JPS58130702A - Power converting system for ac electric motor vehicle - Google Patents

Power converting system for ac electric motor vehicle

Info

Publication number
JPS58130702A
JPS58130702A JP1116982A JP1116982A JPS58130702A JP S58130702 A JPS58130702 A JP S58130702A JP 1116982 A JP1116982 A JP 1116982A JP 1116982 A JP1116982 A JP 1116982A JP S58130702 A JPS58130702 A JP S58130702A
Authority
JP
Japan
Prior art keywords
converter
transformer
winding
converters
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1116982A
Other languages
Japanese (ja)
Inventor
Shigenori Kinoshita
木下 繁則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1116982A priority Critical patent/JPS58130702A/en
Publication of JPS58130702A publication Critical patent/JPS58130702A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/08Electric propulsion with power supply external to the vehicle using dc motors fed from ac supply lines
    • B60L9/12Electric propulsion with power supply external to the vehicle using dc motors fed from ac supply lines with static converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To reduce the numbers of the secondary coils of a transformer and of unit converters by forming an intermediate tap at one of the secondary coils of the transformer respectively connected to the unit cnverters, connecting the converters of 6-arm bridge configuration to the coils, and controlling the phases of the converters. CONSTITUTION:An AC power source 1 is connected through a reactance 2 to the primary coil of a transformer 3, the secondary coil of the transformer 3 is divided into three segments, and the coil segments 37-39 are respectively connected to unit converters 47-49 which form a converter 4. The converters 47- 49 are sequentially connected in cascade to each other, and a load 6 is connected to the DC output side. The coils 37 are divided into segments 371, 372, a tap 373 is attached, and the converter 47 is formed in a 6-arm bridge configuration. In this case, the ratio of the secondary coils of the transformer 3 is set to 1:2:3:4, and the converter 47 is controlled in phase, thereby switching the converters 48, 49.

Description

【発明の詳細な説明】 本発明は複数の二次巻線を有する変圧器と、仁の変圧器
の二次巻線に各々に接続する半導体電力変換器の組合せ
による交流電気車の電力変換方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a power conversion system for an AC electric vehicle using a combination of a transformer having a plurality of secondary windings and a semiconductor power converter connected to each of the secondary windings of the transformer. It is related to.

交流電気車は車両に搭載した変圧器と半導体変換器とに
より直流駆動電動機の印加電圧を制御して遮tW節を行
なうことが多い。
In AC electric vehicles, the voltage applied to the DC drive motor is often controlled by a transformer and a semiconductor converter mounted on the vehicle to perform the cut-off tW node.

また、交流電気車の中には、上記半導体変換器に道変換
動作可能なものを用いることにより回生制動退転を可能
としたものもある。
Furthermore, some AC electric vehicles are capable of regenerative braking and reversing by using a semiconductor converter capable of road conversion operation.

いずれの場合も、電源側に流れる電流に含すれる高調波
を少なくすることが望まれるのはいう寥でもない。
In either case, it goes without saying that it is desirable to reduce harmonics contained in the current flowing to the power supply side.

第1図は従来例を示す回路図で、交流電源1をリアクタ
ンス2を介して変圧器3の一次巻線に接続し、変圧器3
の二次巻線を変圧器4及び平滑リアクトル5を介して直
流駆動電動機としての負荷6に接続した構成において、
電源l側に流れる高調波電流の低減を図るために変圧器
3の二次巻線を多分割しく図中では6分割)、これに変
圧器4を構成する各半導体単位変換器41〜1をそれぞ
れ接続し、また各単位変換器を縦続接続している。
FIG. 1 is a circuit diagram showing a conventional example, in which an AC power source 1 is connected to the primary winding of a transformer 3 via a reactance 2, and the transformer 3
In a configuration in which the secondary winding of is connected to a load 6 as a DC drive motor via a transformer 4 and a smoothing reactor 5,
In order to reduce the harmonic current flowing to the power supply l side, the secondary winding of the transformer 3 is divided into multiple parts (into six parts in the figure), and each semiconductor unit converter 41 to 1 constituting the transformer 4 is connected to this. and each unit converter is connected in cascade.

というように二次巻線の一部の巻線電圧を他の巻線より
も低くして、この電圧の低い巻線に接続された変換器の
みを負荷電圧に応じて位相制御し、その他の巻線に接続
された変換器はスイッチ動作をさせ、位相制御に伴って
電源1儒に発生する高調波電流の一層の低減を図ってい
る。
By setting the winding voltage of some of the secondary windings lower than other windings, the phase of only the converter connected to this winding with low voltage is controlled according to the load voltage, and the other windings are controlled in phase. The converter connected to the winding operates as a switch to further reduce the harmonic current generated per power supply due to phase control.

