JPS58130211A - Distributing method for bottom blowing gas - Google Patents

Distributing method for bottom blowing gas

Info

Publication number
JPS58130211A
JPS58130211A JP1175282A JP1175282A JPS58130211A JP S58130211 A JPS58130211 A JP S58130211A JP 1175282 A JP1175282 A JP 1175282A JP 1175282 A JP1175282 A JP 1175282A JP S58130211 A JPS58130211 A JP S58130211A
Authority
JP
Japan
Prior art keywords
tuyeres
gas
tuyere
orifice
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1175282A
Other languages
Japanese (ja)
Other versions
JPS6156291B2 (en
Inventor
Shozo Murakami
村上 昌三
Mutsuo Nakajima
中嶋 睦生
Hiroyuki Aoki
青木 裕幸
Eiji Ikezaki
英二 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1175282A priority Critical patent/JPS58130211A/en
Publication of JPS58130211A publication Critical patent/JPS58130211A/en
Publication of JPS6156291B2 publication Critical patent/JPS6156291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To decrease the erosion of bottom blowing tuyeres and to increase the withstanding times of the tuyeres in a converter provided with the bottom blowing tuyeres, by providing regulating devices for the sections of gas flow passages to the gas branch pipes communicating with the respective tuyeres and maintaining the pressures and flow rates of the gases in the prespective tuyeres always at the prescribed values during the operation of the converter. CONSTITUTION:In the stage of decarburising, smelting and refining by oxygen blowing in bottom blown converters, top and bottom blown converters, etc., the oxygen to be supplied to bottom blowing tuyeres and gases for cooling the tuyeres such as propane are conducted with common pipelines to the neiborhood of the converter and are supplied from the piplines further to the tuyeres with branch pipes. In such a case, the orifices of regulating devices for the section of gas flow passages that provide opening parts for gas flow passages of 20-50% restricting ratio with respect to the section of the tuyeres are provided to the respective branch pipes and when part of the tuyeres are closed with higher degrees, the orifices of said devices are operated to control the pressures and flow rates of the gases in the respective tuyeres uniform, whereby the stoppage of the operations on account of closing of part of the tuyeres is prevented and the life of the tuyeres is prolonged.

Description

【発明の詳細な説明】 じて酸素,不活性ガスあるいは炭酸ガスなどを底吹きす
る底吹転炉あるいは上底吹転炉さらにはAOD炉の如き
製鋼法で、鋼浴々面下に吹き込む底吹ガスの分配法に係
わるものである。
[Detailed Description of the Invention] In steelmaking methods such as bottom-blowing converters, top-bottom blowing converters, and AOD furnaces in which oxygen, inert gas, or carbon dioxide gas is blown into the bottom surface of a steel bath. This relates to the method of distributing blown gas.

これ等の種々の製鋼法で用いられる底吹用ガス吹込み装
置は、使用するガスの種類によって様々のものが使用さ
れており、例えば、金属製4を管。
Various types of bottom blowing gas blowing devices are used in these various steel manufacturing methods depending on the type of gas used.

種々の形状の二重管羽目,非常に細い金属管を集合させ
た小径管集合羽口,さらには耐火物の目地部を利用する
などが開発・実用化されている。(以後、これ等を総称
して羽目と云う。)一般に炉底に設置された2個以上の
羽口より底吹用ガスを吹き込む場合には、当然のことな
がら各羽口より吹き込まれる底吹ガス量が、実質的に同
じ流量に制御されるべきことは、底吹ガス吹き込みによ
る冶金効果の達成、および羽口寿命の維持の点から非常
に重要なことである。就中、羽目寿命の維持および羽目
事故の防止には、王として羽口の寸法で決定される羽口
1個当シの流量、あるいは吐出圧が非常に大きな要因と
なっており、これ等を常に所定値に維持することは、実
操業上不可欠の条件である。
Various types of double pipe siding, small diameter pipe tuyeres made of very thin metal pipes, and even the use of refractory joints have been developed and put into practical use. (Hereinafter, these are collectively referred to as tuyeres.) Generally, when blowing gas for bottom blowing from two or more tuyeres installed at the bottom of the furnace, it goes without saying that the bottom blowing gas blown from each tuyere It is very important that the gas amount should be controlled to substantially the same flow rate from the viewpoint of achieving the metallurgical effect by bottom blowing gas and maintaining the life of the tuyere. In particular, the flow rate per tuyere, which is determined by the tuyere dimensions, or the discharge pressure are very important factors in maintaining the life of the tuyere and preventing tuyere accidents. Always maintaining a predetermined value is an essential condition for actual operation.

