JPH0347042B2 - - Google Patents
Info
- Publication number
- JPH0347042B2 JPH0347042B2 JP58126171A JP12617183A JPH0347042B2 JP H0347042 B2 JPH0347042 B2 JP H0347042B2 JP 58126171 A JP58126171 A JP 58126171A JP 12617183 A JP12617183 A JP 12617183A JP H0347042 B2 JPH0347042 B2 JP H0347042B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- phase
- inverter
- source inverter
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 21
- 239000003990 capacitor Substances 0.000 claims description 9
- 238000009499 grossing Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Dc-Dc Converters (AREA)
Description
【発明の詳細な説明】
本発明は直流式電気鉄道における電気車駆動用
直流電動機として複巻電動機または分巻電動機を
使用する場合、低圧の交流電源を入力とするサイ
リスタブリツジによつて前記直流電動機の分巻界
磁を他励制御する電気車制御装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention provides that when a compound-wound motor or a shunt-wound motor is used as a DC motor for driving an electric car in a DC electric railway, the DC current is The present invention relates to an electric vehicle control device that separately excites and controls the shunt field of an electric motor.
以下従来の方式及び本発明の詳細を図を用いて
説明する。 The details of the conventional system and the present invention will be explained below with reference to the drawings.
第1図は従来より直流式電気鉄道の電気車に使
用されているブースタ方式インバータによる定電
圧三相交流電源装置の一例を示す回路接続図であ
る。 FIG. 1 is a circuit connection diagram showing an example of a constant voltage three-phase AC power supply device using a booster type inverter, which has been conventionally used in electric cars of DC electric railways.
第1図において、1は集電装置、2は断流器、
3はフイルタリアクトル、4はフイルタコンデン
サ、5は他励式電流形インバータ、6は他励式電
流形インバータの平滑リアクトル、7は単相電圧
形インバータ、8,9は電圧形インバータ7の電
源となる同一容量のコンデンサ、10はブースタ
変圧器、11はブースタ変圧器10の一次巻線、
12はブースタ変圧器10の二次巻線、13は三
相電圧形インバータ、14はインバータ13の出
力電圧を正弦波にするための交流フイルタ、15
は出力変圧器である。 In FIG. 1, 1 is a current collector, 2 is a current interrupter,
3 is a filter reactor, 4 is a filter capacitor, 5 is a separately excited current source inverter, 6 is a smoothing reactor for the separately excited current source inverter, 7 is a single phase voltage source inverter, 8 and 9 are the same power source for the voltage source inverter 7. 10 is a booster transformer, 11 is a primary winding of the booster transformer 10,
12 is a secondary winding of the booster transformer 10, 13 is a three-phase voltage type inverter, 14 is an AC filter for making the output voltage of the inverter 13 into a sine wave, 15
is the output transformer.
他励式電流形インバータ5と単相電圧形インバ
ータ7は直列に接続せられブースタ方式インバー
タのブースタ部を構成し、単相電圧形インバータ
7の直流出力は三相電圧形インバータ13に入力
される。 The separately excited current source inverter 5 and the single-phase voltage source inverter 7 are connected in series to constitute a booster section of a booster type inverter, and the DC output of the single-phase voltage source inverter 7 is input to the three-phase voltage source inverter 13.
三相電圧形インバータ13の三相交流出力は交
流フイルタ14、出力変圧器15を介し電気車の
冷暖房装置などの補助回路用低圧定電圧三相交流
電源として供せられる。 The three-phase AC output of the three-phase voltage source inverter 13 is supplied via an AC filter 14 and an output transformer 15 as a low-voltage constant-voltage three-phase AC power source for auxiliary circuits such as heating and cooling systems of electric cars.
