタ州境Mと光トラップTとは一体的に移
動する。M’、T’は格子()Iの位置における0次光
モニタ州境及び光トラップの位置を示す。鏡Mはモリブ
デン等の上に金を蒸着したものであって光が入射すると
光電子を放出して電位が変り、この電位変化によって0
次光をモニタする。このモニタ素子が鏡面になっていて
反射光を光トラップTに入射させて吸収してしまうので
0次光モニタのだめの構成によって迷光が生ずると云う
ようなことは防がれる。
Monitoring changes in the light source using the zero-order light of the diffraction grating has the advantage of eliminating the need for a separate means to separate the light from the light source for monitoring purposes, and is often used when measuring gas absorption. There is. In the case of a Vodar spectrometer as shown in FIG. 6, the configuration for receiving and monitoring zero-order light is relatively simple. To explain FIG. 6, 81 is an entrance slit, S2 is an exit slit,
G is a concave diffraction grating, Sl, 82. G indicates the arrangement of the input/output slit and the diffraction grating when light of one wavelength is extracted, and 0 is the center of the Rowland circle in this case. S
1', S 2. G' indicates the arrangement of input/output slits and diffraction gratings for other wavelengths, and 01 is the center of the Rowland circle at that time. The characteristic of the border type spectrometer is that the exit slit S2 is fixed, the grating G moves in a straight line, and the grating G and the entrance slit are arranged so that the input and output image slits and the grating are located on a Rowland circle with a constant radius. They are connected at a point where the incident angle α of the light with respect to the grating G is constant. Since the 0th order light of a diffraction grating is the direction of specularly reflected light with respect to the incident light with respect to the grating plane, the 0th order light with respect to the grating G is
The emission angle α° of the secondary light is constant during the wavelength scanning process and is equal to α. Therefore, a mirror M is provided at a position where the 0th order light is received with a fixed positional relationship with the grating G, and the 0th order light reflected by M is absorbed by the optical trap T. The optical trap T is also fixed in position with respect to the grating G. That is, the grating G, the O-order optical monitor state boundary M, and the optical trap T move integrally. M' and T' indicate the zero-order optical monitor state boundary and the position of the optical trap at the position of the grid ()I. The mirror M is made by depositing gold on molybdenum or the like, and when light enters it, it emits photoelectrons and changes its potential, and this potential change causes it to change to 0.
Monitor the next light. Since this monitor element has a mirror surface and the reflected light enters the optical trap T and is absorbed, the generation of stray light due to the structure of the zero-order light monitor can be prevented.

ボーダ型分光器では上述したように格子への光の入射角
が一定であるので、0次光モニタ州境及び光トラップは
格子Gと一体的にしておけばよく機構的に簡単である。
In the border-type spectrometer, since the angle of incidence of light on the grating is constant as described above, the zero-order light monitor state border and the optical trap can be integrated with the grating G, which is mechanically simple.

しかしイーグル型の場合、波長走査に伴って格子への光
の入射角が変化するので、0次光モニタ州境及び光モニ
タを格子と一体的にしておくわけには行かず、それらの
移動機構が必要となる。本発明はオフプレーンイーグル
型分光器において、簡単な0次光モニタ州境の移動機構
を提供しようとするものである。以下実施例によって本
発明を説明する。
However, in the case of the Eagle type, since the angle of incidence of light on the grating changes as the wavelength scans, it is not possible to keep the 0th-order light monitor state border and optical monitor integrated with the grating, and the movement mechanism for them cannot be used. Is required. The present invention aims to provide a simple mechanism for moving the state border of the zero-order light monitor in an off-plane Eagle type spectrometer. The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例の平面図である。Sl、S2
は入射スリット及び出射スリットである。
FIG. 1 is a plan view of one embodiment of the present invention. Sl, S2
are the entrance slit and the exit slit.

