JPS58130292A - Recovering device of dissolved metal in solution - Google Patents

Recovering device of dissolved metal in solution

Info

Publication number
JPS58130292A
JPS58130292A JP57010657A JP1065782A JPS58130292A JP S58130292 A JPS58130292 A JP S58130292A JP 57010657 A JP57010657 A JP 57010657A JP 1065782 A JP1065782 A JP 1065782A JP S58130292 A JPS58130292 A JP S58130292A
Authority
JP
Japan
Prior art keywords
electrolytic
chamber
cathode
solution
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57010657A
Other languages
Japanese (ja)
Other versions
JPH032959B2 (en
Inventor
Hiroshi Nagai
弘 永井
Yoshinori Sugano
菅野 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanao Kogyo Co Ltd
Original Assignee
Nanao Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanao Kogyo Co Ltd filed Critical Nanao Kogyo Co Ltd
Priority to JP57010657A priority Critical patent/JPS58130292A/en
Publication of JPS58130292A publication Critical patent/JPS58130292A/en
Publication of JPH032959B2 publication Critical patent/JPH032959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To recover metals quickly and efficiently on a cathode by subjecting a soln. dissolved therein with metals to electrolytic reaction to electrodeposit dissolved metals on electric conductive granular materials, then dissolving the same in an aq. cyanide soln. under the presence of air and electrolyzing the same. CONSTITUTION:This recovering device consists of an electrolytic reacting device A and an electrolytic recovering device B. A waste plating soln. 2 dissolved, for example, gold and silver is introduced through a conduit 3 into a storage tank 1. While the soln. 2 is circulated, an electric power source 15 is turned on to effect electrolytic reaction in a cathode chamber 10, so that gold and silver are electrodeposited on electrically conductive granular materials 13. After the residual waste soln. in an electrolytic cell 7 is discharged, an aq. cyanide soln. 19 is circulated in an electrolytic chamber 16 to dissolve the gold and silver deposited on the materials 13 in the soln. 19. When the concn. of the gold and silver increases in the chamber 16, the switch 22 of an electric power source 21 is turned on to effect electrolytic reaction so that the gold and silver are deposited on a cathode 18 whereby the gold and silver are recovered as a dense metallic plate.

Description

【発明の詳細な説明】 本発明は金属、特に金、銀の溶解された溶液から金、銀
全回収する溶液中の溶解金属の回収装置に関し、詳細に
は電気分解反応装置(コレクター)と電気分解回収装置
(プレーグ)を含み、極めて速かに、しかも効率よく金
、銀を回収する溶液中の溶解回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a recovery device for metals, particularly dissolved metals in a solution, for recovering all of gold and silver from a solution in which they are dissolved. This invention relates to a dissolution and recovery device in a solution that includes a decomposition and recovery device (plague) and recovers gold and silver extremely quickly and efficiently.

金属、特に金、銀の溶解されためつき工場廃水等、各種
金、銀を含む溶液は該金、銀を再使用するために種々の
装置により回収処理が施されている。
BACKGROUND OF THE INVENTION Solutions containing various types of gold and silver, such as wastewater from matting factories in which metals, particularly gold and silver, have been dissolved, are subjected to recovery treatment using various devices in order to reuse the gold and silver.

しかし、前述の公知の回収装置はいずれも犬がかりな装
置を必要とし、かつ時間も経費もかかり、しかも回収効
率が悪いという欠点を有していた。
However, the above-mentioned known collection devices all have the drawbacks of requiring a dog-like device, being time-consuming and expensive, and having poor collection efficiency.

本発明者は特別なコレクタを用いて溶液中の溶解金属を
電気伝導性粒状物質上に電着せしめ、この粒状物質上の
金属を青化物水溶液中に溶解して迅速かつ効率よく金属
を電解回収せしめる装置を開発し、本発明を完成するに
至った。
The inventor uses a special collector to electrodeposit dissolved metal in a solution onto electrically conductive particulate matter, dissolves the metal on this particulate material in an aqueous cyanide solution, and quickly and efficiently recovers the metal by electrolysis. The present invention was completed by developing a device for this purpose.

本発明の目的は極めて速かにかつ効率よく金属を回収し
得る、溶液中の溶解金属の回収装fk ’c提供するこ
とにある。
An object of the present invention is to provide a recovery device for dissolved metals in a solution that can recover metals extremely quickly and efficiently.

前述の目的を達成するため、本発明によれ(”1、電気
分解反応装置と電気分解回収装置とを含み、前記電気分
解反応装置は電解槽と、該電解槽内に配置され、該電解
槽を陽極室および陰極室に分離する電解用隔膜と、該陽
極室および陰極室内にそれぞれ配置された主陽極ならび
に主陰極と、少なくとも該陰極室に充填された電気伝導
性粒状物質および電気絶縁性粒状物質の混合体とからな
り、該混合体中の電気伝導性粒状物質は陽極室あるいは
陰極室において複極現象を起こすことなくそれぞれの主
電極と同一の極性を示すように配列されてなり、金属の
溶解された溶液を電極反応せしめて前記溶液中の溶解金
属を前記電気伝導性粒状物質上に電着せしめるものであ
り、前記電気分解回収装置は前記粒状物質上に電着され
た金属を空気の存在下、青化物水溶液中に溶解せしめる
溶解室と、陽極および陰極を有し、前記金属の溶解され
た青化物水溶液を電気分解して前記水溶液中の金属を陰
極上に回収する電解室とを備えてなることを特徴とする
〇 以下、本発明を添付図面を用いて詳述する0第1図は本
発明にかかる装置の一具体例を示し、このうちAの部分
は電気分解反応装置(コレクタ)、Bの部分は電気分解
回収装置(ブレーク)である0これらA、Bの装置を順
次に説明するOA 電気分解反応装置 7は電解槽である。電解槽7内には電解用隔膜8が配置
され、この隔膜8によって該電解槽7は陽極室9および
陰極室10に分離される。電解用隔膜8としては通常の
電解用隔膜、イオン交換膜、後述の粒状物質群13 、
14が通過しない程度の細孔を多数あけた合成樹脂板、
セラミック板、素焼板、合成繊維布等を使用してもよい
が、金属の析出反応を進行させるためには検氷等の木板
を用いることが最良である。
In order to achieve the above object, the present invention (1) includes an electrolytic reaction device and an electrolytic recovery device, the electrolytic reaction device includes an electrolytic cell, the electrolytic cell is disposed within the electrolytic cell, and the electrolytic cell is arranged in the electrolytic cell. an electrolytic diaphragm that separates the battery into an anode chamber and a cathode chamber, a main anode and a main cathode disposed in the anode chamber and cathode chamber, respectively, and electrically conductive granular material and electrically insulating granular material filled in at least the cathode chamber. The electrically conductive particulate matter in the mixture is arranged so as to exhibit the same polarity as the respective main electrodes without causing a bipolar phenomenon in the anode or cathode chambers, and The electrolytic recovery device electrodeposits the dissolved metal in the solution onto the electrically conductive particulate material by causing an electrode reaction to occur in a solution containing the dissolved metal. an electrolytic chamber having an anode and a cathode and electrolyzing the cyanide aqueous solution in which the metal is dissolved to collect the metal in the aqueous solution on the cathode; 〇Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.〇 Fig. 1 shows a specific example of the apparatus according to the present invention, of which part A is an electrolytic reaction apparatus. (collector) and B are the electrolytic recovery device (break) 0 These A and B devices will be explained in sequence OA The electrolytic reaction device 7 is an electrolytic cell. 8 is arranged, and the electrolytic cell 7 is separated into an anode chamber 9 and a cathode chamber 10 by this diaphragm 8.The electrolytic diaphragm 8 includes a normal electrolytic diaphragm, an ion exchange membrane, a particulate material group 13 described below,
A synthetic resin plate with a large number of pores that do not allow 14 to pass through,
A ceramic plate, an unglazed plate, a synthetic fiber cloth, etc. may be used, but it is best to use a wooden plate such as an ice cube plate in order to advance the metal precipitation reaction.