112図は一般にバーニヤ制御と称せられる上記制御の
具体例を示したものである。
FIG. 112 shows a specific example of the above control, which is generally called vernier control.

第1図において変圧lI3の二次巻−31−860うち
、電圧の低い巻線31に接続した変換器41のみを位相
制御する。
In FIG. 1, only the converter 41 connected to the lower voltage winding 31 of the secondary winding 31-860 of the transformer II3 is phase controlled.

82図はカ行運転時の動作を示し、運転ノツチ1では変
換器41を位相制御し、他の変換器はスイッチ動作すな
わち負荷電流をバイパスさせるフリーホイー1Jング動
作をさせる。運転ノツチ2では巻線31とほぼ同じ電圧
の巻線32に接続した変換器42をダイオード的動作(
最大出力動作)させ、変換器4 B−46はフリーホイ
ーリング動作をさせ一運転ノッチ3では巻線31の電圧
のほぼ2倍の電圧の巻線33に接続した変換器43をダ
イオード的−作をさせ、変換! 42.44〜46はフ
リーホイーリング動作をさせる。
FIG. 82 shows the operation during continuous operation, in which the phase of the converter 41 is controlled at operation notch 1, and the other converters perform switching operations, that is, freewheeling operations that bypass the load current. In operation notch 2, the converter 42 connected to the winding 32 having approximately the same voltage as the winding 31 is operated in a diode-like manner (
The converter 4 B-46 is operated in a freewheeling manner, and the converter 43 connected to the winding 33 whose voltage is approximately twice the voltage of the winding 31 is operated in a diode-like manner. Let and convert! 42. 44-46 perform freewheeling motion.

なお、運転ノツチlから2への切替は変換器41がダイ
オード的動作となった時点で変換器42をダイオード的
動作に、同時に変換器41の出力を最小出力動作に切替
える。
In addition, when switching from operation notch 1 to operation notch 2, the converter 42 is switched to diode-like operation at the time when converter 41 becomes diode-like operation, and at the same time, the output of converter 41 is switched to minimum output operation.

運転ノツチ2から3への切替は変換器41の出力が最大
となった時点で、変換器43の出力をフ11−ホイーリ
ング動作からダイオード的動作に、変換器42はダイオ
ード的動作からフリーホイーリング動作に各々切替、同
時に変換器41もダイオード的動作から最小出力動作に
切替える。
The switching from operating notch 2 to 3 occurs when the output of converter 41 reaches its maximum, and the output of converter 43 changes from free-wheeling operation to diode-like operation, and converter 42 changes from diode-like operation to free-wheeling operation. At the same time, the converter 41 is also switched from diode-like operation to minimum output operation.

以下同様に運転ノツチ3から4へ、同4から5への切替
は第2図に示すように変換器を切替えていく◎この場合
切替時の変換器の合成出力電圧の変動は殆んどないので
、負荷電流も殆んど影響を受けない。更に、従来方式で
は出力電圧の大きい運転範囲での一次電流の等価妨害電
流JP°の低減を図るため、第3図の例に示すように、
各単位整流器を同時に転流させても(同図は最大10ノ
ツチの場合で示しである)各単位変換6の転流が同図(
b)に示すように順序よく行なわれるように二次巻線の
りアクタンスを各々異なるようにしている。
Similarly, when switching from operation notch 3 to 4 and from operation notch 4 to 5, the converter is switched as shown in Figure 2. In this case, there is almost no fluctuation in the combined output voltage of the converter at the time of switching. Therefore, the load current is hardly affected. Furthermore, in the conventional method, in order to reduce the equivalent disturbance current JP° of the primary current in the operating range where the output voltage is large, as shown in the example in Fig. 3,
Even if each unit rectifier is commutated at the same time (the figure shows the case of a maximum of 10 notches), the commutation of each unit rectifier 6 is as shown in the figure (
As shown in b), the actances of the secondary windings are made to be different so that the windings are performed in an orderly manner.