第7図ではこれらは一つに画かれているが同図の紙面に
垂直の方向で位置がずれており、第2図に示すような位
置関係になっている。即ち入射スリットS1と出射スリ
ットS2とはローランド円の面をはさんで−F下に位置
している( 0ff−plane )。
Although these are drawn as one in FIG. 7, their positions are shifted in the direction perpendicular to the plane of the drawing, resulting in a positional relationship as shown in FIG. 2. That is, the entrance slit S1 and the exit slit S2 are located below -F across the plane of the Rowland circle (0ff-plane).

Gは波長走査範囲の中心波長における回折格子の位置を
示し、0ばそのときのローランド円の中心である。回折
格子Gは波長走査の際入出射スリット81.82方向に
直線移動を行うと共に常にローランド円に沿うように向
きが変えられる。G1は上記中心波長とは異る一つの波
長に対する回折格子の位置を示し、01はそのときのロ
ーランド円の中心・である。オフプレーンイーグル型分
光器はこのような構成であるから波長走査に伴って回折
格子への光の入射角αが変化する。
G indicates the position of the diffraction grating at the center wavelength of the wavelength scanning range, and is the center of the Rowland circle at 0. During wavelength scanning, the diffraction grating G moves linearly in the directions of the entrance and exit slits 81 and 82, and its direction is always changed along the Rowland circle. G1 indicates the position of the diffraction grating for one wavelength different from the center wavelength, and 01 is the center of the Rowland circle at that time. Since the off-plane Eagle type spectrometer has such a configuration, the incident angle α of light to the diffraction grating changes as the wavelength is scanned.

1は送りねじであって格子Gの中心波長位置における0
次光りの光束中心と直交しており、0次光モニタ用鏡M
はこの送りねじlに螺合しているナツト2に回動可能に
取付けられている。送りねじ1は波長走査と連動して駆
動せられ、O次光モニタ州境Mが回折格子Gからの0次
光に追従するようになっている。格子Gの中心波長位置
に対するモニタ州境Mの位置において、同鏡は送りねじ
]と45°の角度従って0次光の同鏡への入射角が45
°になっていて、同鏡に入射した0次光は送りねじ1と
平行な方向に反射され、送りねじ1の延長方向にある光
トラップTに入射して吸収される。波長走査に伴いモニ
タ州境Mは送りねじ1に沿い移動するが送りねじlと0
次光とのなす角は45°よりずれるので、波長走査に伴
いモニタ州境を少しく回転させる必要がある。この回転
角は中心波長位置における0次光りと他の波長位置にお
けるO次光D′とのなす角βの1/2であり、波長走査
の一端から他端へと単調に変化する。第3図はこのモニ
タ州境Mの回転のだめの機構で、送りねじ1と略平行し
てガイド棒3が配置され、ナツト2の側面の溝4に嵌っ
ていてナツト2の回り止めになっていると共にモニタ州
境Mを回転させるカムとなっている。即ち鏡Mには腕5
が固定してあり、腕5はばね6によって第3図Aで反時
計回りに付勢されておシ、腕5の端のローラ7が上記ガ
イドに当接している。ガイド3は送りねじlと平行より
若干傾いていて、鏡Mが分光器の中心波長位置にあると
き、送りねじlに対し45゜の傾きとなるようにしであ
る。ガイド3が送りねじ1に対(〜で若干傾いているこ
とにより、鏡Mはその移動に伴って単調に回動し、0次
光の反射光は常に近似的に送りねじlと平行であり、従
ってトラ・ングTは波長走査に伴って動かす必要がない
1 is a feed screw, and 0 at the center wavelength position of the grating G.
It is perpendicular to the center of the luminous flux of the next light, and is used as a mirror M for monitoring the zero-order light.
is rotatably attached to a nut 2 which is screwed onto this feed screw l. The feed screw 1 is driven in conjunction with wavelength scanning, so that the O-order light monitor state boundary M follows the zero-order light from the diffraction grating G. At the position of the monitor state border M with respect to the central wavelength position of the grating G, the mirror is at an angle of 45° with the feed screw], so the incident angle of the zero-order light to the mirror is 45°.
The zero-order light incident on the mirror is reflected in a direction parallel to the feed screw 1, enters the optical trap T in the extending direction of the feed screw 1, and is absorbed. As the wavelength scans, the monitor state border M moves along the feed screw 1, but the feed screw l and 0
Since the angle formed with the secondary light deviates from 45°, it is necessary to rotate the monitor state border slightly in conjunction with wavelength scanning. This rotation angle is 1/2 of the angle β between the zero-order light at the center wavelength position and the O-order light D' at other wavelength positions, and changes monotonically from one end of the wavelength scan to the other end. Figure 3 shows the mechanism for preventing the rotation of this monitor state line M. A guide rod 3 is placed approximately parallel to the feed screw 1, and is fitted into a groove 4 on the side of the nut 2 to prevent the nut 2 from rotating. It is also a cam that rotates the monitor state line M. In other words, mirror M has arm 5.
is fixed, arm 5 is biased counterclockwise in FIG. 3A by a spring 6, and roller 7 at the end of arm 5 is in contact with the guide. The guide 3 is slightly inclined from being parallel to the feed screw l, so that when the mirror M is at the center wavelength position of the spectrometer, it is inclined at an angle of 45° with respect to the feed screw l. Because the guide 3 is slightly tilted relative to the feed screw 1, the mirror M rotates monotonically as it moves, and the reflected light of the zero-order light is always approximately parallel to the feed screw L. , Therefore, the track T does not need to be moved with wavelength scanning.