5a,5b,5c,5dは他励式電流形インバ
ータ(以下電流形インバータと称す)5を構成す
るブリツジ回路に接続されたサイリスタで、
X′はサイリスタ5a,5bアームの接続端子、
Y′はサイリスタ5c,5dアームの接続端子を
示し、U′は単相電圧形インバータ7を構成する
ゲートターンオフサイリスタ7aと7bの接続端
子(ゲートターンオフサイリスタ7a及び7bに
それぞれ並列に接続された帰還ダイオード7c及
び7dの接続点でもある)、V′は直列接続された
コンデンサ8及び9の接続端子、U0,V0,W0は
三相電圧形インバータ13の三相出力端子、U1,
V1,W1は交流フイルタ14の三相出力端子、
U2,V2,W2は出力変圧器15の三相出力端子で
ある。以下三相交流U0,V0,W0,U1,V1,
W1,U2,V2,W2として説明する。 5a, 5b, 5c, and 5d are thyristors connected to a bridge circuit constituting a separately excited current source inverter (hereinafter referred to as a current source inverter) 5;
X′ is the connection terminal of the thyristor 5a, 5b arms;
Y' indicates the connection terminal of the thyristor 5c and 5d arms, and U' indicates the connection terminal of the gate turn-off thyristors 7a and 7b that constitute the single-phase voltage source inverter 7 (the feedback terminal connected in parallel to the gate turn-off thyristors 7a and 7b, respectively). ), V' is the connection terminal of the capacitors 8 and 9 connected in series, U 0 , V 0 , W 0 are the three-phase output terminals of the three-phase voltage source inverter 13, U 1 ,
V 1 and W 1 are the three-phase output terminals of the AC filter 14,
U 2 , V 2 , and W 2 are three-phase output terminals of the output transformer 15. The following three-phase AC U 0 , V 0 , W 0 , U 1 , V 1 ,
This will be explained as W 1 , U 2 , V 2 , and W 2 .
接続端子U′及びV′はブースタ変圧器10の一
次巻線11に、接続端子X′及びY′はブースタ変
圧器10の二次巻線12に接続される。 The connecting terminals U' and V' are connected to the primary winding 11 of the booster transformer 10, and the connecting terminals X' and Y' are connected to the secondary winding 12 of the booster transformer 10.
Vd1はフイルタコンデンサ4の両端の直流電
圧、Vd2は単相電圧形インバータ7の直流出力電
圧、Vbは電流形インバータ5の直流整流電圧を
示す。 V d1 is the DC voltage across the filter capacitor 4 , V d2 is the DC output voltage of the single-phase voltage source inverter 7 , and V b is the DC rectified voltage of the current source inverter 5 .
単相電圧形インバータ7はあらかじめ定められ
た周波数で動作すると、端子U′−V′間には波高
値がVd2/2で方形波の電圧e1が発生し、電流形
インバータ5の交流入力端子X′−Y′間にはブー
スタ変圧器10によつて変圧された方形波電圧e2
が発生する。 When the single-phase voltage source inverter 7 operates at a predetermined frequency, a square wave voltage e1 with a peak value of V d2 /2 is generated between terminals U' and V', and the AC input of the current source inverter 5 is A square wave voltage e 2 transformed by the booster transformer 10 is connected between terminals X' and Y'.
occurs.
端子X′−Y′間の交流出力電圧e2と電流形イン
バータ5のサイリスタ5a,5b,5c,5dの
点弧作用によりP点及びN点の間に正または負の
直流整流電圧Vdが発生する。 A positive or negative DC rectified voltage V d is generated between points P and N by the AC output voltage e 2 between terminals Occur.
電流形インバータ5はコンデンサ8及び9に加
わる電圧Vd2を一定に保つように制御される。 Current source inverter 5 is controlled to keep the voltage V d2 applied to capacitors 8 and 9 constant.
仮りにコンデンサ8及び9に加えられるべき合
計電圧Vd2を1350Vとした場合、直流電圧Vd1が
900Vに低下したとき、電流形インバータ5は順
変換領域で動作し電圧VdをP点に対しN点が+
450Vになるよう制御し、直流電圧Vd1が1800Vに
上昇した場合は電流形インバータ5は逆変換領域
で動作し電圧VdをP点に対しN点が−450Vにな
るよう動作する。 If the total voltage V d2 to be applied to capacitors 8 and 9 is 1350V, then the DC voltage V d1 is
When the voltage drops to 900V, the current source inverter 5 operates in the forward conversion region, and the voltage V d becomes + at the N point with respect to the P point.