また、前記電解用隔膜8は複数板、例えば2板を接触し
て使用することもできる。
Further, the electrolytic diaphragm 8 may be used in a plurality of plates, for example, two plates in contact with each other.

さらに、前述の陽極室9および陰極室10の一側にはそ
れぞれ主陽極】1および主陰極12 (これらは例えば
グラファイトからなり、これらを併わせで「主電極」と
呼ぶこともできる。)を設置し、−また、該陽極室9お
よび陰極室10の両方または少なくとも陰極室IOには
電気伝導性粒状物質1:3および電気絶縁性粒状物質1
4の混合体全充填するOそして上記混合粒状物質群の配
列については、電気伝導性粒状物質13群の主電極板1
1 、12からの連rc リに長短を作り対極の方向に
距離が長く連なるもの程電気抵抗値が増大されるように
、また電気伝導性粒状物質13間相互の接咄が完全に断
たれないように、電気伝導性粒状物質13と電気絶縁性
粒状物質14とを混合、配列し、この配列により電極反
応面を拡大し、しかも各電気伝導性粒状物質13の表面
がバイポーラ−現象を起すことなく主電極板11゜12
と同一の極性として反応に関与できる0このような利点
を達成するためには電気伝導性粒状物質13と電気絶縁
性粒状物質14の大きさや、分量比率、又は材質等を、
電解液の特性やその他の条件に応じて最適条件に定めれ
ばよい0尚本発明でいう電気伝導性粒状物質13とは、
例えば通常の、粒状グラファイト、処理されるべき電解
液に侵されない粒状金属、又は粒状合金、その他である
。又前述の電気絶縁性粒状物質14とは、例えばガラス
ピーズ、シリカゲル、合成樹脂粒、イオン交換樹脂粒、
セラミック粒、その他である。
Further, on one side of the anode chamber 9 and cathode chamber 10 described above, a main anode 1 and a main cathode 12 (these are made of graphite, for example, and can also be collectively referred to as "main electrodes") are provided. - Also, both the anode chamber 9 and the cathode chamber 10 or at least the cathode chamber IO contain 1:3 electrically conductive particulate material and 1:3 electrically insulating particulate material.
Regarding the arrangement of the mixed granular material group described above, the main electrode plate 1 of the 13 groups of electrically conductive granular material is
1 and 12, so that the electric resistance value increases as the distance between the opposite electrodes increases, and the mutual contact between the electrically conductive particulate materials 13 is not completely cut off. In this way, the electrically conductive particulate material 13 and the electrically insulating particulate material 14 are mixed and arranged, and this arrangement expands the electrode reaction surface, and moreover, the surface of each electrically conductive particulate material 13 causes a bipolar phenomenon. Main electrode plate 11゜12
In order to achieve such an advantage, the size, proportion, material, etc. of the electrically conductive particulate material 13 and the electrically insulating particulate material 14 should be changed.
The electrically conductive particulate material 13 in the present invention may be set to the optimum condition depending on the characteristics of the electrolytic solution and other conditions.
For example, normal granular graphite, granular metals that are not attacked by the electrolyte to be treated, or granular alloys, etc. Further, the above-mentioned electrically insulating particulate material 14 includes, for example, glass beads, silica gel, synthetic resin particles, ion exchange resin particles,
Ceramic grains, etc.

上記のような本発明の電気分解反応装置Aを用いて、電
極反応を遂行するには、主電極11 、12間に、外部
電源15により電位差を与えながら処理したい溶液をバ
ッチ式または連続式に前記粒状物質が配置されている空
間に導いて通過させればよい。
In order to perform an electrode reaction using the electrolytic reaction apparatus A of the present invention as described above, a solution to be treated is applied between the main electrodes 11 and 12 by an external power source 15 while applying a potential difference in a batch or continuous manner. What is necessary is just to guide it into the space where the particulate material is arranged and allow it to pass through.

このように通過させれば、隔離室9では酸化反応が、陰
極室10では還元反応が効果的に遂行される。
By passing in this manner, an oxidation reaction is effectively carried out in the isolation chamber 9, and a reduction reaction is effectively carried out in the cathode chamber 10.

金、銀等の金属を溶解した溶液を陰極室10に通過して
電極反応せしめれば、溶液中の金、銀は電気伝導性粒状
物質上に電着される。
When a solution in which metals such as gold and silver are dissolved is passed through the cathode chamber 10 and subjected to an electrode reaction, the gold and silver in the solution are electrodeposited onto the electrically conductive particulate material.

これにより作用を受ける反応系は多数あるが、例えば、
陽極反応では X  +408−6e−+XO3+2H++H2OXO
3+)−I20−2 e−+X 04 + 2 H+(
式中Xはハロゲン元素を示す。) 2804 2e−+8208 Mn04− e −Mn04′ 2C+”+ 8H20−6e 42CI04”+16H
+pP −2e −+ pd+ 2十 Mn  −2e−+Mn OXygen CarrierとしてV  、Mn 、
 Cc 、C+などを用いる有機化合物の酸化、コルベ
反応、有機物の・・ロゲン化シアン化合物の分解、およ
びその他である。
There are many reaction systems affected by this, for example,
In the anodic reaction, X +408-6e-+XO3+2H++H2OXO
3+)-I20-2 e-+X 04 + 2 H+(
In the formula, X represents a halogen element. ) 2804 2e-+8208 Mn04- e -Mn04'2C+"+ 8H20-6e 42CI04"+16H
+pP -2e -+ pd+ 20Mn -2e-+Mn OXygen Carrier as V, Mn,
Oxidation of organic compounds using Cc, C+, etc., Kolbe reaction, decomposition of organic substances...rogenated cyanide compounds, and others.

陰極反応では、 U”+ 2e −+U” Ca”+e−+Cu ME!”+ne→M (式中Mは、Zn、Fe、Ni、Sn、Pb、Cu、H
g、Ag。
In the cathodic reaction, U”+ 2e −+U” Ca”+e−+Cu ME!”+ne→M (where M is Zn, Fe, Ni, Sn, Pb, Cu, H
g, Ag.