第4図は本発明の他の実施例を示す。81.S2は第2
図の例と同じ入射及び出射スリットでGは回折格子であ
る。Ll、L2は等長のリンクで人々の長さはローラン
ド円の半径に等しく、リンクL1の一端は入出射スリブ
)Sl、S2の下方位置(図では紙面の向う側)におい
て枢止されており、リンクL2の一端に同リンクと直交
するように格子Gが固定しである。リンクLl、L2の
連結点がローランド円の中心になる。回折格子Gはまだ
直線ガイド溝Xに沿って移動するようになっている。波
長走査は格子Gを溝Xに渚って摺動させることにより行
われる。格子Gには第5図に示すような遊星歯車機構が
取付けられている。第5図で内歯車Bは回折格子〇と一
体的であり、中心歯車Aと内歯車Bとの間に介在させた
遊星歯車Cはガイド溝Xに嵌合された滑子(不図示)に
枢着されている。中心歯車Aの軸は中空軸で格子Gの中
ノし・軸が貝通している。格子Gの中心軸は上記滑子9
c枢支式れている。従って中心歯車Aは回折格子Gに枢
着されたことになってお9、格子Gがガイド溝Xに対し
て角αだけ回転したとき、中心爾II1.Aは角2αた
け回転するようにしである。この中心歯車Aに第5図の
腕Eが固定しである。腕Eは管とそれに挿入された棒と
よりなっていて伸縮可能でめり、ガイド溝XK対し常に
2α(αはり/りL2とガイド溝Xとのなす角、可変)
の角を挾んでいる。Yは第1図における送りねじIK対
応するガイド溝で、中心波長に対応する回折格子Gの位
置における腕Eの方向と直交しており、この溝に滑子H
が摺動可能例嵌合している。滑子ち Hには第〆図に示したのと全く同じ遊星歯車機構が設け
られており、腕Eの端が中心歯車Aに固定されている。
FIG. 4 shows another embodiment of the invention. 81. S2 is the second
The entrance and exit slits are the same as in the example shown, and G is a diffraction grating. Ll and L2 are links of equal length, and the length of each person is equal to the radius of the Rowland circle, and one end of the link L1 is pivoted at a position below the input/output sleeves) Sl and S2 (on the opposite side of the paper in the figure). A grating G is fixed to one end of the link L2 so as to be perpendicular to the link. The connection point between links Ll and L2 becomes the center of the Rowland circle. The diffraction grating G is still adapted to move along the linear guide groove X. Wavelength scanning is performed by sliding the grating G along the grooves X. A planetary gear mechanism as shown in FIG. 5 is attached to the grid G. In Fig. 5, the internal gear B is integral with the diffraction grating 〇, and the planetary gear C interposed between the central gear A and the internal gear B is connected to a slider (not shown) fitted in the guide groove X. It is pivoted. The shaft of the central gear A is a hollow shaft, and the core and shaft of the lattice G are passed through the shell. The central axis of the lattice G is the slider 9 mentioned above.
c It is pivoted. Therefore, the center gear A is pivotally attached to the diffraction grating G9, and when the grating G is rotated by an angle α with respect to the guide groove X, the center gear A is pivoted to the diffraction grating G. A is designed to rotate by an angle 2α. An arm E shown in FIG. 5 is fixed to this central gear A. The arm E is made up of a tube and a rod inserted into it, is expandable and retractable, and is always 2α with respect to the guide groove XK (α beam/angle between beam L2 and guide groove X, variable).
holding the corner of Y is a guide groove corresponding to the feed screw IK in FIG.
The sliding case is mated. The sliding wheel H is equipped with a planetary gear mechanism exactly the same as that shown in the last figure, and the end of the arm E is fixed to the central gear A.