When the DC voltage V d1 rises to 1800 V, the current source inverter 5 operates in the inverse conversion region and operates so that the voltage V d becomes −450 V at the N point with respect to the P point.
すなわち電流形インバータ5はコンデンサ8及
び9の合計電圧Vd2を一定に保つように作用し、
前記ブースタ変圧器の一次巻線11及び二次巻線
12の両端に発生する矩形波交流電圧e1及びe2も
一定に保たれる。 That is, current source inverter 5 acts to keep the total voltage V d2 of capacitors 8 and 9 constant,
The square wave AC voltages e 1 and e 2 generated across the primary winding 11 and the secondary winding 12 of the booster transformer are also kept constant.
三相電圧形インバータ13は一定値に保たれて
いる直流電圧Vd2を三相交流U0,V0,W0に変換
し、三相交流出力U0,V0,W0は交流フイルタ1
4の作用により正弦波に近い波形の三相交流U1,
V1,W1に変換され、電気車補助回路用低圧定電
圧三相交流電源として使用される。 The three-phase voltage source inverter 13 converts the DC voltage V d2 , which is kept at a constant value, into three-phase AC outputs U 0 , V 0 , W 0 , and the three-phase AC outputs U 0 , V 0 , W 0 are supplied to the AC filter 1.
Due to the action of 4, three-phase AC U 1 with a waveform close to a sine wave,
It is converted into V 1 and W 1 and used as a low-voltage constant-voltage three-phase AC power source for electric vehicle auxiliary circuits.
第2図は従来より使用されている直流電気車駆
動用直流複巻電動機制御回路の一例を示す要部接
続図で、1は集電装置、21は断流器、22は直
流複巻電動機(以下電動機と称す)、22aは電
動機22の電機子、22bは電動機22の直巻界
磁、22cは電動機22の分巻界磁、23は電動
機22の電機子回路の抵抗制御器、24は分巻界
磁22cを他励制御するサイリスタブリツジであ
る。 Fig. 2 is a main part connection diagram showing an example of a conventionally used DC compound motor control circuit for driving a DC electric vehicle, in which 1 is a current collector, 21 is a current interrupter, and 22 is a DC compound motor ( 22a is the armature of the motor 22, 22b is the series field of the motor 22, 22c is the shunt field of the motor 22, 23 is the resistance controller of the armature circuit of the motor 22, and 24 is the shunt field of the motor 22. This is a thyristor bridge that separately excites and controls the winding field 22c.
第2図においては説明を簡単にするため1台の
電動機22を代表とし、また説明に直接関係のな
い機器の図示を省略した。 In FIG. 2, in order to simplify the explanation, one electric motor 22 is used as a representative, and illustrations of devices not directly related to the explanation are omitted.
第2図に示すサイリスタブリツジ24の入力電
源は第1図における三相交流電源U2,V2,W2か
ら供給される。 The input power to the thyristor bridge 24 shown in FIG. 2 is supplied from the three-phase AC power supply U 2 , V 2 , W 2 shown in FIG.
サイリスタブリツジ24を構成する6組のサイ
リスタアームの位相制御による可変電圧の直流出
力(端子A−B間に発生する)によつて分巻界磁
22cが制御される動作についてはすでによく知
られているので省略する。 The operation in which the shunt field 22c is controlled by the variable voltage DC output (generated between terminals A and B) by phase control of six sets of thyristor arms constituting the thyristor bridge 24 is already well known. Since this is the case, we omit it.
第2図に示す電動機22の分巻界磁22cを制
御するサイリスタブリツジ24の三相交流電源を
第1図に示す三相交流電源U2,V2,W2より供給
する場合、サイリスタブリツジ24を三相交流を
制御するためサイリスタ数も多く、またインバー
タ容量も大きくなり、三相電圧形インバータ1
3,交流フイルタ14,出力変圧器15も容量、
形状が大きくなる。 When the three-phase AC power for the thyristor bridge 24 that controls the shunt field 22c of the electric motor 22 shown in FIG. 2 is supplied from the three-phase AC power supplies U 2 , V 2 , W 2 shown in FIG. Since Tsuji 24 controls three-phase alternating current, the number of thyristors is large, and the inverter capacity is also large, so three-phase voltage source inverter 1
3. The AC filter 14 and output transformer 15 also have a capacity,
The shape becomes larger.