実際には1〜9ノツチ運転は加速運転ノツチで運転時間
も短かいが、10ノツチは連続運転ノツチであり、運転
時間が非常に長くなる。このため特に10ノツチでのJ
、低減が大きな課題であり、第3図(blのような転流
動作を行なわせることによってlOノツチでのJp低減
が図られている。
In reality, the 1st to 9th notch operation is an acceleration operation notch and the operating time is short, but the 10th notch is a continuous operation notch and the operating time is very long. For this reason, J at 10 knots in particular
, reduction is a major issue, and reduction of Jp at the lO notch is attempted by performing a commutation operation as shown in FIG. 3 (bl).

しかし、従来方式のバーニヤ制御では上述のように変換
器の出力電圧の大きさに関係なく、位相制御される巻線
は常に同じで、しかも電圧が最も低く、シかもスイッチ
ング動作の巻線電圧は位相制御巻線とほぼ同じか又は2
倍となっているので、必要な二次電圧を得るための二次
巻線数も多く、ξれに接続される単位変換器の数も多く
なり、偏置全体が大型化してしまう。才た、等価妨害電
瓢J、と運転ノツチとの関係を示した第4図で明らかな
ように変換器出力電圧の低い、ノツチ9.10でのJ、
はノツチ1.2に比べ非常に小さくなり、このように変
換器出力の低い運転範囲では必要以上に高調波電流が低
減されてしまう。
However, in conventional vernier control, regardless of the magnitude of the converter output voltage, the phase-controlled winding is always the same, and the voltage is the lowest, and the winding voltage for switching operation is Almost the same as the phase control winding or 2
Since the number of secondary windings is doubled, the number of secondary windings required to obtain the necessary secondary voltage is also increased, and the number of unit converters connected in the ξ direction is also increased, resulting in an increase in the overall size of the eccentric arrangement. As is clear from Fig. 4, which shows the relationship between the equivalent disturbance power J, and the operating notch, when the converter output voltage is low, J at notch 9.10,
is much smaller than the notch 1.2, and in this operating range where the converter output is low, the harmonic current is reduced more than necessary.

本発明の目的は上記従来例の有する欠点を解消し、変圧
器の二次巻線分割数を低減し、変圧器。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional example described above, reduce the number of secondary winding divisions of a transformer, and provide a transformer.

変換器の小型軽量化が図れる交流電気車の電力変換方式
を提供するものである。
The present invention provides a power conversion system for AC electric vehicles that allows the converter to be made smaller and lighter.

この目的は、本発明によれば、変圧器の二次巻線を複数
個に分割し、各分割巻線に正半導体変換器を構成する単
位変換器をそれぞれ接続し、各単位置換器を縦続接続し
て直流駆動電動機への印加−電圧を制御する交流電気車
において、スイッチ動作変換器を接続する多分割巻線の
うちほぼ同じ転流動作となる巻線を合成して1つの巻線
にするとともに、これに接続される単位変換器には耐圧
の高い半導体を使用して変圧器二次巻線数と単位変換器
数を低減し、更に電圧の最も低い二次巻線は電圧比1:
2の位置にタップを出し、この巻善にlI続される単位
変換器は6アームブリツジ構成にするとともにこの変換
器を位相制御動作させることによって達成される。すな
わち第5図体)に示すようにほぼ同じ転流動作を行う巻
線は同図(C)に示すように巻線を直列接続して、これ
に単位変換器を接続した方式でも一次側に流れる電流波
形は(d)のようになり、これは(a)の場合の電流波
形とほぼ同じとなる。したがって、−次電流の高調波電
流はIc)も(a)もほぼ同じとなる。但し、(C)の
場合の変換器に加わる電圧は(a)の場合の倍となるが
2倍の耐圧の累子を用いることにより素子数は(1)の
場合の半分となる。
According to the present invention, the secondary winding of the transformer is divided into a plurality of parts, each of the divided windings is connected with a unit converter constituting a positive semiconductor converter, and each unit replacer is connected in cascade. In an AC electric vehicle that connects and controls the voltage applied to a DC drive motor, windings that have almost the same commutation operation among the multi-divided windings connected to the switch operation converter are combined into one winding. At the same time, the unit converter connected to this unit uses a semiconductor with high withstand voltage to reduce the number of secondary windings of the transformer and the number of unit converters, and the secondary winding with the lowest voltage has a voltage ratio of 1. :
This is achieved by providing a tap at position No. 2, making the unit converter connected to this winding a six-arm bridge configuration, and operating this converter under phase control. In other words, if the windings perform almost the same commutation operation as shown in Figure 5 (Figure 5), the current will flow to the primary side even if the windings are connected in series and a unit converter is connected to this as shown in Figure (C). The current waveform becomes as shown in (d), which is almost the same as the current waveform in case (a). Therefore, the harmonic current of the -order current is almost the same in both Ic) and (a). However, although the voltage applied to the converter in case (C) is twice that in case (a), the number of elements is half that in case (1) by using a resistor with twice the withstand voltage.

