JPS58130522A - Electron beam exposure device - Google Patents

Electron beam exposure device

Info

Publication number
JPS58130522A
JPS58130522A JP1230682A JP1230682A JPS58130522A JP S58130522 A JPS58130522 A JP S58130522A JP 1230682 A JP1230682 A JP 1230682A JP 1230682 A JP1230682 A JP 1230682A JP S58130522 A JPS58130522 A JP S58130522A
Authority
JP
Japan
Prior art keywords
reflected
substrate
electron beam
electron
upper structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1230682A
Other languages
Japanese (ja)
Inventor
Yoshihide Kato
加藤 芳秀
Tadahiro Takigawa
忠宏 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1230682A priority Critical patent/JPS58130522A/en
Publication of JPS58130522A publication Critical patent/JPS58130522A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To contrive a large improvement of drawn image pattern dimensions, by setting and keeping the ratio of the exposure amount due to the primary electron to that due to the re-reflected electron at a specific value or less. CONSTITUTION:The primary incident electron 4 is reflected, based on the cosine law, from a substrate 1 to a direction making an angle theta with the beam axis. The reflected electron 5 thereof is next reflected on the rear surface of the upper structural body 2, then advances to a direction making an angle theta with the normal of the structural body 2, and approximates when incidence is into the point 7 on the substrate 1. The rear surface of the structural body 2 is kept apart from the substrate 1, or the rear surface thereof is processed, or a substance satisfying the Formula described hereunder is deposited thereon, in order that the ratio of the exposed amount Qo being received by the substrate 1 due to the incidence of the electron beam 4 to the exposed amount QR being received by the substrate 1 due to the electron beam which is re-reflected on the rear surface of the structural body 2 becomes QR/Qo<=0.1. Thus, the pattern dimensional error due to the influence by the re-reflected electron can be reduced to an almost negligible value and drawn image patterns of good accuracy can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、描画パターン精度の向上【はかり九電子ビー
ム露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron beam exposure apparatus for improving the precision of drawn patterns.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、半導体ウェーハやマスク等の試料基板に微細パタ
ーン【形成するものとして電子ビーム籐光装置が用いら
れているが、この装置で数(sm)  以1のパターン
寸法を微細加工するためには、近接効果の補正【行うこ
とが必要となる0近接効果の補正方法としては、従来水
0 (1)〜(5)等が知られている。
Recently, electron beam rattan optical equipment has been used to form fine patterns on sample substrates such as semiconductor wafers and masks. , Proximity Effect Correction [0 (1) to (5) and the like are conventionally known as methods for correcting the proximity effect that need to be performed.

+11  描画パターンに応じて設計寸法【変える0(
2)  描画パターンに応じて露光量t−変える0(3
)  被露光試料の膜厚【可能な限り薄くする0(4)
電子ビームの加速電圧【上けゐ。
+11 Design dimensions [change 0 (
2) Change the exposure amount t-0(3) according to the drawing pattern.
) Film thickness of exposed sample [to be as thin as possible 0 (4)
Accelerating voltage of electron beam [up.

(5)被露光試料のレジスト【多層化する0ところで、
近接効果の研究【進める中で本発明者等は、被露光試料
基板からの反射電子が、鋏基板と対向する対物レンズポ
ールピース、アパーチャ、放熱板お↓び反射電子検出器
等(以後これらt上部構造体と総称する)の下面による
2回反射を経て再び被露光試料基板上のレジス)1露光
し、その効果が微細加工すべき所望のパターン寸法に無
視できない影*1及ばずこと倉見出した。第1因は露光
パターン寸法(抜きパターン寸法)の露光領域依存性を
示す特性図、第2因は露光パターン寸法(抜きパターン
寸法)の露光面積率依存性を示す特性図である。
(5) Resist of exposed sample [Multi-layered resist]
Proximity effect research [While proceeding, the present inventors discovered that the reflected electrons from the sample substrate to be exposed are transmitted to the objective lens pole piece facing the scissors substrate, the aperture, the heat sink↓, the reflected electron detector, etc. (hereinafter these t After being reflected twice by the lower surface of the upper structure (generally referred to as the upper structure), the resist on the sample substrate to be exposed is exposed once again, and the effect is a non-negligible shadow*1 on the desired pattern dimensions to be microfabricated. Ta. The first factor is a characteristic diagram showing the dependence of the exposure pattern size (punched pattern size) on the exposure area, and the second factor is a characteristic diagram showing the dependence of the exposed pattern size (punched pattern size) on the exposure area ratio.