またサイリスタブリツジ24が動作する場合、
サイリスタブリツジの流作用のため三相交流電源
U2,V2,W2の三相交流波形が歪み、三相交流電
源U2,V2,W2に接続される値の三相交流負荷の
動作に悪影響を与えるという不具合を生ずる。 In addition, when the thyristor bridge 24 operates,
Three-phase AC power supply for thyristor bridge flow
The three-phase AC waveforms of U 2 , V 2 , and W 2 are distorted, resulting in a problem that the operation of the three-phase AC load connected to the three-phase AC power supply U 2 , V 2 , and W 2 is adversely affected.
そこで本出願人は前記不具合を解消するため特
願昭58−89136号の発明を出願しており、これを
第3図に示す。 Therefore, the present applicant filed an invention in Japanese Patent Application No. 58-89136 to solve the above-mentioned problems, which is shown in FIG.
第3図はブースタ方式インバータによる三相交
流電源装置と電動機の分巻界磁制御用サイリスタ
ブリツジを組合せた電気車制御装置の一例を示す
回路接続図である。 FIG. 3 is a circuit connection diagram showing an example of an electric vehicle control device that combines a three-phase AC power supply device using a booster type inverter and a thyristor bridge for controlling the shunt field of an electric motor.
第3図において30はブースタ変圧器、31は
ブースタ変圧器30の三次巻線、32は電動機2
2の分巻界磁22cを制御する単相のサイリスタ
ブリツジでその他の符号は第1図及び第2図と同
様である。 In FIG. 3, 30 is the booster transformer, 31 is the tertiary winding of the booster transformer 30, and 32 is the motor 2.
This is a single-phase thyristor bridge that controls the second shunt field 22c, and the other symbols are the same as those in FIGS. 1 and 2.
ブースタ変圧器30の一次巻線11に前記説明
のごとく単相電圧形インバータ7から発生した電
圧e1が入力されると、三次巻線31には電圧e1と
同相で変圧された矩形波交流電圧e3が発生する。 When the voltage e 1 generated from the single-phase voltage type inverter 7 is input to the primary winding 11 of the booster transformer 30 as described above, the tertiary winding 31 receives a rectangular wave alternating current that is transformed in phase with the voltage e 1 . A voltage e 3 is generated.
交流電圧e3をサイリスタブリツジ32に交流電
源として入力し、サイリスタブリツジ32を構成
するサイリスタをすでに周知の方法で位相制御
し、可変電圧の直流出力(端子C−D間に発生す
る)によつて電動機22の分巻界磁22cを他励
制御する
一方電流形インバータ5,単相電圧形インバー
タ7,三相電圧形インバータ13,交流フイルタ
14,出力変圧器15は第1図の場合と同様に動
作する。 The AC voltage e3 is input to the thyristor bridge 32 as an AC power source, the thyristors constituting the thyristor bridge 32 are phase-controlled by a well-known method, and a variable voltage DC output (generated between terminals C and D) is generated. Therefore, the shunt field 22c of the motor 22 is separately excited controlled.On the other hand, the current source inverter 5, the single-phase voltage source inverter 7, the three-phase voltage source inverter 13, the AC filter 14, and the output transformer 15 are as shown in FIG. works similarly.
第3図においては電動機22の分巻界磁22c
を制御するサイリスタブリツジ32は、出力変圧
器15の出力側とは切離されており、コンデンサ
8及び9の容量が大きいことにもよりサイリスタ
ブリツジ32の転流作用による三相交流電源U2,
V2,W2の負荷に対する悪影響はほとんどなくな
る。 In FIG. 3, the shunt field 22c of the motor 22
The thyristor bridge 32, which controls 2 ,
The negative effects on the load of V 2 and W 2 are almost eliminated.