上記の条件を実現する為の最も確実な方法は、各羽目の
管路を互に独立として、個々について流量制御を行なう
ことである。然しなから、この方法では、管路、制御弁
が多くなシ、かつ回転する炉体側と固定されている非炉
体側の両者を継ぐ、所謂回転継手(ロータリー・ジヨイ
ント)の構造が複雑となり、同時に、限られた空間への
設置が困難になるなど、現実的には殆んど採用されてい
ない。これ等の設備制約よシ一般に採用されている方法
は、1個の制御弁にて制御されている吹込みガスを1個
の管路にて炉底まで導びき、炉底のヘッダー管より各羽
目に各枝管を介して分岐する方法を採っている。このよ
うな、底吹きガスの分配方法に於て各羽目への分配を如
何に均等に行なうか、つまり均等分配を如何に実現する
かは先に述べた如く、吹込み羽口の安定性に極めて重要
である。
The most reliable method for achieving the above conditions is to make each pipe line independent of each other and to control the flow rate individually. However, with this method, there are many pipe lines and control valves, and the structure of the so-called rotary joint that connects both the rotating furnace body side and the fixed non-furnace body side is complicated. At the same time, it is difficult to install in a limited space, so it is rarely used in reality. To overcome these equipment constraints, the generally adopted method is to guide the blown gas controlled by a single control valve to the bottom of the furnace through a single pipe, and connect each gas from a header pipe at the bottom of the furnace. The method of branching out through each branch pipe is adopted. In this method of distributing bottom-blown gas, how to evenly distribute it to each tuyere, that is, how to achieve equal distribution, depends on the stability of the blowing tuyere, as mentioned earlier. extremely important.

上述の如き、ガスの流れをヘッダー管よシ各枝管に分配
する時に、一般に採用される簡便な方法は、各枝管にオ
リフィスを設置することである。
In distributing the gas flow from the header pipe to the branch pipes as described above, a commonly used and convenient method is to install an orifice in each branch pipe.

この枝管に設置したオリフィスを通過するガスの流れ特
性として近似的に先細ノズルの理論を適用すると、オリ
フィス前(上流側)圧力をP。(KVctyt )、オ
リフィス出口吐出圧力をP、(KVc、、り、オリフィ
ス後枝管圧力をP2(K〜)とすれば、オリフィスを通
過する圧縮気体の流速が音速に達する程オリフィスによ
る圧損が大きい時には次式が成立する。
Approximately applying the theory of a tapered nozzle to the flow characteristics of gas passing through an orifice installed in this branch pipe, the pressure in front of the orifice (upstream side) is P. (KVctyt), orifice outlet discharge pressure is P, (KVc, ri, orifice rear branch pipe pressure is P2 (K~), the pressure drop due to the orifice is large as the flow velocity of compressed gas passing through the orifice reaches the sonic speed. Sometimes the following formula holds.

PI/Po= P’/P = (±) −に/(k−”
−0,528に+1 ここで、Pcは臨界圧力、kは比熱比(=0p/Cv)
で、空気、酸素などの場合はk = 1.4である。ま
たpC/poは臨界圧力比と呼ばれる。
PI/Po= P'/P = (±) −/(k−”
-0,528 +1 Here, Pc is critical pressure, k is specific heat ratio (=0p/Cv)
In the case of air, oxygen, etc., k = 1.4. Further, pC/po is called the critical pressure ratio.

オリフィスを流れる気体の流動は、オリフィス前圧力P
。とオリフィス後圧力P2の比P2/Pが一上記の臨界
圧力比よシ大きいか否かによって全く異なるものである
。流れるガスが、例えば、上記のに値を有する空気、酸
素の場合には、P2/P〉0.528の時、つまり、オ
リアイスによる圧損が小さく、臨界圧力比よシも圧力比
が大きい場合には、Pl−P2となシ、オリフィス出口
吐出圧が常にオリフィス後流側枝管圧力と同じとなシ、
この場合には、オリフィスを通過するガスの流速は音速
には達しておらず、かつガスの流量は、オリフィス上流
側圧力P。が一定でも、オリフィス後枝管圧力の変動に
よって影響を受けることになる。
The gas flow through the orifice is controlled by the orifice front pressure P
. and the orifice post-pressure P2, P2/P, is completely different depending on whether or not the ratio P2/P is larger than the above-mentioned critical pressure ratio. For example, when the flowing gas is air or oxygen having the above value, when P2/P>0.528, that is, when the pressure drop due to Olycester is small and the pressure ratio is larger than the critical pressure ratio. is Pl-P2, and the orifice outlet discharge pressure is always the same as the orifice downstream side branch pipe pressure.
In this case, the flow velocity of the gas passing through the orifice has not reached the sonic velocity, and the gas flow rate is equal to the pressure P on the upstream side of the orifice. Even if is constant, it will be affected by fluctuations in the pressure of the branch pipe after the orifice.

