JPS5813033B2 - semiconductor radiation detector - Google Patents

semiconductor radiation detector

Info

Publication number
JPS5813033B2
JPS5813033B2 JP52004427A JP442777A JPS5813033B2 JP S5813033 B2 JPS5813033 B2 JP S5813033B2 JP 52004427 A JP52004427 A JP 52004427A JP 442777 A JP442777 A JP 442777A JP S5813033 B2 JPS5813033 B2 JP S5813033B2
Authority
JP
Japan
Prior art keywords
metal layer
detector
radiation detector
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52004427A
Other languages
Japanese (ja)
Other versions
JPS5390780A (en
Inventor
小林哲二
松尾昇
杉田徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52004427A priority Critical patent/JPS5813033B2/en
Publication of JPS5390780A publication Critical patent/JPS5390780A/en
Publication of JPS5813033B2 publication Critical patent/JPS5813033B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は半導体検出器に係り、特に放射線の低エネルギ
ー核種の測定及び低雑音半導体放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor detectors, and more particularly to the measurement of low energy nuclides of radiation and low noise semiconductor radiation detectors.

近年、エネルギー粒子を測定するものとして、表面障壁
型半導体放射線検出器が開発されている。
In recent years, surface barrier type semiconductor radiation detectors have been developed to measure energetic particles.

代表的な表面障壁型半導体放射線検出器として知られて
いるものに、Si,CaTe,GaAs等の半導体結晶
本体に例えばAu,Ti,A7などの金属を真空蒸着し
て表面障壁を構成した検出器がある。
What is known as a typical surface barrier type semiconductor radiation detector is a detector in which a surface barrier is formed by vacuum-depositing a metal such as Au, Ti, or A7 onto a semiconductor crystal body such as Si, CaTe, or GaAs. There is.

この種の検出器は、例えば第1図に示すように構成され
ている。
This type of detector is constructed, for example, as shown in FIG.

この第1図で半導体ウエハ1はその外周部分を包囲して
絶縁物の成型により構成され、内周をテーパ面とした環
状のマウント台2を有し、ウエハと表面接合を形成する
電極層3、オーム接触をする電極層4は、それぞれマウ
ント台2のテーパ面及びその周縁の部分をもおおって設
けられている。
In FIG. 1, a semiconductor wafer 1 is formed by molding an insulating material surrounding its outer periphery, has an annular mount 2 with a tapered inner periphery, and has an electrode layer 3 that forms a surface bond with the wafer. The electrode layers 4 that make ohmic contact are provided to cover the tapered surface of the mount base 2 and the peripheral edge thereof, respectively.

また、各電極層3,4の端効果を緩和するため、マウン
ト台2内周と電極層との間には電極層の被着に先立ち樹
脂5,6が充填塗布されている。
Further, in order to alleviate the edge effect of each electrode layer 3, 4, resins 5, 6 are filled and applied between the inner periphery of the mount base 2 and the electrode layer prior to adhesion of the electrode layer.

このように構成された第1図に示す検出器は、マウント
台2と半導体ウエハ1の間の断層を埋め、電界不整を防
ぐ合成樹脂の塗布層5,6はマウント台2とウエハ1間
をゆるやかな傾斜の状態で埋めることが不可能であると
ともに、使用環境の変化、例えば温度変化の著しい所や
、機械的振動の激しい場所などでは、マウント台2と合
成樹脂5,6、又はウエハ1と合成樹脂5,6間にすき
間を生じ、安定な電気的接触が得られず、電極間がしば
しば開放状態になるという欠点があった。
The detector shown in FIG. 1 configured in this way fills the fault between the mount 2 and the semiconductor wafer 1, and the synthetic resin coating layers 5 and 6 for preventing electric field misalignment are formed between the mount 2 and the wafer 1. If it is impossible to bury the wafer 1 on a gentle slope and the usage environment changes, such as in a place with significant temperature changes or in a place with severe mechanical vibration, A gap is created between the electrodes and the synthetic resins 5 and 6, making it impossible to obtain stable electrical contact, and the electrodes are often left open.