一方、(・)のように直列接続した巻線の中間からタッ
プを出し、6アームブリツジとしてもほぼ同じ効果が得
られる・ 以下、図面について本発明の実施例を詳細に説明する。
On the other hand, almost the same effect can be obtained by creating a 6-arm bridge by taking out a tap from the middle of the windings connected in series as shown in (.).Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

1116図は本発明の実施例を示す回路図で交流電源1
をリアクタンス2を介して変換器3の一次巻線に接続し
、変圧器3の二次巻線を3分割し、各巻線37〜39を
変換器4を構成する各単位変換器47〜49にそれぞれ
接続し、巣位変換器47〜49は相互に順次縦続接続す
るとともに、その直流出力側に平滑リアクトル5を介し
て負荷6を接続する。二次巻線3フは巻線371と37
2とに分けてタップ3γ3を出す。二次巻@37に接続
する変換器47は6アームブリツジ構成とする。
Figure 1116 is a circuit diagram showing an embodiment of the present invention.
is connected to the primary winding of the converter 3 via the reactance 2, the secondary winding of the transformer 3 is divided into three, and each winding 37 to 39 is connected to each unit converter 47 to 49 constituting the converter 4. The position converters 47 to 49 are connected to each other in cascade, and a load 6 is connected to the DC output side thereof via a smoothing reactor 5. Secondary winding 3 is winding 371 and 37
2 and tap 3γ3. The converter 47 connected to the secondary winding @37 has a six-arm bridge configuration.

この場合、上記変圧器3の二次巻線の比はというように
設定し、また各単位変換器47は位相制御を行い、48
 、49はスイッチ動作を行う。すなわち位相制御用単
位変換器47とスイッチ動作変換器48 、49とでバ
ーニヤ制御を行う。
In this case, the ratio of the secondary winding of the transformer 3 is set as follows, each unit converter 47 performs phase control, and 48
, 49 perform a switch operation. That is, the phase control unit converter 47 and the switch operation converters 48 and 49 perform vernier control.

第7図はカ行運転時の動作を示し、運転ノツチlでは巻
線371の電圧のみが出るように、変換器47は位相制
御(1)の動作をさせ、他の変換器48.49はスルー
動作すなわち負荷電流をバイパスさせるフリーホイーリ
ング動作をさせる。運転ノツチ2.3では巻線37!・
と372の電圧が出るように変換器47は位相制御(2
)の動作をさせ、変換器48.49はフリーホイーリン
グ動作をさせる。運転ノツチ4では巻線371の電圧の
ほぼ3倍の電圧の巻線38に接続した変換器4Bをダイ
オード的動作をさせ、変換器47は巻線371の電圧が
出るように位相制御(1)の動作をさせ、変換器49は
フリーホイーリング動作をさせる。
FIG. 7 shows the operation during the 4-way operation, in which the converter 47 is operated under phase control (1) so that only the voltage of the winding 371 is output at operation notch l, and the other converters 48 and 49 are Through operation, that is, freewheeling operation that bypasses the load current is performed. At operating notch 2.3, the winding is 37!・
The converter 47 is phase controlled (2
), and the transducers 48 and 49 are freewheeling. At operation notch 4, the converter 4B connected to the winding 38 with a voltage approximately three times higher than the voltage of the winding 371 is operated like a diode, and the converter 47 is phase controlled (1) so that the voltage of the winding 371 is output. The converter 49 is caused to perform a freewheeling operation.

なお、位相制御(1)動作および位相制御(2)動作時
の変換器47の出力電圧波形を第8図に示す。運転ノツ
チ3から4への切替は変換器47の出力が最大となった
時点で、変換器48の出力をフリーホイーリング動作か
らダイオード的動作に切替え、同時に変換器47もダイ
オード的動作から最小出力動作に切替える。
Note that FIG. 8 shows the output voltage waveform of the converter 47 during the phase control (1) operation and the phase control (2) operation. Switching from operation notch 3 to 4 involves switching the output of converter 48 from freewheeling operation to diode-like operation when the output of converter 47 reaches the maximum, and at the same time converter 47 also changes from diode-like operation to minimum output. Switch to action.