露光領域−が3〔―角〕より大きい場合には露光領域中
央部でのパターン寸法は一定であるが、露光領域dが3
Lcvs角〕以下の場合には露光領域の減少と共にパタ
ーン寸法は小さくなる。また、露光面積率が大きい4!
露光領域中央部でのパターン寸法は大きくなる。このよ
うに、2回反射電子、すなわち再反射電子に↓る影響は
、従来より知られている近接効果にLる影響と同atで
あり、しかも近接効果が顕著となるパターン寸法エリ大
きな数10〔βm〕 以上のパターンについても同様な
影響が現われる0つまり、再反射電子による影響は近接
効果に匹敵するとも劣らない重要な問題であることが判
明した0〔発明の目的〕 本発明の目的は、再反射電子による影響【小さくするこ
とができ、描画パターン精度の大幅な向上tはかり得る
電子ビーム露光装置を提供することにある0 〔発明の概要〕 本発明者等は、前記第1図および第2図に示し九パター
ン寸法差が、再反射電子による効果であることt確める
ために、解析と実験を行った。第3図は解析に用いたモ
デルを示す根弐因であり、図中1は被露光試料基板、2
に対物レンズや反射電子検出器等の上部構造体、Jは対
物レンズアパーチャを示している0入射1次電子4は、
余弦則に基づいて基板1からビーム軸と角度01!tな
す方向へ反射される。この反射電子5は続いて上部構造
体2の下面で反射され、上部構造体20法線と角mar
なす方向へ進み、基板1上の点7に再入射すると近似す
る。基板10反射電子係数tη1.l一部構造体2の反
射電子係数tη2とすると、点2に再入射する再反射電
子6の1次電子に対する割合nl/n、はとなる。ここ
で、hIは基板1と上部構造体2との距離、nl  は
1次電子4の個数、nl  は再反射電子60個数であ
る。#!4図に斜線で示す露光領域8の中央部9におけ
る再反射電子6による効果は、相反定理を用い上記第1
式を積分することにより得られ、次式のようになる。
If the exposure area d is larger than 3[-angle], the pattern size at the center of the exposure area is constant, but if the exposure area d is larger than 3[-angle]
Lcvs angle] or less, the pattern size becomes smaller as the exposed area decreases. Also, the exposed area ratio is large!
The pattern size at the center of the exposure area becomes larger. In this way, the influence on twice-reflected electrons, that is, re-reflected electrons, is the same as the influence on the conventionally known proximity effect, and moreover, the pattern size area where the proximity effect is significant is larger than the number 10. [βm] A similar effect appears for the above patterns. In other words, it has been found that the effect of re-reflected electrons is as important a problem as the proximity effect.0 [Object of the Invention] The object of the present invention is to An object of the present inventors is to provide an electron beam exposure apparatus that can reduce the effects of re-reflected electrons and significantly improve drawing pattern accuracy. [Summary of the Invention] Analysis and experiments were conducted to confirm that the nine-pattern dimensional difference shown in FIG. 2 is an effect of re-reflected electrons. Figure 3 shows the model used in the analysis. In the figure, 1 is the sample substrate to be exposed, 2
J indicates the objective lens aperture, and the incident primary electron 4 is
Based on the cosine law, the beam axis and angle 01 from the substrate 1! It is reflected in the direction of t. The backscattered electrons 5 are then reflected by the lower surface of the upper structure 2, forming an angle mar with the normal to the upper structure 20.
The approximation is obtained by proceeding in the direction of 0 and re-entering point 7 on the substrate 1. Substrate 10 reflected electron coefficient tη1. Letting the reflected electron coefficient tη2 of the l partial structure 2, the ratio of the re-reflected electrons 6 re-entering the point 2 to the primary electrons is nl/n. Here, hI is the distance between the substrate 1 and the upper structure 2, nl is the number of primary electrons 4, and nl is the number of 60 re-reflected electrons. #! The effect of the re-reflected electrons 6 in the central part 9 of the exposure area 8, which is indicated by diagonal lines in FIG.
It is obtained by integrating the equation, and becomes as follows.

ここで、η墨 は対物レンズアパーチャ2の反射電子係
数、do  は上部構造体2のビーム軸開口1に径、h
!  は対物レンズアパーチャ3と基板1との距離であ
る。また、N、は露光領域Iから中央部9に再入射する
単位面積当りの再反射電子数、Noは露光領域10単位
面積当りの1次電子数である。上記JI!2式は対物レ
ンズアバーデャ3による効果と上部構造体2による効果
との和【示しているが、この式は数値計算の結果次式で
近似できることが判明した。
Here, η is the reflected electron coefficient of the objective lens aperture 2, do is the diameter of the beam axis aperture 1 of the upper structure 2, and h
! is the distance between the objective lens aperture 3 and the substrate 1. Further, N is the number of re-reflected electrons per unit area that re-enters the central portion 9 from the exposure region I, and No is the number of primary electrons per unit area of the exposure region 10. Above JI! Equation 2 shows the sum of the effect due to the objective lens aberdeer 3 and the effect due to the upper structure 2. As a result of numerical calculations, it was found that this equation can be approximated by the following equation.