これとは逆にP2/P <0.528の時つまシ、オリ
フィスによる圧損が大きく、圧力比が臨界圧力比よりも
小さく、オリフィスを通過するガスの流速が音速に達し
ている時には、PI″:2P2となり、オリフィス後圧
力P2によっては、オリフィス出口吐出圧力P1は影響
を受けず、従って、オリフィスを通過するガスの流量は
、オリフィス後枝管圧力の変化によっては変らず、オリ
フィス上流側圧力、オリフィス断面積によって決定され
ることになる。
On the other hand, when P2/P < 0.528, the pressure loss due to the baffle and orifice is large, the pressure ratio is smaller than the critical pressure ratio, and the flow velocity of the gas passing through the orifice has reached the sonic velocity, PI'' :2P2, and the orifice outlet discharge pressure P1 is not affected by the orifice back pressure P2. Therefore, the flow rate of gas passing through the orifice does not change depending on the change in the orifice back branch pipe pressure, and the orifice upstream pressure, It will be determined by the orifice cross-sectional area.

このオリフィスの流量特性より理解される如く、オリフ
ィスを使用した均等分配の原理は、オリ7っ捷りPO”
” 10.528の圧力差をオリフィスの上流側と下流
側に持たせることである。この方法自体は、非常に簡単
にしてかつ確実なガスの均等分配の方法であり、実際に
この方法に基づく、底吹用二重前羽目の外管の炭化水素
冷却剤の各羽目への均等分配法として、特公昭53−3
5527号(公告:昭和53年9月27日)が提案され
ている。この方法は、上記提案の如く、対象ガスが主た
る底吹ガスではなく、羽目冷却用保護ガスの如く比較的
少量の場合はまだしも、主たる底吹ガスを対象とする場
合には底吹ガスの分圧を前述の如き大きなオリフィス圧
損の分だけ過度に上昇する必要があり、ガス発生装置及
び管路の高圧化による設備費過大、更には、高圧化によ
る設備保全、事故防止など、種々の問題を有しておシ、
実用化には障害がある。
As can be understood from the flow characteristics of this orifice, the principle of equal distribution using an orifice is
” 10.528 mm pressure difference is created between the upstream and downstream sides of the orifice. This method itself is a very simple and reliable method for evenly distributing gas, and there are actually several methods based on this method. , as a method for equally distributing hydrocarbon coolant to each side of the outer tube of the double front side for bottom blowing,
No. 5527 (public notice: September 27, 1978) has been proposed. As proposed above, this method is fine when the target gas is not the main bottom-blown gas but a relatively small amount such as a protective gas for siding cooling, but when the main bottom-blown gas is the main bottom-blown gas, this method can be applied to a portion of the bottom-blown gas. It is necessary to increase the pressure excessively by the large orifice pressure drop as mentioned above, which leads to various problems such as excessive equipment costs due to the high pressure of the gas generator and pipelines, and equipment maintenance and accident prevention due to the high pressure. I have it,
There are obstacles to practical implementation.

そこで、本発明者等は、ヘッダー管より各羽口へのガス
の分配方法について詳細な検討と研究を行ない、非常に
簡便にして有効な方法の実用化に成功した。
Therefore, the present inventors conducted detailed study and research on a method of distributing gas from a header pipe to each tuyere, and succeeded in putting into practical use a very simple and effective method.

この研究を通じて判明したことは、この種技術の最も困
難な問題は、炉底の羽目より直接溶鋼に種々のガスを吹
き込む場合に、羽目先端が溶鋼の複雑な影響を受けて極
めて複雑な挙動を示すことである。例えば羽目先端に地
金が付着したり、あるいは多孔質地金、所謂マツシュル
−ムがガ5ス通路側に成長してガスの流れに影響を及1
1シたり、さらには、ガス吹込み管路内部に地金が侵入
したり、羽口先端が非常に不安定でめ9、これが羽口先
端の流量−圧力の関係に大なる影響を及ぼすことである
What we found through this research is that the most difficult problem with this type of technology is that when various gases are injected directly into the molten steel through the slats at the bottom of the furnace, the tips of the sidings are affected by the complex effects of the molten steel and exhibit extremely complex behavior. It is to show. For example, metal may adhere to the tips of the siding, or porous metal, so-called pine shrooms, may grow on the gas passage side, affecting the gas flow.
Furthermore, metal may enter the inside of the gas injection pipe, and the tip of the tuyere may become extremely unstable9, which may have a large effect on the relationship between flow rate and pressure at the tip of the tuyere. It is.