以下同様に運転ノツチ4から5へ、同5から6への切替
は第7図に示すように、変換器を切替えていく。この場
合、切替時の変換器の合成出力電圧変動は麺んどないの
で負荷電流の変動も殆んどない。
Thereafter, the converter is similarly switched from operation notch 4 to 5 and from operation notch 5 to 6 as shown in FIG. In this case, since there is no fluctuation in the combined output voltage of the converter during switching, there is also almost no fluctuation in the load current.

119図の実線は第6図の実施例の運転ノツチに対する
J、を示しており、同図の点線は従来方式の場合である
。同図から最高運転ノツチのlOノツチでのJ、は従来
方式きほぼ同じである。8.9ノツチでは位相制御巻線
電圧は2倍となるためJ、は従来方式よりわずかに増大
する。同様に5.6ノツチおよび2.3ノツチでも従来
よりもJ、はわずかに増大するが、加速ノツチのため実
用上問題はない・ 以上述べたように本発明の電力変換方式によれば出力電
圧の高い運転範囲での一次電流の高調波電流を増大させ
ることもなく変圧器二次巻線数および単位変換器数が低
減出来、変圧器、変換器の小形軽量化が図れる。
The solid line in FIG. 119 indicates J for the operating notch of the embodiment in FIG. 6, and the dotted line in the same figure is for the conventional system. As can be seen from the figure, J at the lO notch, which is the highest operating notch, is almost the same as in the conventional method. In the case of 8.9 notches, the phase control winding voltage is doubled, so J is slightly increased compared to the conventional method. Similarly, with the 5.6 notch and 2.3 notch, J increases slightly compared to the conventional one, but since it is an acceleration notch, there is no practical problem.As described above, according to the power conversion method of the present invention, the output voltage The number of transformer secondary windings and the number of unit converters can be reduced without increasing the harmonic current of the primary current in a high operating range, and the size and weight of transformers and converters can be reduced.

本発明の説明はカ行運転の場合で行ったが、単位変換器
をサイリスタ均一ブリッジで構成することにより回生運
転も可能となるが、この種の変換器にも適用出来、同様
の効果が期待出来る。
Although the present invention has been explained in the case of power-row operation, regenerative operation is also possible by configuring the unit converter with a thyristor uniform bridge, but it can also be applied to this type of converter, and similar effects can be expected. I can do it.

なお、上記実施例は交流電気車の単位変換器の場合につ
いてのみ説明したが、変圧器二次巻線を複数に分割し、
これに変換器を接続する3相の変換器についても本発明
は同様に適用できるものである。
Although the above embodiment has been described only for the case of a unit converter for an AC electric vehicle, it is also possible to divide the transformer secondary winding into a plurality of parts,
The present invention can be similarly applied to a three-phase converter to which a converter is connected.

【図面の簡単な説明】[Brief explanation of the drawing]

811〜5図は従来例を示し、第1図は従来の電力変換
装置の一例を示す回路図、第2図は第1−の場合の制御
法を示す運転ノツチと変換器との一係図、第3図および
@5図はそれぞれ第1図の場合の一次巻一の電圧、電流
および二次巻線の電流波形、第4図はカ行運転時の運転
ノツチと等価妨害電流との関係を示すグラフで、一方、
第6図は本発明の電力変換方式の実施例を示し、第7詔
よび第8図は第6図の場合の制御法を示す運転ノツチと
変換器との関係図、第9図はカ行運転時の運転ノツチと
等価妨害電流との関係を示すグラフである。 l・・・交流電源 2・・・リアクタンス 3・・・変圧器 4・・・変換器 37〜39・・・変圧器の二次巻線 47〜49・・・単位変換器 5・・・平滑リアクトル 6・・・負荷。 T 1 口 1 / 20 ■ :  fll?−F/lff11t’lff30 ■
811 to 5 show conventional examples, FIG. 1 is a circuit diagram showing an example of a conventional power converter, and FIG. 2 is a relationship diagram between the operation notch and the converter showing the control method in case 1-. , Figure 3 and @Figure 5 are the voltage and current waveforms of the primary winding and the current waveform of the secondary winding, respectively, in the case of Figure 1, and Figure 4 is the relationship between the operating notch and the equivalent disturbance current during continuous operation. In the graph showing, on the other hand,
Fig. 6 shows an embodiment of the power conversion method of the present invention, edicts 7 and 8 are relationship diagrams between the operating notch and the converter showing the control method in the case of Fig. 6, and Fig. 9 is a diagram showing the relationship between the operating notch and the converter. It is a graph showing the relationship between the operating notch and the equivalent disturbance current during operation. l... AC power supply 2... Reactance 3... Transformer 4... Converter 37-39... Secondary winding of transformer 47-49... Unit converter 5... Smoothing Reactor 6...Load. T 1 Mouth 1/20 ■ : fll? -F/lff11t'lff30 ■