上記第4式に基づき、前記基板1【シリコン(ダ+ =
0.15 )  、上部構造体2t−鉄(η!=0.2
9)、上部構造体2と基板1との距離り、txz(m)
とL1時t)、 NI/No 10露光領域依存性【示
すと1ILb図のようになる。また、パターン寸法の露
光量依存性はJII6WJlc示す通りであるogle
図から判るように露光量。
Based on the fourth equation above, the substrate 1 [silicon (da + =
0.15), upper structure 2t-iron (η!=0.2
9), distance between upper structure 2 and substrate 1, txz (m)
and L1 time t), NI/No 10 exposure area dependence [shown in Figure 1ILb. In addition, the exposure dependence of pattern dimensions is as shown in JII6WJlc.
As you can see from the figure, the exposure amount.

が±10(1G)変化した時、パターン寸法の変化は±
0.05(声m〕 程度である。ところが、N、/’N
、 は第5図にも示す如く高々数〔嘩〕であり、前記第
1図および第2図に示したパターン寸法差全説明し切れ
ない3、このため、再反射電子による効果は予想されて
いたにも拘らず、定量的には無視できると考えられたの
である0しかしながら、最近の近接効果の理論に基づい
て解釈し直すならば、反射電子の露光能力は、反射電子
のエネルギーが1次電子より小さくさらにレジストに対
し反射電子が斜めに入射するため、1次電子の露光能力
より大きいと考えられる。したがって、再反射電子によ
る露光能力Qk  の1次電子に↓る露光能力Qaに対
する比は次式で示す必要がある。。
When changes by ±10 (1G), the change in pattern dimensions is ±
It is about 0.05 (voice m). However, N, /'N
, is a large number at most, as shown in Figure 5, and cannot fully explain the pattern size difference shown in Figures 1 and 2.3 Therefore, the effect of re-reflected electrons is not expected. However, if reinterpreted based on the recent theory of the proximity effect, the exposure ability of the backscattered electrons is due to the fact that the energy of the backscattered electrons is of the first order. Since reflected electrons are smaller than electrons and incident obliquely on the resist, they are considered to be larger than the exposure ability of primary electrons. Therefore, the ratio of the exposure ability Qk due to re-reflected electrons to the exposure ability Qa due to primary electrons must be expressed by the following equation. .

ただし、η1′、η8′は反射電子による露光能力の1
次電子による露光能力に対する比(以後実効的反射電子
係数と称する)であり、シリコンの場合、η、’ = 
0.5〜1.0と云われている1、また、鉄の場合本発
明者等の実験によれば、 η/=05〜1゜0となった。
However, η1' and η8' are 1 of the exposure ability due to backscattered electrons.
It is the ratio to the exposure ability by secondary electrons (hereinafter referred to as the effective backscattered electron coefficient), and in the case of silicon, η,' =
1, which is said to be 0.5 to 1.0, and in the case of iron, according to experiments by the present inventors, η/=05 to 1°0.

45式から得られる値と本発明11勢の実験により得ら
れた値とを第7図に示す。図中実線Pは従来装置、実線
Qは上部構造体にベリリウムを被着した場合O理論値【
示している。また、図中O印、Δ印、それぞれの条件の
下に得られた実験データを示している。この図から上部
構造体にベリリウムを被着することによりQ置/Q。
FIG. 7 shows the values obtained from Equation 45 and the values obtained from the experiments of the 11 present invention. In the figure, the solid line P is the conventional device, and the solid line Q is the theoretical O value when the upper structure is coated with beryllium [
It shows. Further, in the figure, marks O and Δ indicate experimental data obtained under the respective conditions. From this figure, by depositing beryllium on the upper structure, Q position/Q can be obtained.

が小さくなることが判る。ベリリウムの反射電子係数η
leは0.05@度であるが、実効的反射電子係数ηn
 、/は0.25〜0.51!度であった。
It can be seen that becomes smaller. Beryllium backscattered electron coefficient η
le is 0.05@degree, but the effective backscattered electron coefficient ηn
, / is 0.25 to 0.51! It was degree.