従って、本発明の課題を解決する為には、上記の羽目先
端の複雑な挙動を究明し、これを克服し得るガスの制御
方法を見い出す必要がある。例えば、酸素底吹用二重管
羽目の流量−圧力の関係より実際の操業中の羽目先端の
閉塞率を求めると、本発明による技術を適用しない方法
では、通常時で加〜30%の閉塞率、時としては40〜
50%に達し、さらには頻度は少ないが、場合によって
はほとんど全閉の状態まで閉塞していることが知見され
た。
Therefore, in order to solve the problems of the present invention, it is necessary to investigate the above-mentioned complicated behavior of the blade tip and find a gas control method that can overcome this. For example, when determining the blockage rate at the tip of the siding during actual operation from the relationship between the flow rate and pressure of the double-pipe siding for oxygen bottom blowing, it is found that the method that does not apply the technology of the present invention results in an increase of 30% to 30% occlusion under normal conditions. rate, sometimes 40~
It was found that the occlusion rate reached 50%, and in some cases, it was found that the occlusion was almost completely closed.

つまり、このような大きく変動する閉塞率はそもそも各
羽口へのガスの分配と本質的に関連があシ、ガスの分配
法は、上記の如き極度に大きい閉塞率となることを防止
することを同時に解決することが前提であることが判明
した。
In other words, such a greatly fluctuating blockage rate is essentially related to the distribution of gas to each tuyere, and the gas distribution method must be designed to prevent the extremely large blockage rate as described above. It turns out that it is necessary to solve the problems at the same time.

そこで、先ず、羽目先端の閉塞率のガスの流れ特性に及
ぼす影響を調査する為に、オフライン実験で、人為的に
22覇φ口径の羽目先端を種々の閉塞板で閉塞させ、空
気を吹き込んで各閉塞率別の圧力と流量の特性を第1図
の如く測定した。この図よシ判る如く、羽目前圧力があ
る所定の一定値でも閉塞率によって流量が変化する。
First, in order to investigate the effect of the blockage rate of the siding tips on the gas flow characteristics, we conducted an off-line experiment by artificially blocking the siding tips with a diameter of 22 mm with various blocking plates and blowing air into them. The pressure and flow characteristics for each blockage rate were measured as shown in Figure 1. As can be seen from this figure, even if the immediate pressure is a certain constant value, the flow rate changes depending on the blockage rate.

次に、羽目の上流量に内径が18.4mmφのオリアイ
スを設けて同様の測定を行なった結果を第2゜3図に示
した。第3図は羽目先端の閉塞率と匠量の関係を示すが
、ここで興味深いことは、羽目先端の閉塞率がオリフィ
スの対羽目口径の絞り率とはソ等しくなるまでは流量の
変化が先の第1図に比して大巾に改善されていることで
ある。
Next, a similar measurement was carried out by installing an oriice with an inner diameter of 18.4 mm in the upper flow of the slats, and the results are shown in Fig. 2-3. Figure 3 shows the relationship between the blockage rate at the tip of the blade and the amount of workmanship.What is interesting here is that the flow rate changes first until the blockage rate at the tip of the blade becomes equal to the aperture ratio of the orifice to the diameter of the blade. This is a huge improvement compared to Figure 1.

以上の基礎実験で得られた知見をペースにして、複数本
の羽目のガス分配のモデル実験を行なった。
Based on the knowledge obtained from the above basic experiments, we conducted a model experiment of gas distribution using multiple lines.