Pt 、Au 、Cd 、  などのうちの何れかを示
す。)カルボニル化合物リアルコール類、ニド011合
物→アミノ化合物、有機不飽和化合物の水素化、ニド1
)ル化合物の水素化、イミノ化合物の水素化、およびそ
の他である。従って本発明の電解装置Aを用いれば用廃
水中の有害物質の除去又は無害化、及び二次、−次の電
池などに応用することも出来るO なお、ここでただ単に電気伝導性粒状物質群を主電極板
に接触させて、電極面積の増大を計ると、対極に近い側
の電気伝導性粒状物質は内部の電気伝導性粒状物質より
極端に高く分極され、結果として反応、は、対極に近い
電気伝導性粒状物質上で激しく、高電流密度になり、著
しく電極面積を増したことにはならない。そこで本発明
装置Aでは、この接触させる電気伝導性粒状物質群に電
気絶縁性粒状物質群を適度に配合することにより、電気
伝導性粒状物質群の主電極からの連なりに長短を作り対
極の方向に距離が長く連なるもの程電気抵抗値が増大さ
れることになるように配慮し、全電気伝導性粒状物質群
上でほぼ均等に電気化学反応が進行するように工夫し、
著しく電極表面積、すなわち反応場を拡大することが出
来る。ここで注意しなければならないのは、電気伝導性
粒状物質問相互の接触を完全に断つ程に多くの電気絶縁
性粒状物質群を配合、配列すると、電気伝導性粒状物質
は先に述べたバイポーン4象が誘発され、酸化還元反応
は同−粒土の両端で進行するようになってしまう。
Indicates any one of Pt, Au, Cd, etc. ) Carbonyl compounds real alcohols, nido 011 compounds → amino compounds, hydrogenation of organic unsaturated compounds, nido 1
) hydrogenation of imino compounds, hydrogenation of imino compounds, and others. Therefore, by using the electrolyzer A of the present invention, it can be applied to the removal or detoxification of harmful substances in industrial wastewater, and to secondary and secondary batteries. When the area of the electrode is increased by bringing it into contact with the main electrode plate, the electrically conductive particulate matter on the side closer to the counter electrode becomes extremely highly polarized than the electrically conductive particulate material inside, and as a result, the reaction occurs at the counter electrode. This results in intense, high current densities on nearby electrically conductive particulate matter, which does not significantly increase the electrode area. Therefore, in the device A of the present invention, by appropriately blending an electrically insulating particulate material group into the electrically conductive particulate material group to be brought into contact, lengths and shorts are created in the chain of the electrically conductive particulate material group from the main electrode, and the direction of the opposite electrode is created. We took into consideration that the electrical resistance value increases as the distance increases, and devised so that the electrochemical reaction proceeds almost evenly on the entire electrically conductive particulate material group.
It is possible to significantly expand the electrode surface area, that is, the reaction field. What must be noted here is that when a large number of electrically insulating particulate materials are combined and arranged to the point where they completely cut off contact with each other, the electrically conductive particulate materials become bipone as described above. Four phenomena are induced, and redox reactions proceed at both ends of the same granular soil.

また、本発明装置Aにおいて、電解反応を進行させる場
合の隔膜は前述したように種々溝えられ、実際、合成繊
維布、素焼板、細孔プラスチック板、アスベスト板その
他を用いてよい結果ヲ得る。ところが、合成繊維布、細
孔プラスチックなどを用いて、水溶液中の金属イオンを
電解し副電極上に金属を析出させる場合、析出金属が多
くなると金属は陽極方向に伸びて成長を続け、遂には隔
模ヲ貫通して陽、陰両極が電気的に単絡され電解効率が
極端に悪くなる。又素焼板を用いると、本発明の装置A
のように充填物があるため、破損され易く、単結化する
ことがある。しかし隔膜に木板を用いることによりこれ
らの欠陥は解消され優れた機能を発揮し、その機能が持
続される。
In addition, in the device A of the present invention, the diaphragm used to advance the electrolytic reaction can be formed with various grooves as described above, and in fact, good results can be obtained by using synthetic fiber cloth, unglazed board, porous plastic board, asbestos board, etc. . However, when metal ions in an aqueous solution are electrolyzed and metal is deposited on the sub-electrode using synthetic fiber cloth, pore plastic, etc., when the amount of precipitated metal increases, the metal continues to grow and extends toward the anode, and eventually Penetrating through the diaphragm, the positive and negative electrodes are electrically single-circuited, resulting in extremely poor electrolytic efficiency. In addition, when a bisque plate is used, the apparatus A of the present invention
Because of the presence of fillers such as, it is easily damaged and may become single. However, by using a wooden board for the diaphragm, these defects are eliminated and the device exhibits excellent functionality, which is maintained for a long time.

すなわち、本発明の装置Aにおいては、隔膜として木板
を用いることにより、はじめて金属の析出反応も可能な
、しかもわずかなショックで破損されることのない、工
業化に耐え得るものとすることができる。もちろん、こ
の木板以外に前述の合成繊維布、素焼板、細孔プラスチ
ック板、アスベスト板等を使用しうろことは当然である
0尚木板が電解液により膨潤され表面がヒラカキに対し
て弱体であるならば、これを合成繊維布と積層にするこ
ともできる。
That is, in the apparatus A of the present invention, by using a wooden board as a diaphragm, it is possible to perform a metal precipitation reaction for the first time, and it can be made to withstand industrialization without being damaged by the slightest shock. Of course, in addition to this wooden board, it is natural to use the aforementioned synthetic fiber cloth, unglazed board, porous plastic board, asbestos board, etc.The wooden board is swollen by the electrolyte and its surface is weak against oysters. If so, this can also be laminated with synthetic fiber cloth.

以上のように本発明の装置AKあっては、電気伝導性粒
状物質13と電気絶縁性粒状物質14が第1図に示され
るように配列しであるので、電気伝導性粒状物質群全体
が均等に反応場として関与するため、反応場が拡大され
しかも充分な電位が得られ、そのため強力な酸化力又は
還元力を有し、従来品にない優れた特性を示す、等の優
れた効果を発揮する0また、本発明装置Aは主陽極と主
陰極との間に電解用隔膜8が配置され、この隔膜によっ
て電解槽7が陽極室9と陰極室10とに分離されるので
、対極を粒状物質群から離して設置しなくてもそれぞれ
の室で単独に、しかも分離して反応使用しない場合では
、対極を該粒状物質群から相当に離して設置しなければ
ならず、このため装置が大型化してしまうが、本発明装
置Aでは隔膜全陽極と陰極とで共用する型式であるので
、対極を粒状物質群から離して設置する必要はなく、こ
のため、装置が小型化され、簡易化される0以下、本発
明装置Aを実験例を用いてさらに詳細に述べる。
As described above, in the device AK of the present invention, the electrically conductive particulate material 13 and the electrically insulating particulate material 14 are arranged as shown in FIG. Since it is involved as a reaction field, the reaction field is expanded and a sufficient potential can be obtained.Therefore, it has strong oxidizing or reducing power and exhibits excellent properties not found in conventional products. Furthermore, in the apparatus A of the present invention, an electrolytic diaphragm 8 is arranged between the main anode and the main cathode, and this diaphragm separates the electrolytic cell 7 into an anode chamber 9 and a cathode chamber 10. Even if the counter electrode is not installed separately from the group of substances, if it is not used for reaction separately in each chamber, the counter electrode must be installed quite far from the group of particulate materials, which makes the device large. However, in the device A of the present invention, the diaphragm is of a type in which all the anodes and cathodes are shared, so there is no need to install the counter electrode apart from the particulate matter group, and therefore the device is miniaturized and simplified. Below, the device A of the present invention will be described in more detail using experimental examples.