Claims (1)

【特許請求の範囲】 1)変圧器の二次巻線を複数個に分割し、各分割巻線に
主半導体変換器で構成する単位変換器をそれぞれ接続し
、各単位変換器を縦続接続して直流駆動電動機への印加
電圧を制御する交流電気車において、各々の二次巻線電
圧を異なるようにし、二次巻線のうち1つは巻線には中
間タップを設け、この巻線に6アームブリツジ構成の単
位変換器を接続し、且つこの変換器は位相制御動作をさ
せ、他の変換器はスイッチ動作をさせて変換器をバーニ
ヤ制御するようにしたことを特徴とする交流電気車の電
力変換方式0 2、特許請求の範囲第1項において変圧器の二次巻線数
を3とし、それらの巻線の電圧比を1=1: 4/3と
したことを特徴とする交流電気車の電力変換方式。 3)41111’F−求の範囲第1項または第2項にお
いて電圧比1の巻線の1つを中間タッ″プ付巻纏屹した
ことを特徴とする交流電気車の電力変換方式。 4)4I許請求の範囲第1項において、変圧器巻線の中
間タップは電圧比l:2の位置から出すようにしたこと
を特徴とする交流電気車の電力変換方式。
[Claims] 1) The secondary winding of the transformer is divided into a plurality of parts, each divided winding is connected to a unit converter composed of a main semiconductor converter, and each unit converter is connected in cascade. In an AC electric vehicle that controls the voltage applied to a DC drive motor by using An AC electric vehicle characterized in that a unit converter having a six-arm bridge configuration is connected, and this converter performs a phase control operation, and the other converters perform a switch operation to perform vernier control of the converters. Power conversion system 0 2, AC electricity characterized in that the number of secondary windings of the transformer is 3 and the voltage ratio of these windings is 1=1:4/3 in claim 1. Car power conversion method. 3) A power conversion system for an AC electric vehicle, characterized in that one of the windings with a voltage ratio of 1 is wound with an intermediate tap in the first or second term of the range of 41111'F. ) 4I The power conversion system for an AC electric vehicle according to claim 1, characterized in that the intermediate tap of the transformer winding comes out from a position at a voltage ratio of 1:2.
JP1116982A 1982-01-27 1982-01-27 Power converting system for ac electric motor vehicle Pending JPS58130702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116982A JPS58130702A (en) 1982-01-27 1982-01-27 Power converting system for ac electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116982A JPS58130702A (en) 1982-01-27 1982-01-27 Power converting system for ac electric motor vehicle

Publications (1)

Publication Number Publication Date
JPS58130702A true JPS58130702A (en) 1983-08-04

Family

ID=11770544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116982A Pending JPS58130702A (en) 1982-01-27 1982-01-27 Power converting system for ac electric motor vehicle

Country Status (1)

Country Link
JP (1) JPS58130702A (en)

Similar Documents

Publication Publication Date Title
US3431483A (en) Cycloconverter power circuits
JPH04197097A (en) High capacity speed varying system for ac motor
US4225914A (en) Frequency converters
JP7140660B2 (en) power converter
JPS6353788B2 (en)
JPS58130702A (en) Power converting system for ac electric motor vehicle
US3422338A (en) Reversible current converter for selective direction of current flow through d.c. load and including choke coil with unidirectional current flow
US6208230B1 (en) Transformer for cycloconverter
JPS58123301A (en) Power converting system for ac motor driven vehicle
JPS6117231B2 (en)
JPS638710B2 (en)
US3863119A (en) Commutatorless motor apparatus
JPH10323052A (en) Voltage dividing transformer and power converter the same
JP2510116B2 (en) 3-phase rectifier circuit
SU797020A1 (en) 24-phase ac-to-dc voltage converter
JPH05111108A (en) Controller for universal electric vehicle
KR820000360B1 (en) 12-step current source inverter
JP3171488B2 (en) Transformer for cyclo converter
JPH0732604B2 (en) Power converter
SU658679A1 (en) Direct frequency converter
JPS638711B2 (en)
SU1198733A1 (en) Two-motor electric drive
JPH0347042B2 (en)
JPS60141104A (en) Drive circuit of motor for ac electric railcar
JPH0446080B2 (en)