ηBe’/ηleがη、′/η1.η、′/η、より大
きいのは軽元素からの反射電子はど、1次電子に比して
エネルギーを先っているためである。そして、ベリリウ
ムの実効的反射電子係数 ダl・’=0.25〜0.5をもとK11k5式から得
られる理論値Qは2実験データ(△印)に良く一致した
0 さて、再反射電子による寸法差は±0.05Cμm〕程
度に抑える必要があるが、第7区によれば上部構造体の
下面にベリリウムを被着しても上記寸法差音達成するこ
とはできない。これを達成するには、前記基板1と上部
構造体との距離り。
ηBe'/ηle is η,'/η1. The reason why η,′/η is larger is because the reflected electrons from light elements have more energy than the primary electrons. Then, the theoretical value Q obtained from the K11k5 formula based on the effective reflected electron coefficient of beryllium dl・' = 0.25 to 0.5 is in good agreement with the two experimental data (△ mark). However, according to Section 7, the above dimensional difference cannot be achieved even if beryllium is coated on the lower surface of the upper structure. To achieve this, the distance between the substrate 1 and the upper structure is increased.

【大きくするか、或いは上部構造体下面を加工するかし
て、再反射電子によイ、露光量Q家  が1次電子によ
る露光量Qoの1/′1o  以下となるよう、すなわ
ち Q亀/Q0≦O,l    ・・・・・・・・(6)に
保持する必要がある0 本発明はこのような点に着目し、被霧光試料基板に電子
ビームを照射して該基板に所望パターンを露光する電子
ビーム露光装置において、1次電子の入射により上記基
板の受ける露光量Q0と、このとき上記基板から反射さ
れ骸基板に対向する対物レンズのポールピース、アパー
チャ、反射電子検出器およびこれらの周囲等からなる一
ha構造体の下面で再び反射された再反射電子により上
記基板の受ける露光量q麓  との比が Q” / Qe≦01 となるよう、上部構造体の下面【被露光試料基板から離
すか、上部構造体の下面を加工するか、或いは上部構造
体の下面に上式【満足する物質【被着するようにし次も
のである。
[By increasing the size or by processing the lower surface of the upper structure, the exposure amount Q due to re-reflected electrons becomes less than 1/'1o of the exposure amount Q due to primary electrons, that is, Q Q0≦O,l ・・・・・・・・・(6) must be maintained 0 The present invention focuses on this point and irradiates an electron beam onto a sample substrate to which atomized light is applied to form a desired surface on the substrate. In an electron beam exposure apparatus that exposes a pattern, the amount of exposure Q0 that the substrate receives due to the incidence of primary electrons, the pole piece of the objective lens that is reflected from the substrate and faces the skeleton substrate, the aperture, the backscattered electron detector, and The lower surface of the upper structure [covered] is adjusted so that the ratio of the exposure amount q to the substrate due to the re-reflected electrons reflected again on the lower surface of the 1-ha structure consisting of these surroundings becomes Q''/Qe≦01. Either separate it from the exposed sample substrate, process the lower surface of the upper structure, or deposit a material that satisfies the above formula on the lower surface of the upper structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1次電子による露光量Q。 According to the present invention, the exposure amount Q by primary electrons.

と再反射電子による露光量Ql  とO比をQ” / 
Q o≦0.1  に設定保持することにより、再反射
電子QI  Kよるパターン寸法差t±0.05Cμm
〕以内に抑えることができ、描画パターン精度の大幅な
向上【はかり得る。このため、数〔μm〕 以下のパタ
ーン寸法【微細加工する場合にあっても、十分な精度で
露光することが可能となり、微細加工に絶大なる効果を
発揮する。
The exposure amount Ql due to re-reflected electrons and the O ratio are Q''/
By setting and maintaining Qo≦0.1, pattern dimension difference t±0.05Cμm due to re-reflected electrons QIK
], and the drawing pattern precision can be significantly improved. For this reason, even when performing microfabrication with a pattern size of several μm or less, exposure can be performed with sufficient accuracy, which is extremely effective in microfabrication.

〔発明の実施例〕[Embodiments of the invention]

第8図は本発明の第1の実施例を示す要部構成図である
0この実施例は被露光試料基板11に対向する対物レン
ズ下面12にベリリウム或いはアルミニウム等の軽元素
膜13’l被着すると共に、基板11と対物レンズ下面
12との距離1111  を前記jI6式が成立する工
う離したものである。
FIG. 8 is a diagram showing the main part of the first embodiment of the present invention. In this embodiment, the lower surface 12 of the objective lens facing the sample substrate 11 to be exposed is coated with a light element film 13'l such as beryllium or aluminum. At the same time, the distance 1111 between the substrate 11 and the lower surface 12 of the objective lens is set such that the above-mentioned equation jI6 holds true.