また三相電圧形インバータ13,交流フイルタ
14,出力変圧器15は、それぞれサイリスタブ
リツジ32のための出力を必要としないため、第
1図の場合より容量を減らし小形にすることがで
きる。 Furthermore, since the three-phase voltage source inverter 13, the AC filter 14, and the output transformer 15 do not each require an output for the thyristor bridge 32, their capacities can be reduced and made smaller than in the case of FIG. 1.
さらにサイリスタブリツジ32は、交流入力電
圧e3を分巻界磁22cの制御に適応する電圧に選
び、単相ブリツジとして所要サイリスタ数を減ら
すことによつて小容量小形とすることができる。 Further, the thyristor bridge 32 can be made small in capacity by selecting the AC input voltage e 3 to be a voltage suitable for controlling the shunt field 22c and reducing the number of thyristors required as a single-phase bridge.
しかし第3図においては、ブースタ変圧器30
の巻線11と31に分巻界磁に必要とする電力に
応じた電流が流れるため、ブースタ変圧器30の
容量が大きくなりブースタ方式インバータの長所
を減ずるものとなる。 However, in FIG. 3, the booster transformer 30
Since a current corresponding to the power required for the shunt field flows through the windings 11 and 31, the capacity of the booster transformer 30 increases, which reduces the advantages of the booster type inverter.
また分巻界磁制御用のサイリスタブリツジ32
の転流時の重なり角の影響が巻線12にも現わ
れ、電流形インバータ5の動作に悪影響を与える
おそれがある。 In addition, a thyristor bridge 32 for shunt field control
The effect of the overlap angle during commutation also appears on the winding 12, which may adversely affect the operation of the current source inverter 5.
本発明はこのような不具合を解消するためにな
されたものである。 The present invention has been made in order to eliminate such problems.
第4図は本発明にかかるブースタ方式インバー
タによる三相交流電源装置と電動機の分巻界磁制
御用サイリスタブリツジを組合せた電気車制御装
置の一実施例を示す回路接続図である。 FIG. 4 is a circuit connection diagram showing an embodiment of an electric vehicle control device in which a three-phase AC power supply device using a booster type inverter according to the present invention is combined with a thyristor bridge for controlling the shunt field of an electric motor.
第4図において33はブースタ変圧器でその他
の符号は第3図と同様である。 In FIG. 4, numeral 33 is a booster transformer, and the other symbols are the same as in FIG. 3.
第4図においては分巻界磁制御用交流電源とし
て、電流形インバータ7の矩形波交流電圧e1を直
接入力するが、分巻界磁制御の方法は第3図の場
合と同様である。 In FIG. 4, the rectangular wave AC voltage e 1 of the current source inverter 7 is directly input as the AC power supply for shunt field control, but the method of shunt field control is the same as in the case of FIG. 3.
ブースタ方式インバータにおいては電圧形イン
バータ7の直流電圧Vd2を自由に選ぶことができ
るので、矩形波交流電圧e1も任意に選べることに
なる。 In the booster type inverter, since the DC voltage V d2 of the voltage source inverter 7 can be freely selected, the rectangular wave AC voltage e 1 can also be arbitrarily selected.
したがつて分巻界磁制御用交流電圧を分巻界磁
制御回路に適合した値とすることが可能となる。 Therefore, it is possible to set the AC voltage for shunt field control to a value suitable for the shunt field control circuit.
以上説明したように本発明にかかるブースタ方
式インバータと、単相電圧形インバータ出力を入
力する電動機の分巻界磁制御用のサイリスタブリ
ツジを使用することにより、ブースタ変圧器の容
量向上を避けることができ、分巻界磁制御用サイ
リスタブリツジ32の転流作用による巻線12へ
の影響が生ずることもなくなる。 As explained above, by using the booster type inverter according to the present invention and the thyristor bridge for shunt field control of a motor that inputs the output of a single-phase voltage type inverter, it is possible to avoid increasing the capacity of the booster transformer. Also, the influence on the winding 12 due to the commutation effect of the shunt field control thyristor bridge 32 is eliminated.