又、塗布した合成樹脂5,6の選択や、導電性接着剤の
補強により間げきを小さくすることは可能である反面、
ウエハ1表面にいずれも影響を与え、合成樹脂5による
チャンネリングや、表面接合を形成する電極層3の破壊
等の問題を生じ、特性の著しい悪化を来すため、製造に
際し良品率が非常に低い欠点があった。
Furthermore, although it is possible to reduce the gap by selecting the synthetic resins 5 and 6 applied and reinforcing the conductive adhesive, on the other hand,
Both of these affect the surface of the wafer 1, causing problems such as channeling by the synthetic resin 5 and destruction of the electrode layer 3 that forms surface bonding, resulting in a significant deterioration of characteristics, resulting in a very low yield rate during manufacturing. There was a low drawback.

さらに、マウント台2、合成樹脂5、ウエハ1の表面は
大小多数の凹凸を有するため、表面接合を形成する電極
層3の厚さを薄くする必要がある場合は、凹凸により電
気的接触が不安定であり、しかも電気抵抗値が大きく、
検出器の雑音発生の原因となっていた。
Furthermore, since the surfaces of the mount table 2, synthetic resin 5, and wafer 1 have many irregularities of various sizes, if it is necessary to reduce the thickness of the electrode layer 3 that forms the surface bond, the irregularities may prevent electrical contact. It is stable and has a high electrical resistance value.
This was causing noise in the detector.

また表面接合を形成する金属層3を薄くしたい場合には
、電気的接触が断線状態となり、検出器として作動しな
くなる欠点があった。
Further, when it is desired to make the metal layer 3 forming the surface bond thinner, there is a drawback that the electrical contact becomes disconnected and the detector cannot function as a detector.

本発明は、上記の事情に鑑みてなされたもので半導体ウ
エハに表面接合を形成する金属層とマウント台上の金属
層とを容易にしかも安定に接触し得るとともに、検出器
雑音を低減でき、さらに耐環境性を向上することが可能
な半導体放射線検出器を提供するものである。
The present invention has been made in view of the above circumstances, and enables easy and stable contact between a metal layer forming a surface bond on a semiconductor wafer and a metal layer on a mounting table, and also reduces detector noise. Furthermore, the present invention provides a semiconductor radiation detector that can improve environmental resistance.

以下、本発明の一実施例を図面を参照して詳細を説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第2図はその一実施例を示すもので、表面障壁型検出器
の断面図である。
FIG. 2 shows one example of this, and is a sectional view of a surface barrier type detector.

1は半導体ウエハ、例えばシリコンのn型であり、2は
内周をテーパ面とした環状の絶縁物マウント台、一般に
セラミック、アクリル等が使用される。
Reference numeral 1 is a semiconductor wafer, for example, an n-type silicon wafer, and reference numeral 2 is an annular insulator mount having a tapered inner periphery, which is generally made of ceramic, acrylic, or the like.

この半導体ウエハー1はマウント台2の環状テーパ面に
充填樹脂5,6によってマウントされている。
This semiconductor wafer 1 is mounted on the annular tapered surface of a mounting table 2 with filling resins 5 and 6.

3は表面障壁を形成する金属層、例えば金であり、半導
体ウエハ1、充填樹脂5、マウント台2に均等な厚さに
例えば真空蒸着によって被着する。
Reference numeral 3 denotes a metal layer forming a surface barrier, such as gold, which is deposited on the semiconductor wafer 1, the filling resin 5, and the mounting base 2 to a uniform thickness by, for example, vacuum deposition.

4はオーム接触をする電極層で、例えばアルミニウムを
上記した方法で真空蒸着する。
Reference numeral 4 denotes an electrode layer that makes ohmic contact, and aluminum, for example, is vacuum-deposited by the method described above.

半導体ウエハ1に表面障壁を形成している面で充填樹脂
5よりわずか中心面から充填樹脂5、マウント台2へ表
面障壁を形成する金属層23、例えば金を厚く真空蒸着
する。
On the surface of the semiconductor wafer 1 on which the surface barrier is formed, a metal layer 23, for example gold, is thickly vacuum-deposited from the center of the filling resin 5 to the mounting base 2, slightly from the center of the filling resin 5.