〔実験例−1〕 本実験例fd、8酸2009/l、銅イオン(Cu)5
f/lの電解液から陰極反応により金属銅を析出させる
工程において、本発明の電解装置Aによる方法と、他の
3つの方法、即ちすでに特許となっている活性炭充填複
極槽(以下’A法〃とよぶことにする。)とグラファイ
ト充填複極槽(功、下sXB法Iと呼ぶ)及び混合充填
複極槽(以下ゝゝC法〃と呼ぶ)とを同一電解条件で比
較することにする。
[Experimental example-1] This experimental example fd, 8 acid 2009/l, copper ion (Cu) 5
In the process of depositing metallic copper from a f/l electrolytic solution by cathodic reaction, there are two methods: the method using the electrolytic device A of the present invention and the other three methods, namely, the already patented activated carbon-filled bipolar cell (hereinafter 'A'). (hereinafter referred to as sXB method), a graphite-filled bipolar cell (hereinafter referred to as sXB method I), and a mixed-filled bipolar cell (hereinafter referred to as ``C method'') under the same electrolytic conditions. Make it.

本発明の電気分解反応装置Aを用いる場合は、縦×横×
高さが70 X 70 X 100 mmの塩化ビニル
電解槽を厚さ5咽の節なし検板隔膜で70 X 50刈
00+mのX室と70 X 2fJ X 100m+の
Y室との2室に仕切り、この両室の両端に65X100
X5+mのグラファイト板を各1枚づつおき、X%Y両
室には、径2〜3門の破砕グラファイト、と径3wnの
ガラスピーズを容量比で6:4に配合した混合粒状物質
群を充填した。
When using the electrolytic reaction device A of the present invention, length x width x
A vinyl chloride electrolytic cell with a height of 70 x 70 x 100 mm was partitioned into two chambers: an X chamber of 70 x 50 m+ and a Y chamber of 70 x 2fJ x 100 m+ using a knotless test plate diaphragm with a thickness of 5 mm. 65X100 at both ends of both chambers
Place one X5+m graphite plate each, and fill both X%Y chambers with a mixed granular material group containing crushed graphite with a diameter of 2 to 3 and glass beads with a diameter of 3wn in a volume ratio of 6:4. did.

この本発明の装置Aに上記電解液+00−を注入し、X
室を陰極、Y室を陽極として、外部電源によりAの電流
を加分間通じた0 またA、B、C法では、縦×横×高さが70 X 70
刈00訓の塩化ビニル電解槽に陽陰両極板として、65
 X 1(IOX 5 fMlのグラファイト板を各1
枚両端になるように配置し、電極間には、それぞれA法
、B法、C法に応じ、それぞれ3簡の球形活性炭、2〜
3fiの破砕グラファイト粒、2〜3鵡の破砕グラファ
イトと3mmの塩化ビニルペレットに容1比で1:3に
混合したものをそれぞれ両極間に充填して、A、B、C
法の充填複極槽を作り、外部電源を陽陰両極になるよう
に結線し、上記電解液100−を注入し、IAで聞分間
通電した。尚C法で粒状物質を、1:3に配合したのは
、この場合、復極性が1:3附近からみられるためであ
る。以、ヒの各方法の結果は第1表の通りである。
The electrolytic solution +00- is injected into the device A of the present invention, and
In the A, B, and C methods, the length x width x height is 70 x 70.
65 as positive and negative polar plates in the PVC electrolytic cell of Kari00kun.
X 1 (IOX 5 fMl graphite plate each)
Between the electrodes, 3 pieces of spherical activated carbon, 2 to 3 pieces of spherical activated carbon, 2 to
A mixture of 3fi crushed graphite grains, 2 to 3 pieces of crushed graphite, and 3mm vinyl chloride pellets in a volume ratio of 1:3 was filled between the poles of A, B, and C.
A bipolar tank filled with the method was prepared, an external power source was connected so as to have both positive and negative poles, the electrolytic solution 100- was injected, and electricity was applied for a period of time at IA. The reason why the particulate matter was blended at a ratio of 1:3 in Method C is that in this case, depolarization was observed from around 1:3. Hereinafter, the results of each method are shown in Table 1.

第1表 各方法による銅析出量 処理方法  銅析出量(■) 本発明装置Aの方法  468 A法    165 B法    22 C法   265 この結果、本発明の装置Aを用いる電解法では、従来の
充填複極槽(英国特許第1279650号、英国特許第
1362704号、ドイツ特許公開2148402 )
による反応場拡大法に比し、より優れた方法であること
が確認されたoしかも装置は小型化することができる。
Table 1 Method for treating amount of copper deposited by each method Amount of copper deposited (■) Method of device A of the present invention 468 Method A 165 Method B 22 Method C 265 As a result, in the electrolytic method using device A of the present invention, the conventional filling Bipolar tank (UK Patent No. 1279650, British Patent No. 1362704, German Patent Publication No. 2148402)
It has been confirmed that this method is superior to the reaction field expansion method using the method described above.Moreover, the apparatus can be made smaller.

〔実験例−2〕 本実験例は、〔実験例−1〕のうち、本発明の装置Aの
外部電源の結線音道にし、ブドウ糖200t7t、  
炭酸カルシウム150f/l、臭素25y7’t。
[Experimental Example 2] This experimental example uses the external power connection path of the device A of the present invention in [Experimental Example 1], and uses 200 tons of glucose, 7 tons of glucose,
Calcium carbonate 150 f/l, bromine 25y7't.

の電解液100m1.を注入し、23〜25℃を保つよ
うにして、3Aで加分間電解を続け、6.77のグルコ
ン酸カルシウムを寿た。
100ml of electrolyte solution. was injected, the temperature was kept at 23-25°C, and electrolysis was continued for addition at 3A, yielding 6.77 calcium gluconate.

このように本発明の装置Aを用いると有機物の酸化反応
をも効果的に進行させることが出来る。
In this way, when the apparatus A of the present invention is used, the oxidation reaction of organic substances can also proceed effectively.

〔実験例−3〕 本実験例は、本発明の装置Aに使用する粒状物質の構成
比率と電解反応効果との関係について実験した。
[Experimental Example-3] In this experimental example, an experiment was conducted on the relationship between the composition ratio of particulate materials used in the apparatus A of the present invention and the electrolytic reaction effect.