被露光試料基板11の寸法k100(asφ〕 とすれ
ば、前記第5式および第6式から なゐ式を満足するks  t−選べばよい0マ、’=0
.5〜1.0.η、’=0.25=0.5  とすれば
り、≧!So 〜200(1111) が得られる0本発明者等の実験によrt、ば、対物レン
ズ下面12に軽元素1[JJとしてのベリリウムを被着
し、距離り、=sO(sa)に設定し次ことにより、前
記第6式が成立することが確認されft−oそしてこの
場合、再反射電子の影響によるパターン寸法差はほとん
ど見られず、精度良い描画パターンを得ることができた
099図および第1θ図はそれぞれ@2の実施例を示す
要部構成図であるOこの実施例は、対物レンズ下面J1
の表面粗さt増し、前記第6式が成立するようη茸′【
小さくシタものであるOすなわち、対物レンズ下面12
には第9図に示す如く凹凸状の溝14が形成されている
otた、被露光試料基板11と対物レンズ下面12との
距1*h+  は12 (ax)で、さらに対物レンズ
下面12にはベリリウム(図示せず)が被着されている
If the dimension of the sample substrate 11 to be exposed is k100 (asφ), then ks t-satisfying the formulas 5 and 6 above should be selected, '=0.
.. 5-1.0. If η,'=0.25=0.5, ≧! According to experiments conducted by the present inventors, the light element 1 [JJ] was deposited on the lower surface 12 of the objective lens, and the distance was set to = sO (sa). As a result, it was confirmed that the above-mentioned formula 6 holds true, and in this case, almost no difference in pattern dimensions due to the influence of re-reflected electrons was observed, and a highly accurate drawing pattern could be obtained. and Fig. 1θ are main part configuration diagrams showing the embodiment of @2, respectively.
The surface roughness of η increases by t, so that the sixth equation holds true.
O that is small and flat, that is, the lower surface 12 of the objective lens
In addition, the distance 1*h+ between the sample substrate 11 to be exposed and the lower surface 12 of the objective lens is 12 (ax), as shown in FIG. is coated with beryllium (not shown).

前記第7図によれば、単に対物レンズ下面12にベリリ
ウムを被着しただけでは Q”/Qoζ 0.25Lか得られない。しかし、本発
明者等の実験によれば、上記$14の欅さの幅に対する
比が2より大きい条件で、溝14の凸@ 14 mの面
積の下面全面積に対する比αが、η、′に略比例するこ
とが判明した○したがって、―≦04とすれば前記[6
式?成立させることができ友。前記第7因の実線R及び
「l印は、ベリリウム蒸着と共に第9因によるjl2の
実施例【適用し次場合の理論値と、実験値tそれぞれ示
している。なお、第9図では凹凸状の溝14の場合【示
し友が、jllO因のように鋸鮨状の@IBの場合でも
同様の効果が得られた0また、溝14.IIの加工は機
械的加工、化学エツチング加工或いは放電加工によって
行うことができた。また、溝14,155f設ける代り
に対物レンズ下面12にカーボン、ベリリウム或いはア
ルミニウムのコロイド粒子倉被着しても、溝14、l1
lk設けた場合と同様の効果が得られ艮。さらに、細管
【束ねたチャンネル・プレート状の形状或いは)・ニカ
ム構造で対物レンズ下面12f形成しても有効であつf
t。
According to the above-mentioned FIG. 7, simply depositing beryllium on the lower surface 12 of the objective lens cannot obtain Q"/Qoζ of 0.25L. However, according to the experiments of the present inventors, the above-mentioned Keyaki of $14 Under the condition that the ratio of the width to the width is larger than 2, it was found that the ratio α of the area of the convexity of the groove 14 @ 14 m to the total area of the lower surface is approximately proportional to η, ○ Therefore, if -≦04 Said [6
formula? You can make friends. The solid line R and the mark ``l'' for the seventh factor indicate the theoretical value and experimental value t of jl2 according to the ninth factor together with beryllium evaporation. In the case of the groove 14, the same effect was obtained even in the case of the groove 14, which has a sawtooth shape as in JllO.In addition, the processing of the groove 14. This could be done by machining.Also, instead of providing the grooves 14 and 155f, if carbon, beryllium, or aluminum colloid particles were deposited on the lower surface 12 of the objective lens, the grooves 14 and l1
The same effect as when lk is provided can be obtained. Furthermore, it is also effective to form the objective lens lower surface 12f with a thin tube (bundled channel, plate-like shape, or nicum structure).
t.