電極板7,8はマウント台上の表面障壁を形成する金属
層、オーム接触の金属層にそれぞれ圧着により接続する
The electrode plates 7 and 8 are connected by pressure bonding to a metal layer forming a surface barrier and an ohmic contact metal layer on the mount table, respectively.

例えば、本実施例の構造において、半導体ウエハ1にn
型、比抵抗値3000Ω・cmのSi結晶を用い、表面
障壁を形成する金属層3に膜厚70人の金の真空蒸着層
を、この金属層の外周に真空蒸着層23を膜厚500人
の金を使用し、電極板1,8にそれぞれニッケル板とア
ルミニウムを用いた表面障壁型放射線検出器と従来の表
面障壁をなす金属層に膜厚70人の金属を有する放射線
検出器のバイアス電圧に対する雑音特性を第3図に示し
ている。
For example, in the structure of this embodiment, n
Using a Si crystal with a resistivity of 3000 Ω cm, a vacuum-deposited layer of gold with a thickness of 70 mm is applied to the metal layer 3 forming the surface barrier, and a vacuum-deposited layer 23 of 500 mm thick is applied to the outer periphery of this metal layer. Bias voltage of a surface barrier type radiation detector using nickel plate and aluminum for electrode plates 1 and 8, respectively, and a conventional radiation detector having a metal film thickness of 70 mm for the metal layer forming the surface barrier. Figure 3 shows the noise characteristics for

両検出器とも、逆電流特性、容量特性は同じである。Both detectors have the same reverse current characteristics and capacitance characteristics.

第3図の曲線aは上記の実施例検出器特性であり、曲線
bは従来の検出器特性である。
Curve a in FIG. 3 is the characteristic of the above-described embodiment of the detector, and curve b is the characteristic of the conventional detector.

この特性から本実施例が従来例よりも雑音が著しるしく
低いことは明らかである。
From this characteristic, it is clear that the noise of this embodiment is significantly lower than that of the conventional example.

この雑音は放射線の核種測定及び低エネルギー測定の場
合、測定限界点、分解能を低下させる要因となる。
This noise becomes a factor that reduces the measurement limit point and resolution in the case of radiation nuclide measurement and low energy measurement.

本発明の構造にすると、検出器の製作方法を大幅に変え
ることなく、同じ工程を冫回使用することにより、マウ
ント台とウエハ間をより安定な電気的接触が得られ、し
かも耐環境性が犬である検出器が容易に製作できる。
With the structure of the present invention, by using the same process multiple times without significantly changing the method of manufacturing the detector, more stable electrical contact can be obtained between the mount table and the wafer, and environmental resistance can be achieved. A dog detector can be easily produced.

また雑音値を低くできるので検出器の使用感度が向上す
ることになる。
Furthermore, since the noise value can be lowered, the sensitivity of the detector can be improved.

例えば、低エネルギーの放射線測定においては、検出器
の表面接合をなす金属層による放射線のエネルギー低下
を有するため、測定が正確に行なわれなかった。
For example, when measuring low-energy radiation, the measurement could not be performed accurately because the energy of the radiation was lowered by the metal layer forming the surface bonding of the detector.

しかし、本発明の検出器にすると、ウエハに直接表面接
合を形成する金属層は例えば厚さ20人のように、著し
く薄くすることが可能であると共に、検出器の雑音を極
めて低くできるので、正確でしかもSN比良く測定する
場合非常に有効となる。
However, with the detector of the present invention, the metal layer that forms a direct surface bond to the wafer can be made extremely thin, for example, to a thickness of 20 mm, and the noise of the detector can be extremely low. It is very effective when measuring accurately and with a good signal-to-noise ratio.

このことは、例えば、光測定用検出器として、大面積を
有し、エネルギー損失が小さい感度の良い検出器とする
ことが可能である。
This makes it possible, for example, to use a photometric detector as a highly sensitive detector with a large area and low energy loss.

次に本発明の他の実施例を第4図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

第4図中、第2図の同一部分には、同一符号を附してあ
る。
In FIG. 4, the same parts as in FIG. 2 are given the same reference numerals.

Aは上面から見た上半面図、Bは断面図である。A is a top half view seen from the top, and B is a sectional view.