本実験に用いた装置は、〔実験例−1〕に用いた装置を
用い、粒状物質群の材質及び形状も同様なものを用い、
この配合比のみを変化させCu +2e→Cuの反応効
果をみることとした。尚用いた電解液及び量も〔実験例
−1〕と同様である。その実験結果を第2図に示した。
The equipment used in this experiment was the same as that used in [Experiment Example-1], and the material and shape of the particulate matter group were also the same.
We decided to change only this blending ratio and examine the reaction effect of Cu +2e→Cu. The electrolytic solution and amount used were also the same as in [Experimental Example-1]. The experimental results are shown in Figure 2.

この結果、本電解液から金属銅を析出されるには、2〜
3閣のグラファイト粒と、3mmのガラスピーズを用い
るなら、その構成比は、グラファイト:ガラスピーズ−
1: 1.5〜1.5 : 1 の容量比の場合特に効
果的であることが確められ、しかも装置も小型化するこ
とができた。
As a result, in order to deposit metallic copper from this electrolyte, it is necessary to
If you use graphite grains of three sizes and glass beads of 3 mm, the composition ratio is graphite: glass beads.
It has been confirmed that a capacity ratio of 1:1.5 to 1.5:1 is particularly effective, and the device can also be miniaturized.

〔実験例−4〕 本実験例では、毒性の青酸カリを本発明の装置により、
酸化分解し、無毒化する場合の効果において伝導性粒状
物質として2〜3簡のマグ坏タイト破砕粒、絶縁性粒状
物質とし2〜3諭の塩化ビニルペレットを用い、粒状物
質群の容量比をl:1とした。用いた装置は、〔実験例
−1〕と同様で電源の結線を逆にした。用いた電解液は
KCNloo ppmのもの100−である。その結果
を第3図に示す。この実験結果、本発明の装置では、通
常の電解法では果せ得ない低濃度の青酸カリを効果的に
、より速く分解出来ることが確認された。
[Experimental Example-4] In this experimental example, toxic potassium cyanide was treated using the apparatus of the present invention.
In terms of the effect of oxidative decomposition and detoxification, two to three pieces of crushed magtite particles are used as the conductive particulate material, and two to three pieces of vinyl chloride pellets are used as the insulating particulate material, and the capacity ratio of the particulate material group is determined. l:1. The equipment used was the same as in [Experimental Example-1], except that the power supply connections were reversed. The electrolyte used was KCNloo ppm 100-. The results are shown in FIG. As a result of this experiment, it was confirmed that the apparatus of the present invention can effectively and more quickly decompose potassium cyanide at low concentrations, which cannot be achieved by ordinary electrolytic methods.

〔実験例−5〕 本実験装置は、〔実験例−1〕と同様な形式で、陽極室
30t1陰極室701とし、隔膜に1咽のサラン布およ
び厚さ5糖の節なし檜板金用い、Ag!M/l、KCN
50t/lの電解液を循環しながら陰極室陽極室を通過
させ外部電源により100Aの電流を与えて銀の析出反
応を進行させた。用いた電解液は5ooo tで共に3
00時間の連続運転を行なった。
[Experimental Example-5] This experimental apparatus has the same format as [Experimental Example-1], with an anode chamber of 30t1 and a cathode chamber of 701, a diaphragm made of saran cloth and a knotless cypress sheet metal with a thickness of 5 sugars. Ag! M/l, KCN
A 50 t/l electrolyte was circulated through the cathode chamber and the anode chamber, and a current of 100 A was applied from an external power source to advance the silver precipitation reaction. The electrolyte used was 500 t and 3
Continuous operation was performed for 00 hours.

この場合の銀板出結果を第2表に示す。Table 2 shows the results of silver plate printing in this case.

第2表 隔膜の相違と金板出量 隔膜   銀板出量 陽陰極の単絡 檜  板   24.87 kg    な しサラン
布   3.2 kg   加時間約単絡このように本
発明の装置Aに於ては、金属析出反応の場合、隔膜の選
定が重要であることがわかる。
Table 2 Differences in diaphragm and amount of gold plate coming out Diaphragm Amount of silver plate coming out Anode and cathode single-layered cypress plate 24.87 kg None Saran cloth 3.2 kg Warming time approx. This shows that the selection of the diaphragm is important in the case of metal precipitation reactions.

B 電気分解回収装置 この装置は電解室16と溶解室を含むが、第1図では溶
解室を電気分解反応装置Aの陰極室10と併用した例を
示した。もちろん溶解室として陰極室10とは別に設け
ることもできる。
B. Electrolysis recovery device This device includes an electrolysis chamber 16 and a dissolution chamber, and FIG. 1 shows an example in which the dissolution chamber is used in combination with the cathode chamber 10 of the electrolysis reaction device A. Of course, the dissolution chamber can be provided separately from the cathode chamber 10.

溶解室(陰極室10)では粒状物質13上に電着された
金属を空気の存在下、青化物水容液中に溶解せしめる。
In the dissolution chamber (cathode chamber 10), the metal electrodeposited on the particulate material 13 is dissolved in the cyanide aqueous solution in the presence of air.

この青化物水溶液は導管6を通して電解室16に導入さ
れる。また電解室16は両側壁に陽極17および陰極1
8を備え、前記溶解室で金属の溶解された青化物水溶液
19を電気分解して前記水溶液中の金属を陰極18上に
板状に回収するものである。
This cyanide aqueous solution is introduced into the electrolytic chamber 16 through the conduit 6. Further, the electrolytic chamber 16 has an anode 17 and a cathode 1 on both side walls.
8, electrolyzes the cyanide aqueous solution 19 in which metal is dissolved in the dissolution chamber, and collects the metal in the aqueous solution in the form of a plate on the cathode 18.

なお、本発明装置は前述の電気分解反応装置Aおよび電
気分解回収装置Bのほかに必要に応じて金属の溶解され
た溶液、例えばメッキ廃液を貯蔵するための貯蔵槽1を
備えることができる。この貯蔵槽1は前記溶液が貯蔵槽
1から陰極室10を経て貯蔵槽1に循環するように陰極
室10と導管4.4aで連結される。
In addition to the electrolytic reaction device A and the electrolytic recovery device B described above, the apparatus of the present invention can be provided with a storage tank 1 for storing a solution in which metal is dissolved, for example, a plating waste solution, if necessary. This reservoir 1 is connected to the cathode chamber 10 by a conduit 4.4a such that the solution circulates from the reservoir 1 through the cathode chamber 10 to the reservoir 1.

また、電解室16は青化物水溶i19が電解室16から
陰極室10を経て電解室16に循環するように陰極室1
0と導管側で連結される。なお、第1図中pHP2、l
ダはポンプであり、5a、 5b、 5c、 5dはパ
ルプであす、21は電源、22はスイッチである。
Further, the electrolytic chamber 16 is configured such that the aqueous cyanide i19 circulates from the electrolytic chamber 16 to the electrolytic chamber 16 via the cathode chamber 10.
0 on the conduit side. In addition, pHP2, l in Figure 1
5 is a pump, 5a, 5b, 5c, and 5d are pulps, 21 is a power source, and 22 is a switch.