1111図は第3の実施例を示す要部構成図である0こ
の実施例は対物レンズ下面12娶凸蓋に加工したもので
ある。対物レンズ下面12の被霧光試料基板11と平行
な部分16の寸法【dL  とすると再反射電子による
前記第5式に対応する効果は となる。本発明者勢の実験によれば、対物レンズ下面1
2【ベリリウムで被覆し、h、z12[”s)とした条
件で、dL≦10 (sue)  とすることによって
前記第6式【成立させることができlt。
FIG. 1111 is a diagram showing the main part of the third embodiment. In this embodiment, the lower surface of the objective lens 12 is processed into a convex lid. If the dimension of the portion 16 of the objective lens lower surface 12 parallel to the atomized light sample substrate 11 is [dL], then the effect corresponding to the fifth equation due to the re-reflected electrons is as follows. According to experiments conducted by the present inventors, the lower surface of the objective lens 1
2. The above-mentioned formula 6 can be established by setting dL≦10 (sue) under the conditions of beryllium coating, h and z12["s].

なお、本発明は上述した各実施例に限定されるものでは
ない0実施例はいずれも対物レンズ下面について適用し
たものであるが、実際の装置の場合対物レンズ下面と被
露光試料基板との間に反射電子検出器や被露光試料基板
の温度制御用放熱板峙が配置されるOこの場合、上記検
出器や放熱板等にも対物レンズ下面に準じた加工【施し
、前記第6式が成立するようにすればよい。すなわち、
被露光試料基板に対向する上部構造体の下面に実施例で
示した如き処理?施し、第6式が成立するようにすjl
ば↓い。
It should be noted that the present invention is not limited to the above-mentioned embodiments. All of the embodiments are applied to the lower surface of the objective lens, but in an actual apparatus, the lower surface of the objective lens and the exposed sample substrate A backscattered electron detector and a heat sink for controlling the temperature of the sample substrate to be exposed are placed on the surface of the substrate. Just do it. That is,
Is the lower surface of the upper structure facing the sample substrate to be exposed treated as shown in the example? Give and make sure that the 6th equation holds true.
It's okay.

また、実施例では被露光試料基板として、いずれもシリ
コン基板を用いているが、この代りに最近注目されてい
るGIAs(Hはじめとする化合物半導体基板に適用し
てもよい0そして、化合物半導体基板の場合には、再反
射電子の影響がシリコン基板の場合よりも大きくなるの
で、本発明のM用性が一鳩増rことになる(
In addition, although a silicon substrate is used as the sample substrate to be exposed in each of the examples, it may be applied to a compound semiconductor substrate such as GIAs (H), which has been attracting attention recently. In the case of (

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来装置の作用kii1
明するためのもので第1図は露光パターン寸法の露光値
域依存性を示す特性図、第2図株露光パターン寸法の一
光面積単依存性【示す特性図、謔31乃至第7図はそれ
−どれ本発明の詳細な説明する次めのもので結3図は再
反射電子の解析に用いた七チルO績式図、第4図はモデ
ルtt真で用い友無光穎城と甲央部位置とr示す凶、纂
5図は従来の4え万による再反射′鑞子比N、/Noの
露光値域依存性を示T特性図、絽6図は露光パターン寸
法の露光量依存性を示す特性図、第7図は再反射電子の
露光能力比Q” / Q oの理論値と実験値とt示す
特性図、絡8図は本発明の第1の実施例【示す要部構成
図、第9図および第10図はそれぞれ第2の実施例を示
す要部構成図、第11囚は第3の実施例【示す要部構成
図である。 1.11・・・被霧光試料基板、2・・・上部構造体、
3・・・対物レンズアパーチャ、4・・・1次電子、・
5・・・反射電子、6・・・再反射電子、8・・・露光
領域、9・・・中央部、12・・・対物レンズ下面、1
3・・・軽元素膜、14.15・・・溝。 田馳人代理人 ff地士  鈴 江 武 彦第1図 第2図 第4図 第5図 第6図 1tlQO,+c/crn2)  − 第7図 管 哨8図
Figures 1 and 2 show the operation of the conventional device kii1, respectively.
Figure 1 is a characteristic diagram showing the dependence of the exposure pattern size on the exposure value range, and Figure 2 is a characteristic diagram showing the single light area dependence of the exposure pattern size. - Which of the following is a detailed explanation of the present invention? Figure 3 is a seven-chill O-type diagram used for the analysis of re-reflected electrons, and Figure 4 is a diagram of Tomonamitsu Yoshijo and Kao used in the model TT. Fig. 5 shows the exposure value range dependence of the re-reflection force ratio N, /No by the conventional 4-dimensional method, and Fig. 6 shows the dependence of the exposed pattern size on the exposure amount. FIG. 7 is a characteristic diagram showing the theoretical value and experimental value of the exposure ability ratio Q''/Qo of re-reflected electrons, and FIG. 8 is a characteristic diagram showing the main part configuration of the first embodiment of the present invention. 9 and 10 are main part configuration diagrams showing the second embodiment, respectively, and Figure 11 is a main part configuration diagram showing the third embodiment. 1.11... Fog light Sample substrate, 2...upper structure,
3...Objective lens aperture, 4...Primary electron,・
5... Reflected electron, 6... Re-reflected electron, 8... Exposure area, 9... Central part, 12... Lower surface of objective lens, 1
3... Light element film, 14.15... Groove. Tachito agent ff Landlord Suzue Takehiko Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 1tlQO, +c/crn2) - Figure 7 Sentence Figure 8