テーパ面を有する環状マウント台2の両面に金属がメタ
ライズ層42を有するものを使用し、半導体ウエハ1上
に表面障壁層を形成する金属層3を真空蒸着により一様
に被着する。
An annular mounting table 2 having a tapered surface having a metallized layer 42 on both sides is used, and a metal layer 3 forming a surface barrier layer is uniformly deposited on the semiconductor wafer 1 by vacuum deposition.

この金属層3上にスリット状、又は種々の形状に、表面
障壁を形成する金属層を、ウエハ1上の表面障壁層をな
す部分からマウント台2上の金属メタライズ層42まで
被着させる。
A metal layer forming a surface barrier is deposited on this metal layer 3 in the shape of a slit or in various shapes from the portion forming the surface barrier layer on the wafer 1 to the metal metallized layer 42 on the mount table 2 .

半導体ウエハ1の他面はオーム接触をする金属4をマウ
ント台2のメタライズ層まで蒸着する。
On the other side of the semiconductor wafer 1, a metal 4 making ohmic contact is deposited up to the metallized layer of the mount 2.

オーム接触金属層4の厚さは可能な限り、厚い方が良い
がこのオーム接触金属層を薄くしたい場合は、前記した
様に、ウエハ1上のオーム接触金属層からマウント台へ
、リング状に又はスリット状にオーム接触金属層を被着
させることも可能である。
The thickness of the ohmic contact metal layer 4 should be as thick as possible, but if you want to make this ohmic contact metal layer thinner, as described above, from the ohmic contact metal layer on the wafer 1 to the mounting base, form a ring. Alternatively, it is also possible to apply the ohmic contact metal layer in the form of a slit.

電極引出しは、マウント台2上のメタライズ層42より
ハンダ付、ウエルデイング等により引き出す。
The electrodes are drawn out from the metallized layer 42 on the mount base 2 by soldering, welding, or the like.

この実施例では耐環境特性が増すと共に、より低雑音検
出器を製造でき、さらにオーム接触金属層からの入射放
射線も小エネルギー損失で測定する場合非常に有効とな
る。
This embodiment provides increased environmental resistance, allows for the production of a lower noise detector, and is also very effective in measuring incident radiation from ohmic contact metal layers with low energy loss.

以上、述べたように、この発明によれば、検出器の表面
接合をなす金属層を半導体ウエハからマウント台へ段階
的に厚さを増すことによって表面接合を形成する面の電
極引出しを容易に行なうことができると共に、環境変化
に対して安定な電気的接触が得られ、検出器の製造に際
して歩留が向上する。
As described above, according to the present invention, by gradually increasing the thickness of the metal layer forming the surface bond of the detector from the semiconductor wafer to the mount table, it is possible to easily draw out the electrodes on the surface forming the surface bond. In addition, stable electrical contact can be obtained against environmental changes, and the yield in manufacturing the detector can be improved.