Aの外側の内歯車BにO次光モニタ州境Mが固定されて
いる。鏡Mの中心軸が滑子Hに枢止されている。この構
成により、腕Eの溝Yに対する回転角の半分の角度だけ
O次光モニタ州境Mが回転する。従って中心波長位置に
おいて、鏡MがガイドYに対し45°をなすようにセッ
トしておけば0次光は常に正しくガイドYの方向に反射
される。
An O-order optical monitor state border M is fixed to an internal gear B outside A. The central axis of the mirror M is pivotally fixed to the slider H. With this configuration, the O-order light monitor state border M is rotated by an angle that is half the rotation angle of the arm E with respect to the groove Y. Therefore, if the mirror M is set so as to form an angle of 45° with respect to the guide Y at the center wavelength position, the zero-order light will always be correctly reflected in the direction of the guide Y.

本発明は上述したような構成で、0次光モニタ用鏡の移
動方向が回折格子の中心波長位置における0次光の方向
と直交する方向なので、他の何れの方向を採るより移動
距離が少くてすみ、かつ〇次光モニタ用鏡にょる0次光
の反射方向を同鏡の移動方向と平行にしたので、同鏡の
振p角はきわめて小さく、これらの結果0次光モニタ用
鏡の移動機構は小型簡単となシ、光トラップは固定した
ま\でよいので0次光モニタ装置を設けたオフプレーン
イーグル型分光装置全体として簡単な構成が得られる。
The present invention has the above-described configuration, and since the moving direction of the zero-order light monitoring mirror is orthogonal to the direction of the zero-order light at the center wavelength position of the diffraction grating, the moving distance is smaller than in any other direction. Since the direction of reflection of the 0th order light by the 0th order light monitoring mirror is parallel to the moving direction of the mirror, the deflection angle of the mirror is extremely small, and as a result, the 0th order light monitoring mirror The moving mechanism is small and simple, and the optical trap need only be fixed, so that the entire off-plane Eagle type spectrometer equipped with a zero-order light monitor can have a simple configuration.

【図面の簡単な説明】 第1図は本発明の一実施例の平面図、第2図は同じく側
面略図、第3図は上記実施例における○次光モニタ州境
移動機構を示し、同図Aは平面図、同図Bは側面図、第
4図は本発明の他の実施例の平面図、第5図は同実施例
で用いられている遊星歯車機構の平面図、第6図はボー
ダ型分光器の平面図である。 81・・・入射スリット、S2・・・出射スリット、G
・・・回折格子、M・・・0次光モニタ用鏡、T・・・
光トラップ、]・・・送りねじ、2・・・ナツト、3・
・・ガイド棒、Ll、L2・・・リンク、X、Y・・・
ガイド溝。 −12?
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a plan view of an embodiment of the present invention, Fig. 2 is a schematic side view, and Fig. 3 shows a state border movement mechanism for the ○th optical monitor in the above embodiment. A is a plan view, B is a side view, FIG. 4 is a plan view of another embodiment of the present invention, FIG. 5 is a plan view of the planetary gear mechanism used in the same embodiment, and FIG. 6 is a plan view of the planetary gear mechanism used in the same embodiment. FIG. 2 is a plan view of a border-type spectrometer. 81...Incidence slit, S2...Output slit, G
...Diffraction grating, M...Mirror for 0th order light monitoring, T...
Optical trap, ]...Feed screw, 2...Nut, 3.
...Guide rod, Ll, L2...Link, X, Y...
guide groove. -12?