Claims (1)

【特許請求の範囲】 (11被露光試料基板に電子ビームを照射して該基板【
所望パターンに露光する電子ビーム露光装置において、
1次電子の入射による上記基板の露光量Q0と、このと
き上記基板から反射され皺基板に対向する前記露光装置
の上部構造体で再び反射され皮再反射電子による上記基
板の露光量9鳳 との比が Ql/Q)≦01 となるよう上記露光量Ql  k小さくシ友こと1m黴
とする電子ビーム露光装置0 (2)前記各露光量Qo=Q”  の比【次式で近位し
てなることt特徴とする特許請求の範囲第1項記載の電
子ビーム露光装置0 九だしs ’It’は被露光試料基板の実効的反射電子
係数、’Is’は上部構造体の実効的反射電子係数、d
は被露光試料基板上の露光領域の直径、hは被露光試料
基板と上部構造体との距離を示している。 (3)前記再反射電子による露光量Ql  t−小さく
する手段として、1記被露光試料基板と上部構造体との
距離【長くシ九ととt特徴とする特許請求の範囲第1項
又はJllli2項記載0電子ビーム露光装置。 (4)前記再反射電子による露光量Ql  を小さくす
る+*として、前記上部構造体【実効的反射電子係数ダ
雪′の小さい物質で形成、或いは前記上部構造体の*i
iiに実効的反射電子係数h′O小さい物質を被着した
ことtIIIl黴とする特許請求の範囲第2項記載の電
子ビーム露光装置。 (5)前記再反射電子による霧光蓋Q”  を小さくす
る手段として、前記1部構造体の表面【凹凸溝状若しく
は鋸歯状に加工、或いは前記上部構造体の表面に多数個
の穴を密に集積して形成したことを特徴とする特許請求
の範囲第1項又は[2項記載の電子ビーム篇光装置。 (6)前記再反射電子による露光量Q”  ’Th小さ
くする手段として、前記上部構造体音凸形構造に形成し
、かつ凸部先趨の平面部分の直径tdL  とし次とき
、前記各霧光蓋Qo  、Q”  の比t で近似してなることを特徴とする特許請求の範W!JI
K2項記載の電子ビーム露光装置。 (7)前記上部構造体の表面に被着する実効的反射電子
係数η、′の小さい物質として、カーボン、ベリリウム
或いはアルミニウムのコロイド粒子を用いたことtea
とする特許請求の範囲第4項記載の電子ビーム露光装置
[Claims] (11) By irradiating the exposed sample substrate with an electron beam and
In an electron beam exposure device that exposes a desired pattern,
The exposure amount Q0 of the substrate due to the incidence of primary electrons, the exposure amount Q0 of the substrate due to the re-reflected electrons that are reflected from the substrate at this time and reflected again by the upper structure of the exposure device facing the wrinkled substrate. Electron beam exposure apparatus 0 in which the above exposure amount Qlk is made small so that the ratio of the above exposure amounts Qo=Q'' is 01 (Ql/Q)≦01 (2) The ratio of each of the above exposure amounts Qo=Q" The electron beam exposure apparatus according to claim 1 is characterized in that 'It' is the effective reflected electron coefficient of the sample substrate to be exposed, and 'Is' is the effective reflected electron coefficient of the upper structure. electronic coefficient, d
is the diameter of the exposure area on the sample substrate to be exposed, and h is the distance between the sample substrate to be exposed and the upper structure. (3) As a means for reducing the exposure amount Ql t due to the re-reflected electrons, the distance between the sample substrate to be exposed and the upper structure described in claim 1 or Jlli2 is characterized in that: Section 0 Electron beam exposure device. (4) To reduce the exposure amount Ql due to the re-reflected electrons, the upper structure may be formed of a material with a small effective backscattered electron coefficient, or the upper structure may be made of a material with a small
2. The electron beam exposure apparatus according to claim 2, wherein ii is coated with a substance having a small effective backscattered electron coefficient h'O. (5) As a means of reducing the fog light Q" caused by the re-reflected electrons, the surface of the first part structure is processed into an uneven groove shape or sawtooth shape, or a large number of holes are densely formed on the surface of the upper structure. The electron beam processing device according to claim 1 or 2, characterized in that the device is formed by integrating the A patent claim characterized in that the upper structure is formed into a convex structure, and where the diameter tdL of the planar portion at the tip of the convex portion is approximated by the ratio t of the fog light covers Qo and Q''. Range W!JI
The electron beam exposure apparatus according to section K2. (7) colloidal particles of carbon, beryllium, or aluminum are used as a substance with a small effective backscattered electron coefficient η,′ that adheres to the surface of the upper structure;
An electron beam exposure apparatus according to claim 4.
JP1230682A 1982-01-28 1982-01-28 Electron beam exposure device Pending JPS58130522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230682A JPS58130522A (en) 1982-01-28 1982-01-28 Electron beam exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230682A JPS58130522A (en) 1982-01-28 1982-01-28 Electron beam exposure device