モデルは実操業で問題となる羽口間で閉塞率が種々異な
る状態でのオリスイスの効果を確認する為に、一つのへ
ラダー管より2本の羽目に分岐し、内径22+w+φの
羽口に対してA羽口は常に閉塞率を30チに固定し、B
羽口は閉塞率を変動させ、また、各羽目への枝管へのオ
リフィスを有しない場合と、羽口断面に対して、30%
断面に絞った場合の両者について、吹込みガスとして空
気t 1400 ×負流した。この時のB羽口の閉塞率
と両羽口の流量分配状況、および、羽目先端の吐出圧力
P。の関係を第4図に示した。
In order to confirm the effect of Oriswiss under various conditions of blockage rate between the tuyeres, which is a problem in actual operation, the model is constructed by branching into two tuyeres from a single ladder pipe, and for a tuyere with an inner diameter of 22 + w + φ. The blockage rate of A tuyere is always fixed at 30, and B
The tuyere has a variable blockage rate, and 30% for the tuyere cross section and for the case without orifice to the branch pipe to each tuyere.
For both cases when the cross section was narrowed down, a negative flow of air t 1400× was used as the blown gas. At this time, the blockage rate of the B tuyere, the flow rate distribution situation of both tuyeres, and the discharge pressure P at the tip of the tuyere. The relationship is shown in Figure 4.

第4図のB羽口の閉塞率とA及びB羽口の流量の分配状
況より、オリフィスの効果はB羽口の閉塞率がA羽口の
閉塞率及びオリフィスの絞シ率の30係に達するまで認
められ、オリフィスの無い状態より分配状況が大巾に改
善されている。然しなから、第4図の流量の分配状況で
は、両肩目間の流量の完全な均等分配は行なわれていな
いことが判る。ところが、第4図のB羽口の閉塞率と羽
口先端の吐出圧の関係を見ると、オリアイスが無い場合
には、閉塞率が異なるA、B両羽口の吐出圧が同じであ
るが、オリフィスを有する場合にはB羽口の閉塞率が3
0%以下では、閉塞率の小さいB羽口の吐出圧は、閉塞
率の大きいA羽口の吐出圧より小さいことである。本発
明者等による羽目挙動の詳細な研究によれば、複数本の
羽目間の閉塞状況と羽目先端の吐出圧の間には密接な関
係があり、一般に、吐出圧が低い方は羽目が閉塞する傾
向を有し、吐出圧が高い方は羽目が開孔する傾向を有す
ることが知見されている。この知見と第4図の閉塞率の
異なる羽口間の吐出圧力の差を利用して、実操業上問題
になるような羽目間で閉塞率が大きく異なったシ、ある
いは、ある羽目の閉塞が極度に進行し、あるいは、全ん
ど閉塞するなどの羽目事故に結びつくようなことを完全
に防止し得ることを見い出した。
From the blockage rate of the B tuyere and the distribution of flow rates of the A and B tuyeres in Figure 4, the effect of the orifice is that the blockage rate of the B tuyere is 30 times the blockage rate of the A tuyere and the restriction rate of the orifice. The distribution situation is greatly improved compared to the state without an orifice. However, it can be seen that in the flow rate distribution situation shown in FIG. 4, the flow rate is not completely evenly distributed between both shoulders. However, looking at the relationship between the blockage rate of tuyere B and the discharge pressure at the tip of the tuyere in Fig. 4, we find that in the absence of oriace, the discharge pressures of tuyere A and B, which have different blockage rates, are the same. , if it has an orifice, the blockage rate of the B tuyere is 3.
Below 0%, the discharge pressure of the B tuyere with a small blockage rate is smaller than the discharge pressure of the A tuyere with a high blockage rate. According to a detailed study of the behavior of the slats by the present inventors, there is a close relationship between the obstruction status between multiple slats and the discharge pressure at the tip of the slats, and in general, the lower the discharge pressure, the more the siding is blocked. It has been found that the higher the discharge pressure is, the more the slats tend to open. By using this knowledge and the difference in discharge pressure between tuyeres with different blockage rates shown in Figure 4, we can identify cases where the blockage rates are significantly different between tuyeres, which would be a problem in actual operation, or where the blockage of a certain tuyere is It has been found that it is possible to completely prevent problems that would lead to accidents such as extreme progress or complete blockage.

つまり、第4図の如き関係を、他の羽目閉塞率。In other words, the relationship shown in Figure 4 can be expressed as follows:

オリスイス絞り率について、幾種類も測定した結果、オ
リフィスの絞シ率として、羽目の起こり得る最大閉塞率
と同じ程度の羽目の断面比とすることによシ、先に述べ
た羽目先端の吐出圧と閉塞率の関係が維持でき、従って
、閉塞率の相対的に大きい羽口は吐出圧が相対的に高く
なり羽口が開孔しようとする傾向を有し、逆に、閉塞率
が小さい羽目は吐出圧が相対的に低く羽目が閉塞する傾
向を有し、各羽目間で、常に同じ閉塞率になろうとする
自己調整機能が働くことを見い出した。
As a result of measuring various types of orifice throttling ratios, we found that by setting the orifice throttling ratio to a cross-sectional ratio of the slats that is approximately the same as the maximum possible blockage rate of the slats, Therefore, a tuyere with a relatively high occlusion rate has a relatively high discharge pressure and the tuyere tends to open, and conversely, a tuyere with a low occlusion rate has a tendency to open. found that the discharge pressure was relatively low and the slats tended to become clogged, and that a self-adjustment function worked to always maintain the same occlusion rate between the slats.