直流電圧Vd2を分巻界磁制御回路以外の条件に
合わせた最適値を選んだ場合には分巻界磁制御用
交流回路に単相変圧器を挿入し、分巻界磁制御用
電源電圧を最適値に選ぶことができることはいう
までもない。 If the DC voltage V d2 is selected to be the optimal value that matches the conditions other than the shunt field control circuit, insert a single-phase transformer into the AC circuit for shunt field control, and select the power supply voltage for shunt field control to the optimal value. Needless to say, it can be done.
この場合、単相変圧器とブースタ変圧器の容量
を合計したものは、第3図の場合のブースタ変圧
器30の容量と同一になる。 In this case, the sum of the capacities of the single-phase transformer and the booster transformer will be the same as the capacity of the booster transformer 30 in the case of FIG.
以上説明したように電流形インバータと単相電
圧形インバータとブースタ変圧器より成るDC−
DCコンバータの直流出力を入力とする定電圧三
相交流電源装置を提供するとともに、前記DC−
DCコンバータの電圧形インバータの交流出力を
入力とする電気車電動機の分巻界磁制御用の低圧
小形サイリスタブリツジを構成することにより、
補助回路用交流電源装置と電動機の制御装置の総
合的な機器容積の合理化と性能向上を図ることが
できるので実用上の効果は大きい。 As explained above, the DC-
Provided is a constant voltage three-phase AC power supply device that inputs the DC output of a DC converter, and also provides a
By configuring a low-voltage small thyristor bridge for shunt field control of electric vehicle motors that receives the AC output of the voltage source inverter of the DC converter as input,
This has a great practical effect because it is possible to rationalize the overall equipment volume and improve the performance of the auxiliary circuit AC power supply device and the motor control device.
第1図は直流式電気鉄道の電気車に使用されて
いるブースタ方式インバータによる三相交流電源
装置の一例を示す回路接続図、第2図は直流電気
車駆動用直流複巻電動機制御回路の一例を示す要
部接続図、第3図はブースタ方式インバータによ
る三相交流電源装置と直流複巻電動機の分巻界磁
制御用サイリスタブリツジを組合わせた電気車制
御装置の一例を示す回路接続図、第4図は本発明
にかかるブースタ方式インバータによる三相交流
電源装置と直流補巻電動機の分巻界磁制御用サイ
リスタブリツジを組合せた電気車制御装置の一実
施例を示す回路接続図である。
1……集電装置、2,21……断流器、3……
フイルタリアクトル、4……フイルタコンデン
サ、5……他励式電流形インバータ、6……平滑
リアクトル、7……単相電圧形インバータ、8,
9……コンデンサ、10,30,33……ブース
タ変圧器、11……一次巻線、12……二次巻
線、13……三相電圧形インバータ、14……交
流フイルタ、15……出力変圧器、22……直流
複巻電動機、22a……電機子、22b……直巻
界磁、22c……分巻界磁、23……抵抗制御
器、24,32……サイリスタブリツジ、31…
…三次巻線。
Figure 1 is a circuit connection diagram showing an example of a three-phase AC power supply device using a booster type inverter used in electric cars of DC electric railways, and Figure 2 is an example of a DC compound motor control circuit for driving DC electric cars. 3 is a circuit connection diagram showing an example of an electric vehicle control device that combines a three-phase AC power supply using a booster type inverter and a thyristor bridge for controlling the shunt field of a DC compound motor. FIG. 4 is a circuit connection diagram showing an embodiment of an electric vehicle control device in which a three-phase AC power supply device using a booster type inverter according to the present invention is combined with a thyristor bridge for controlling the shunt field of a DC auxiliary motor. 1... Current collector, 2, 21... Current interrupter, 3...