Publications (1)

Publication Number Publication Date
JPS58130522A true JPS58130522A (en) 1983-08-04

Family

ID=11801629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230682A Pending JPS58130522A (en) 1982-01-28 1982-01-28 Electron beam exposure device

Country Status (1)

Country Link
JP (1) JPS58130522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177367A (en) * 1989-12-12 1993-01-05 Kabushiki Kaisha Toshiba Method of exposure using an electron beam to provide uniform dosage and apparatus therefor
JP2014143393A (en) * 2012-12-26 2014-08-07 Toppan Printing Co Ltd Electron beam lithography apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890681A (en) * 1972-03-06 1973-11-26
JPS4890680A (en) * 1972-03-03 1973-11-26
JPS5332677A (en) * 1976-09-08 1978-03-28 Toshiba Corp Electron beam exposure apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890680A (en) * 1972-03-03 1973-11-26
JPS4890681A (en) * 1972-03-06 1973-11-26
JPS5332677A (en) * 1976-09-08 1978-03-28 Toshiba Corp Electron beam exposure apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177367A (en) * 1989-12-12 1993-01-05 Kabushiki Kaisha Toshiba Method of exposure using an electron beam to provide uniform dosage and apparatus therefor
JP2014143393A (en) * 2012-12-26 2014-08-07 Toppan Printing Co Ltd Electron beam lithography apparatus

Similar Documents

Publication Publication Date Title
DE102006052015B4 (en) Position measuring device and position deviation measuring method
JP2001203157A (en) Particle beam projection system and correction method therefor
US10705427B2 (en) Method for making a grating
JPS58130522A (en) Electron beam exposure device
JPH0689847A (en) X-ray mask structure and its manufacture, x-ray exposure using the structure, and device manufactured by using the structure
JPS586133A (en) Forming device for minute pattern
CN109867260B (en) Method for carrying out electron beam or ion beam focusing etching and microscopic imaging on non-conductive substrate
JPH0294421A (en) X-ray exposure mask
JPH02177532A (en) Mild x-ray reflection type exposure mask and manufacture thereof
DE3730642C2 (en)
JPH09186070A (en) Variable shaped beam estimation method
JPS61156813A (en) Pattern employed for electron beam lithography
JPH0149011B2 (en)
Racette Status of x-ray mask development at the IBM Advanced Mask Facility
JPS6128940A (en) Method and device for forming fine pattern
JP2000252186A (en) Reflection-type charged particle-beam lithography system
QJ_ et al. QL QL Q_ QJ_ QL QJ_ QL QJ_
JPS61272925A (en) Manufacture of x-ray mask
JPH1074690A (en) Electronic beam drawing method
JPS60201629A (en) Production of metallic thin film having fine structure by means of light exposure
JPS62106626A (en) Manufacture of exposure mask
JPS61101027A (en) Reference mark for electron beam drawing device
JPS60230979A (en) Sputtering method
JPS6053025A (en) Dry etching method
Jede et al. Using a SEM to “Write” Sub Micron Structures