このようにして構成された本発明にかかる装置はまずパ
ルプ5b、5dを閉じ、かつパルプ5a。
The apparatus according to the present invention constructed in this manner first closes the pulps 5b and 5d, and then closes the pulps 5a.

5cを開き、この状態で導管3を通じて例えば金、銀の
溶解されているメッキ廃液2を貯蔵槽1に導入する。次
いでポンプPlを作動してメッキ廃液2を貯蔵槽lから
導管4、陰極室10および導管4aを経て貯蔵槽1に循
環させながら電源15をONにし、メッキ廃液2を陰極
室10で電極反応せしめてメッキ廃液2中の金、銀を電
気伝導性粒状物質13上に電着する。
5c is opened, and in this state, the plating waste liquid 2 containing dissolved gold and silver, for example, is introduced into the storage tank 1 through the conduit 3. Next, the pump Pl is operated to circulate the plating waste liquid 2 from the storage tank l to the storage tank 1 via the conduit 4, the cathode chamber 10 and the conduit 4a, while the power supply 15 is turned on, and the plating waste liquid 2 is caused to undergo an electrode reaction in the cathode chamber 10. Gold and silver in the plating waste solution 2 are electrodeposited onto the electrically conductive particulate matter 13.

次にポンプRの作動を停止し、パルプ5a、5cを閉じ
、かつドレンコンク(図示せず)から電解槽7中の残存
廃液を排出した後、パルプ5b、5dを開き、ポンプP
2を作動して電解室16中の青化物水溶液19を、電解
室16から導管側、陰極室10、および導管6を経て電
解室16に循環させる。導管J)から陰極室10への青
化物水溶液19の導入は粒状物質13.14に青化物水
溶液をシャワー状ないしは噴霧状に散布することによっ
て行う。このとき、陰極室10の頂部を空気中に開放し
ておくと、陰極室10中の金、銀の付着した粒状物質1
3は空気の存在下に青化物水溶液が散布されることにな
る。すなわち、前記物質13は青化物水溶液でぬれた状
態で空気と接触することになり、このため空気が酸化剤
として作用して、粒状物質13に付着された金、銀は速
かに青化物水溶液中に溶解される。したがって、本発明
装置Bでは金、銀の溶解液として青化物水溶液のみを用
いるだけで金、銀は速かに、しかも効率よく溶解される
。このような青化物水溶液として青化ソーダ水溶液等、
種々のものを用ハることかできる。
Next, the operation of the pump R is stopped, the pulps 5a and 5c are closed, and the residual waste liquid in the electrolytic cell 7 is discharged from a drain concavity (not shown), and then the pulps 5b and 5d are opened and the pulps 5a and 5c are closed.
2 to circulate the cyanide aqueous solution 19 in the electrolytic chamber 16 from the electrolytic chamber 16 to the electrolytic chamber 16 via the conduit side, the cathode chamber 10, and the conduit 6. The aqueous cyanide solution 19 is introduced into the cathode chamber 10 via line J) by spraying the aqueous cyanide solution onto the granular material 13, 14 in the form of a shower or spray. At this time, if the top of the cathode chamber 10 is opened to the air, the particulate matter 1 with gold and silver attached in the cathode chamber 10
In step 3, a cyanide aqueous solution is sprayed in the presence of air. That is, the substance 13 comes into contact with air while wet with the cyanide aqueous solution, so that the air acts as an oxidizing agent, and the gold and silver attached to the particulate material 13 are quickly dissolved in the cyanide aqueous solution. dissolved in Therefore, in apparatus B of the present invention, gold and silver can be dissolved quickly and efficiently by using only the cyanide aqueous solution as a dissolving solution for gold and silver. Such cyanide aqueous solutions include cyanide soda aqueous solutions, etc.
Various types can be used.

次いで、金銀の溶解された青化物水溶准は陰極室10の
底部から導管6を経て電解室16に導かれる。
The aqueous cyanide solution containing gold and silver is then led from the bottom of the cathode chamber 10 through the conduit 6 to the electrolytic chamber 16.

該電解室16は両側壁に陽極17および陰極18が配置
されており、この電解室16中で、青化物水@滋は溶解
されている金、銀の濃度が高くなったところで電源21
のスイッチ22をONすることにより電気分解され、該
水溶液中の金、銀が電解法により撚密な金属板として陰
極18上に回収される。なお、陽極17からは主に酸素
ガスが発生する。また、前記陽極17の材質として主に
グラファイトが選ばれ、さらに陰極18の材質としては
ステンレスが選ばれる。
The electrolytic chamber 16 has an anode 17 and a cathode 18 disposed on both side walls, and when the cyanide water @ Shigeru has a high concentration of dissolved gold and silver in the electrolytic chamber 16, the power source 21 is turned on.
When the switch 22 is turned on, electrolysis occurs, and gold and silver in the aqueous solution are recovered as a tightly twisted metal plate on the cathode 18 by electrolysis. Note that oxygen gas is mainly generated from the anode 17. Graphite is mainly selected as the material for the anode 17, and stainless steel is selected as the material for the cathode 18.

さらに、電解室16中の青化物水溶919は前述のとお
り電解処理して金、銀を回収した後、導管側を通じて、
該導管側の任意の個所に配設されたポンプP2の作動に
より、陰極室10に導かれ、再使用することができる。
Furthermore, the cyanide aqueous solution 919 in the electrolytic chamber 16 is electrolytically treated as described above to recover gold and silver, and then passed through the conduit side.
By operating a pump P2 disposed at an arbitrary location on the conduit side, it is guided to the cathode chamber 10 and can be reused.

このようにして本発明装置Bでは青化物水容液が再使用
できるだめ、廃液が生じることがなく、経済的であると
同時に公害問題をひき起こさない。
In this way, in the apparatus B of the present invention, since the aqueous cyanide solution can be reused, no waste liquid is generated, which is economical and does not cause pollution problems.

以下、本発明を実験例により詳述する。The present invention will be explained in detail below using experimental examples.

実験例 l 第1図の本発明装置を用いて実験を行った。Experimental example l Experiments were conducted using the apparatus of the present invention shown in FIG.

まずパルプ5b、5dを閉じ、かつノ(ルプ5a、5c
を開き、この状態で導管3を通じて金メッキF3を液2
を貯蔵槽1に導入した。次いでポンプP+を作動して金
メツキ廃液2を貯槽7から導管4、陰極室10および導
管4aを経て貯蔵槽lに循環させなから電源15をON
にし、金メツキ廃液2を陰極室10で電極反応せしめて
金メツキ廃液2中の金を電気伝導性粒状物質13上に電
着した。
First, close the pulps 5b and 5d, and then close the pulps 5a and 5c.
In this state, pour gold plating F3 into liquid 2 through conduit 3.
was introduced into storage tank 1. Next, the pump P+ is operated to circulate the gold plating waste liquid 2 from the storage tank 7 through the conduit 4, the cathode chamber 10, and the conduit 4a to the storage tank L, and then the power supply 15 is turned on.
The gold plating waste liquid 2 was subjected to an electrode reaction in the cathode chamber 10, and the gold in the gold plating waste liquid 2 was electrodeposited onto the electrically conductive particulate material 13.