なお同厚みの表面接合を有する検出器より低雑音特性が
得られるので、低エネルギー放射線の測定が可能となり
、しかも光検出器として大面積で低レベノーまで容易に
使用可能な検出器が製造できる。
Furthermore, since a lower noise characteristic is obtained than a detector having a surface bond of the same thickness, it is possible to measure low-energy radiation, and moreover, a detector that can be easily used as a photodetector with a large area and a low level can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体放射線検出器の断面図、第2図は
本発明の一実施例の半導体放射線検出器を示す断面図、
第3図は従来の放射線検出器と本発明の放射線検出器の
雑音特性を示す曲線図、第4図は本発明の他の実施例の
断面図である。 1・・・半導体ウエハ、2・・・マウント台、3・・・
表面接合形成層、4・・・オーム接触層、5,6・・・
充填樹脂、7,8・・・電極板、23.43・・・表面
接合形成多重金属層、42・・・メタライズ層、47.
48・・・電極引出し線。
FIG. 1 is a sectional view of a conventional semiconductor radiation detector, and FIG. 2 is a sectional view of a semiconductor radiation detector according to an embodiment of the present invention.
FIG. 3 is a curve diagram showing noise characteristics of a conventional radiation detector and a radiation detector of the present invention, and FIG. 4 is a sectional view of another embodiment of the present invention. 1... Semiconductor wafer, 2... Mounting stand, 3...
Surface bond forming layer, 4... Ohmic contact layer, 5, 6...
Filled resin, 7, 8... Electrode plate, 23. 43... Surface bonding forming multiple metal layer, 42... Metallized layer, 47.
48... Electrode lead line.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体結晶本体と、該本体の一面に設けられ前記本
体と表面接合を形成する金属層と、前記本体の他方の面
に設けられ前記本体とオーム接触する金属層と、前記本
体の周端を支持するマウント台とを具備した表面障壁型
半導体放射線検出器において、前記表面接合をなす金属
層の厚みを前記結晶本体からマウント台へ向けて段階的
に増加させ、前記表面接合を形成する厚い金属層部分か
ら電極を引き出すことを特徴とする半導体放射線検出器
1. A semiconductor crystal body, a metal layer provided on one surface of the body and forming a surface bond with the body, a metal layer provided on the other surface of the body and in ohmic contact with the body, and a peripheral edge of the body In a surface barrier type semiconductor radiation detector comprising a supporting mounting base, the thickness of the metal layer forming the surface bonding is increased stepwise from the crystal body toward the mounting base, and the thick metal layer forming the surface bonding is increased stepwise from the crystal body to the mounting base. A semiconductor radiation detector characterized in that an electrode is drawn out from a layer portion.
JP52004427A 1977-01-20 1977-01-20 semiconductor radiation detector Expired JPS5813033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52004427A JPS5813033B2 (en) 1977-01-20 1977-01-20 semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52004427A JPS5813033B2 (en) 1977-01-20 1977-01-20 semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JPS5390780A JPS5390780A (en) 1978-08-09
JPS5813033B2 true JPS5813033B2 (en) 1983-03-11

Family

ID=11583945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52004427A Expired JPS5813033B2 (en) 1977-01-20 1977-01-20 semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPS5813033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356178Y2 (en) * 1984-07-19 1991-12-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719170Y2 (en) * 1988-10-28 1995-05-01 アロカ株式会社 Semiconductor radiation detector
JP2840192B2 (en) * 1994-05-13 1998-12-24 村上商事株式会社 Waterproof structure at the joint of metal roofing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356178Y2 (en) * 1984-07-19 1991-12-17

Also Published As

Publication number Publication date
JPS5390780A (en) 1978-08-09

Similar Documents

Publication Publication Date Title
FR2571855A1 (en) ABSOLUTE PRESSURE TRANSDUCER
US4525766A (en) Method and apparatus for forming hermetically sealed electrical feedthrough conductors
US5707880A (en) Hermetically sealed radiation imager
EP0087842B1 (en) Infra-red radiation detectors and their manufacture
US4531267A (en) Method for forming a pressure sensor
US4665609A (en) Process of manufacturing a photosensitive device having a plurality of detectors separated by zones impervious to the radiation to be detected
US4293768A (en) Infrared radiation detecting apparatus and method of manufacturing
US4302674A (en) Infrared radiation detecting apparatus and method of manufacturing it
FR2589275A1 (en) REFRACTORY METAL CAPACITOR STRUCTURES, PARTICULARLY FOR INTEGRATED ANALOG CIRCUIT DEVICES
US3965568A (en) Process for fabrication and assembly of semiconductor devices
JPS58182285A (en) Piezoelectric pressure sensor
US4360564A (en) Thin films of low resistance and high coefficients of transmission in the visible spectrum
JPS5813033B2 (en) semiconductor radiation detector
US4367408A (en) Pyroelectric type infrared radiation detecting device
US2650258A (en) Semiconductor photosensitive device
US5440931A (en) Reference element for high accuracy silicon capacitive pressure sensor
Stokowski et al. Ion-beam milled, high-detectivity pyroelectric detectors
US5375034A (en) Silicon capacitive pressure sensor having a glass dielectric deposited using ion milling
EP0030168B1 (en) Device for parallel arrangement of very high frequency power transistors
US3398338A (en) Mica disc capacitor
JP2890640B2 (en) IC package
JPS6351494B2 (en)
JPH0835880A (en) Infrared detector
JPS5913926A (en) Pyroelectric element
JPS5937448B2 (en) Room temperature infrared detector