Filter reactor, 4...Filter capacitor, 5...Separately excited current source inverter, 6...Smoothing reactor, 7...Single phase voltage source inverter, 8,
9... Capacitor, 10, 30, 33... Booster transformer, 11... Primary winding, 12... Secondary winding, 13... Three-phase voltage source inverter, 14... AC filter, 15... Output Transformer, 22... DC compound winding motor, 22a... Armature, 22b... Series winding field, 22c... Shunt winding field, 23... Resistance controller, 24, 32... Thyristor bridge, 31 …
...Tertiary winding.
Claims (1)
えて成る他励式電流形インバータ、逆並列整流器
を有する複数個の制御整流素子及び直流端子間に
接続される平滑コンデンサを備えた電圧形インバ
ータ、前記他励式電流形インバータと電圧形イン
バータの直流端子間を直列に接続し、前記電圧形
インバータの交流端子は変圧器の一次巻線に接続
し、該変圧器の二次巻線は前記他励式電流形イン
バータの交流端子に接続するとともに、前記電圧
形インバータの交流端子より得られる交流出力を
制御整流素子により直流に変換し電気車駆動用電
動機の界磁に加圧し制御することを特徴とする電
気車制御装置。1. A separately excited current source inverter comprising a smoothing reactor and a plurality of controlled rectifying elements, a voltage source inverter comprising a plurality of controlled rectifying elements having an anti-parallel rectifier and a smoothing capacitor connected between DC terminals, and the above and others. The DC terminals of an excited current type inverter and a voltage type inverter are connected in series, the AC terminal of the voltage type inverter is connected to the primary winding of a transformer, and the secondary winding of the transformer is connected to the separately excited current type inverter. The electric vehicle is connected to an AC terminal of an inverter, and the AC output obtained from the AC terminal of the voltage type inverter is converted into DC by a control rectifier, and the field of the electric motor for driving the electric vehicle is pressurized and controlled. Control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58126171A JPS6020703A (en) | 1983-07-13 | 1983-07-13 | Controller for electric railcar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58126171A JPS6020703A (en) | 1983-07-13 | 1983-07-13 | Controller for electric railcar |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6020703A JPS6020703A (en) | 1985-02-02 |
JPH0347042B2 true JPH0347042B2 (en) | 1991-07-18 |
Family
ID=14928436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58126171A Granted JPS6020703A (en) | 1983-07-13 | 1983-07-13 | Controller for electric railcar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6020703A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3458457B2 (en) * | 1994-06-20 | 2003-10-20 | 株式会社デンソー | Vehicle speed detection device |
-
1983
- 1983-07-13 JP JP58126171A patent/JPS6020703A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6020703A (en) | 1985-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0488201B1 (en) | Large capacity variable speed driving system for AC electric motor | |
US6301130B1 (en) | Modular multi-level adjustable supply with parallel connected active inputs | |
EP1494343B1 (en) | Frequency converter and drive for electric motor | |
US7170767B2 (en) | System and method for regenerative PWM AC power conversion | |
US6542390B2 (en) | System and method for regenerative PWM AC power conversion | |
US6262896B1 (en) | Auxiliary power conversion for an electric vehicle using high frequency injection into a PWM inverter | |
US5546295A (en) | Electrical power converter, power supply, and inverter with series-connected switching circuits | |
US4084220A (en) | Power converter | |
EP0982843A2 (en) | Power converter | |
JP3220924B2 (en) | Electric vehicle power converter | |
JPH0347042B2 (en) | ||
JPH0345603B2 (en) | ||
JP2980426B2 (en) | AC electric vehicle control device | |
US5652699A (en) | High-voltage and high-power stabilized DC power supply using modified sine wave output 3-phase inverter | |
JPS62268303A (en) | Auxiliary power circuit for rolling stock | |
JP3445989B2 (en) | DC transmission system | |
JPS6117231B2 (en) | ||
JPH0746846A (en) | Three-phase rectifier | |
US3863119A (en) | Commutatorless motor apparatus | |
JPS6117232B2 (en) | ||
JPS58204776A (en) | Inverter device | |
JPS638710B2 (en) | ||
JPH0534631B2 (en) | ||
JPS6126490A (en) | Field current supply system of commutatorless motor | |
JPH01144364A (en) | Controlling method for multiple pwm converter |