次にポンプP1の作動を停止し、パルプ5a、5cを閉
じ、かつドレンコックから電解槽7中の残存廃液を排出
した後、パルプ5b、5dを開き、ポンプP2を作動し
て陰極室10の粒状物質13.14にIIDψNaCN
水溶欣を導管20から毎分10mtの速さでシャワー状
に散布した。電解室16には1am2のステンレス板と
グラファイト板をおき、これをそれぞれ陰極18、およ
び陽極17とし電源21のスイッチ22をIONにして
0.3Aの電流を流して電解した。3時間後にはステン
レス陰極18上には金が析出されていた。
Next, the operation of the pump P1 is stopped, the pulps 5a and 5c are closed, and the remaining waste liquid in the electrolytic cell 7 is discharged from the drain cock, and then the pulps 5b and 5d are opened and the pump P2 is activated to drain the cathode chamber 10. IIDψNaCN in particulate matter 13.14
The water solution was sprayed from the conduit 20 at a rate of 10 mt/min in the form of a shower. A 1 am2 stainless steel plate and a graphite plate were placed in the electrolytic chamber 16, and these were used as the cathode 18 and anode 17, respectively, and the switch 22 of the power source 21 was turned on to conduct electrolysis by flowing a current of 0.3 A. After 3 hours, gold was deposited on the stainless steel cathode 18.

実験例 2 金メツキ廃液の代りに銀メツキ廃液を用いたことを除い
て実験例1と同一条件で実験した。3時間後には粒状物
質13上の銀は全て溶解されており、電解室16中のス
テンレス板陰極18上に銀が析出されていた。
Experimental Example 2 An experiment was conducted under the same conditions as Experimental Example 1 except that silver plating waste liquid was used instead of gold plating waste liquid. After three hours, all the silver on the particulate matter 13 had been dissolved, and silver was deposited on the stainless steel plate cathode 18 in the electrolytic chamber 16.

実験例 3 本実験においては、銀の溶解速度を調べた。Experimental example 3 In this experiment, the dissolution rate of silver was investigated.

実験例1と同じ装置を用い、実験例1と同一条件で金の
付着した粒状物質を処理した結果、200Cで21ミク
ロン/時の溶解速であった。尚銀精練で行なう青化ンー
ダ中に鋏を浸漬しこれに、空気を吹込む容解法では、こ
の速度の殆程度であった。
Using the same apparatus as in Experimental Example 1 and under the same conditions as in Experimental Example 1, the granular material with gold attached was treated, and as a result, the dissolution rate was 21 microns/hour at 200C. The dissolution method used in silver refining, in which scissors are immersed in curing powder and air is blown into it, was almost at this speed.

このようにして本発明は青化物のみで電解する従来法、
すなわちエアー吸込法とは異なり銀の場合で約5倍の溶
解速度を持つものであり、非常に有用な発明である。
In this way, the present invention can overcome the conventional method of electrolyzing only with cyanide,
That is, unlike the air suction method, the dissolution rate for silver is approximately five times faster, making it a very useful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一具体例の断面図を示し、第2図
tdF2秋物質構成比と銅電着量との関係を表わしたグ
ラフを示し、第3図は電解時間と青酸カリ分解率との関
係を表わしたグラフを示す。 1・・貯蔵槽、2・・メッキ廃液、 3.4.4a16、肋、・・・導管、5a、 5b、 
5c。 気休導性粒状物質、14・・・電気絶縁性粒状物質、1
5.21・・・電源、16・・・電解室、17・・・陽
極、18・・陰極、19・・・青化物水溶液、22・・
・スイッチ、A・・・電気分解反応装置、B・・・電気
分解回収装置。 特許 出 願人七生工業株式会社 肢状狗j#基毘(ば%) 筈:9目 電#吟間(今)
Figure 1 shows a cross-sectional view of a specific example of the device of the present invention, Figure 2 shows a graph showing the relationship between the tdF2 material composition ratio and the amount of copper electrodeposition, and Figure 3 shows the electrolysis time and potassium cyanide decomposition rate. A graph showing the relationship between 1... Storage tank, 2... Plating waste liquid, 3.4.4a16, Rib,... Conduit, 5a, 5b,
5c. Respiratory conductive particulate material, 14... Electrically insulating particulate material, 1
5.21... Power source, 16... Electrolytic chamber, 17... Anode, 18... Cathode, 19... Cyanide aqueous solution, 22...
- Switch, A...electrolysis reaction device, B...electrolysis recovery device. Patent Applicant: Nanasei Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)  電気分解反応装置と電気分解回収装置とを含
み、前記電気分解反応装置は電解槽と、該電解槽内に配
置され、該電解槽を陽極室および陰極室に分離する電解
用隔膜と、該陽極室および陰極室内にそれぞれ配置され
た主陽極な′らびに主陰極と、少なくとも該陰極室に充
填された電気伝導性粒状物質および電気絶縁性粒状物質
の混合体とからなり、該混合体中の電気伝導性粒状物質
は陽極室あるいは陰極室において複極現象を起こすこと
なくそれぞれの主電極と同一の極性を示すように配列さ
れてなり、金属の溶解された溶液を電極反応せしめて前
記溶液中の溶解金属を前記電気伝導性粒状物質上に電着
せしめるものであり、前記電気分解回収装置は前記粒状
物質上に電着された金属を空気の存在下、青化物水溶液
中に溶解せしめる溶解室と、陽極および陰極を有し、前
記金属の溶解された青化物水溶液を電気分解して前記水
溶層中の金属を陰極上に回収する電解室とを備えてなる
溶液中の溶解金属の回収装置。 (2、特許請求の範囲第1項に記載の装置において、前
記溶解室は電気分解反応装置中の陰極室であり、前記陰
極室は前記電解室と導管を通じて連結されてなり、この
導管を通じて金属の溶解された青化物水溶液を陰極室か
ら溶解室に導入するようにした装置。 (3)  %許請求の範囲第1項に記載の装置において
、さらに金属の溶解された溶液を貯蔵するための貯蔵槽
を備えてなり、この貯蔵槽は前記溶液が貯蔵槽から陰極
室を経て貯蔵槽に循環するように陰極室と導管で連結さ
れてなる装置0 (4)特許請求の範囲第1項または第2項に記載の装置
において、前記電解室は青化物水溶液が電解室から陰極
室を経て電解室に循環するように陰極室と導管で連結さ
れてなる装置0 (5)特許請求の範囲第1項に記載の装置において、金
属は金または銀である装置。
[Scope of Claims] (1) The electrolytic reaction device includes an electrolytic reaction device and an electrolytic recovery device, and the electrolytic reaction device includes an electrolytic cell, and is disposed within the electrolytic cell, and the electrolytic cell is connected to an anode chamber and a cathode chamber. A mixture of an electrolytic diaphragm to be separated, a main anode and a main cathode arranged in the anode chamber and the cathode chamber, respectively, and an electrically conductive particulate material and an electrically insulating particulate material filled in at least the cathode room. The electrically conductive particulate matter in the mixture is arranged so as to exhibit the same polarity as the respective main electrodes without causing a bipolar phenomenon in the anode chamber or cathode chamber, and the molten metal The solution is subjected to an electrode reaction to electrodeposit the dissolved metal in the solution onto the electrically conductive particulate material, and the electrolytic recovery device collects the metal electrodeposited onto the particulate material in the presence of air. A dissolution chamber for dissolving the metal in the aqueous cyanide solution, and an electrolytic chamber having an anode and a cathode for electrolyzing the aqueous cyanide solution in which the metal is dissolved and collecting the metal in the aqueous layer on the cathode. A device for recovering dissolved metals in solution. (2. In the apparatus according to claim 1, the melting chamber is a cathode chamber in an electrolysis reaction device, the cathode chamber is connected to the electrolytic chamber through a conduit, and the metal (3) Percentage In the apparatus according to claim 1, there is further provided a device for storing a solution in which a metal is dissolved. An apparatus comprising a storage tank, the storage tank being connected to the cathode chamber by a conduit so that the solution circulates from the storage tank through the cathode chamber to the storage tank. (4) Claim 1 or In the apparatus according to claim 2, the electrolytic chamber is connected to the cathode chamber by a conduit so that the cyanide aqueous solution is circulated from the electrolytic chamber to the electrolytic chamber via the cathode chamber. 2. The device according to item 1, wherein the metal is gold or silver.
JP57010657A 1982-01-26 1982-01-26 Recovering device of dissolved metal in solution Granted JPS58130292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010657A JPS58130292A (en) 1982-01-26 1982-01-26 Recovering device of dissolved metal in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010657A JPS58130292A (en) 1982-01-26 1982-01-26 Recovering device of dissolved metal in solution