Claims (1)

【特許請求の範囲】[Claims] 分光素子として回折格子を用い、入射光と略同じ方向か
ら目的の波長の光を取出すように構成された分光器にお
いて、走査波長範囲の略中心の波長が出口スリットから
出射するようにしたときの回折格子からの0次光の方向
と略直交するガイドに沿い移動可能で、回折格子の0次
光を受光し上記ガイドと平行な方向に反射させるO次光
モニタ用鏡を設けたことを特徴とする分光装置。
In a spectrometer that uses a diffraction grating as a spectroscopic element and is configured to extract light of a target wavelength from approximately the same direction as the incident light, when the wavelength approximately at the center of the scanning wavelength range is made to exit from the exit slit. It is characterized by being equipped with an O-order light monitoring mirror that can move along a guide that is substantially orthogonal to the direction of the 0-order light from the diffraction grating, and that receives the 0-order light of the diffraction grating and reflects it in a direction parallel to the guide. A spectroscopic device.
JP1375682A 1982-01-30 1982-01-30 Spectroscopic device Granted JPS58131522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1375682A JPS58131522A (en) 1982-01-30 1982-01-30 Spectroscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1375682A JPS58131522A (en) 1982-01-30 1982-01-30 Spectroscopic device

Publications (2)

Publication Number Publication Date
JPS58131522A true JPS58131522A (en) 1983-08-05
JPH049247B2 JPH049247B2 (en) 1992-02-19

Family

ID=11842092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1375682A Granted JPS58131522A (en) 1982-01-30 1982-01-30 Spectroscopic device

Country Status (1)

Country Link
JP (1) JPS58131522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013860A1 (en) * 2015-07-17 2017-01-26 日本電気株式会社 Display device and display system
JP2018128282A (en) * 2017-02-06 2018-08-16 西進商事株式会社 Monochromator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013860A1 (en) * 2015-07-17 2017-01-26 日本電気株式会社 Display device and display system
JPWO2017013860A1 (en) * 2015-07-17 2018-05-24 日本電気株式会社 Display device and display system
JP2018128282A (en) * 2017-02-06 2018-08-16 西進商事株式会社 Monochromator

Also Published As

Publication number Publication date
JPH049247B2 (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US5677939A (en) Illuminating apparatus
JP2004294136A (en) X-ray diffraction device
US7688445B2 (en) Spectroscope and spectroscopic method
US4575243A (en) Monochromator
US6671054B2 (en) Interferometric patterning for lithography
US2750836A (en) Monochromator system for spectrochemical analysis
JPH0584451B2 (en)
JPS62277526A (en) Imaging spectrometer
JP5320542B2 (en) Multipass cell
US3472595A (en) Diffraction grating spectrophotometer
US20160299005A1 (en) Data knitting tandem dispersive range monochromator
KR101850573B1 (en) Minute rotary type image spectrum device
JPS58131522A (en) Spectroscopic device
JPH0636452B2 (en) Method and apparatus for aligning diffraction grating for laser output tuning
US4605306A (en) Grating monochromator
JPS59196429A (en) Sine bar mechanism
JPH08145795A (en) Double/single color meter
JP3141106B2 (en) Convergent light incidence type spectrometer using spherical diffraction grating
US4179219A (en) Revolving mirror scanning interferometer
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JPH0754824Y2 (en) Liquid chromatograph spectrometer
JP2861736B2 (en) X-ray spectrometer
JP2530029B2 (en) Multilayer spectrometer
JPH07504750A (en) Optical radiation measurement method and device
KR100204113B1 (en) A package array mode plane imaging type ultraviolet pectrometer and allignment device thereof