Publications (2)

Publication Number Publication Date
JPS58130292A true JPS58130292A (en) 1983-08-03
JPH032959B2 JPH032959B2 (en) 1991-01-17

Family

ID=11756293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010657A Granted JPS58130292A (en) 1982-01-26 1982-01-26 Recovering device of dissolved metal in solution

Country Status (1)

Country Link
JP (1) JPS58130292A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278289A (en) * 1986-05-27 1987-12-03 Konica Corp Electrolytic apparatus
JP2012013638A (en) * 2010-07-05 2012-01-19 Toshiba Corp Recovery method and recovery device of rare metal from high-level radioactive waste liquid
JP2012522139A (en) * 2010-05-20 2012-09-20 インスー ジン Method and apparatus for extracting precious metal from waste inorganic granule catalyst
WO2020255475A1 (en) * 2019-06-21 2020-12-24 三菱重工業株式会社 Electrolytic smelting furnace
JP2021171751A (en) * 2020-04-17 2021-11-01 生態環境部華南環境科学研究所 Three-dimensional electrolysis apparatus for treating waste copper liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559470A (en) * 1978-07-07 1980-01-23 Sony Corp Method of forming printed substrate
JPS55145185A (en) * 1979-04-26 1980-11-12 Nanao Kogyo Kk Reaction apparats for electrolysis
JPS55164045A (en) * 1979-06-08 1980-12-20 Nanao Kogyo Kk Method and apparatus for dissolving and recovering gold and silver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559470A (en) * 1978-07-07 1980-01-23 Sony Corp Method of forming printed substrate
JPS55145185A (en) * 1979-04-26 1980-11-12 Nanao Kogyo Kk Reaction apparats for electrolysis
JPS55164045A (en) * 1979-06-08 1980-12-20 Nanao Kogyo Kk Method and apparatus for dissolving and recovering gold and silver

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278289A (en) * 1986-05-27 1987-12-03 Konica Corp Electrolytic apparatus
JP2012522139A (en) * 2010-05-20 2012-09-20 インスー ジン Method and apparatus for extracting precious metal from waste inorganic granule catalyst
JP2012013638A (en) * 2010-07-05 2012-01-19 Toshiba Corp Recovery method and recovery device of rare metal from high-level radioactive waste liquid
WO2020255475A1 (en) * 2019-06-21 2020-12-24 三菱重工業株式会社 Electrolytic smelting furnace
JP2021001370A (en) * 2019-06-21 2021-01-07 三菱重工業株式会社 Electrolytic refining furnace
CN114040997A (en) * 2019-06-21 2022-02-11 三菱重工业株式会社 Electrolytic smelting furnace
JP2021171751A (en) * 2020-04-17 2021-11-01 生態環境部華南環境科学研究所 Three-dimensional electrolysis apparatus for treating waste copper liquid

Also Published As

Publication number Publication date
JPH032959B2 (en) 1991-01-17

Similar Documents

Publication Publication Date Title
EP0071443B1 (en) Device for waste water treatment
US9199867B2 (en) Removal of metals from water
RU2004102511A (en) ELECTROLYSIS CELL FOR COMPLETING THE CONCENTRATION OF METAL IONS IN ELECTRODEPOSITION METHODS
RU2725871C2 (en) Filter-pressing device for electrodeposition of metals from solutions, consisting of separate elements formed by ion-exchange membranes, forming a plurality of anolyte and catholyte chambers, in which electrodes are connected in series with automatic separation of metal product
US2273798A (en) Electrolytic process
US3819504A (en) Method of maintaining cathodes of an electrolytic cell free of deposits
JPS6229513B2 (en)
US20140027301A1 (en) Selective reductive electrowinning apparatus and method
CA2027656C (en) Galvanic dezincing of galvanized steel
US4564432A (en) Apparatus for recovering metals dissolved in a solution
JPS58130292A (en) Recovering device of dissolved metal in solution
US4064022A (en) Method of recovering metals from sludges
CN101165215B (en) Method and equipment for obtaining metal powder, metal plate or metal cathode from any materials containing metal
US4652351A (en) Electrochemical restoration of cyanide solutions
US3915817A (en) Method of maintaining cathodes of an electrolytic cell free of deposits
EP0063420A1 (en) Electrolyzers for the production of hydrogen
US4578160A (en) Method for electrolyzing dilute caustic alkali aqueous solution by periodically reversing electrode polarities
JPS63190187A (en) Point of sodium permanent anode
US4177118A (en) Process for electrolyzing water
KR101912205B1 (en) electrolysis-electrodeposition bath for water treatment
RU2337182C2 (en) Method for electrochemical copper recovery in hydrochloride solution
KR20140054031A (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
JPS5985879A (en) Electric refinement
KR101048790B1 (en) Separation of Platinum Group Metals Using a Flow Electrolyzer
GB191403181A (en) Improvements in or relating to Electro-chemical Treatment of Liquids.