従って、本発明法では、従来指向、模索された如き羽口
間の完全な均等分配を図るためのオリフィスの圧損の設
定とは基本的に異なシ、比較的小さなオリフィス圧損に
よって、冶金反応及び羽口の安定化の為に許容される羽
目間の比較的小さい不均等分配を許容しつつ、しかしな
がら、オリフィス設置による羽目先端の吐出圧力と羽口
閉塞率の関係より、羽口自体に働く各羽目の閉塞率を均
等化しようとする羽口の有する特性をうまく機能化する
ことにある。このような機能を備えることにより、羽目
の最大閉塞率は従来の方法に比して大巾に小さい値に安
定し、例えば、酸素底吹き時で最大加〜30%程度、不
活性ガスの類でも40〜50チ以下と著しく改善される
ことを確認した。つまり、数多くの実炉での測定によれ
ば、溶製する鋼種及びガスの種類によっても異なるが、
本発明によるオリフィスの対羽口断面積に対する絞シ率
は20−50%で完全な効果がある。
Therefore, in the method of the present invention, the metallurgical reaction While allowing a relatively small uneven distribution between the tuyeres for stabilization of the tuyere, however, due to the relationship between the discharge pressure at the tip of the tuyere due to orifice installation and the tuyere blockage rate, each tuyere acting on the tuyere itself The aim is to make the characteristics of the tuyere functional in order to equalize the blockage rate of the tuyeres. By providing such a function, the maximum blockage rate of the lining is stabilized at a much smaller value than that of conventional methods. However, we confirmed that it was significantly improved to below 40 to 50 inches. In other words, according to measurements in numerous actual furnaces, although it varies depending on the type of steel being melted and the type of gas,
The orifice according to the present invention is fully effective when the throttling rate relative to the cross-sectional area of the tuyere is 20-50%.

このように、本発明のオリフィスを適用することにより
、羽目の閉塞率が従来よシも安定化し、かつより小さい
値に改善される効果もあって、例えば、従来のオリアイ
スの考え方である臨界圧力比以上の圧損をオリフィスに
持たせる場合に比して、ガス発生あるいは供給装置の元
圧は比較的僅かの上昇、しかも、極めて簡便なオリフィ
スの設置によって実現し、さらに特殊な場合を除いて、
炉底配管及びそれに到る配管は低圧領域(10KVcf
I以下)と出来、実用上大きな効果がある。
As described above, by applying the orifice of the present invention, the blockage rate of the lining is stabilized and improved to a smaller value than before, and for example, the critical pressure which is the concept of the conventional orifice is improved. Compared to the case where the orifice has a pressure drop greater than the ratio, the source pressure of the gas generation or supply device increases relatively little, and this can be achieved by installing an extremely simple orifice.
The furnace bottom piping and the piping leading to it are in the low pressure area (10KVcf
I or less), which has a great practical effect.

次に、本発明に基づ〈実施例について述べる。Next, examples based on the present invention will be described.

320トン転炉々底に、4本の二重管羽ロ全設け、内管
径25+lIlφの内管よシ合計4,0OON靜/時の
酸素を、外管に2.91 Nd1時のプロパンを流しテ
、オリフィスを用いず、連続操業を行なった。この結果
、123チヤージ目で羽目事故を起こしその後の操業を
中断した。この羽目事故は、1本の羽目が極度に閉塞し
、羽目管のガスの流速が異常に低下して、外管の冷却用
プロパンガスが当羽目より上流側に逆流して、酸素とプ
ロパンの燃焼による配管の赤熱を伴ない、この過程で羽
目の異常溶損が進行し、123チヤージの平均溶損係数
は、5.6Wa/fヤージにも達した。他の羽目につい
ても平均溶損係数は、1、81チヤージより 3.3 
m515−ヤージと大きく、羽口の安全性、寿命の観点
よシ実用上大きな問題であった。
At the bottom of the 320-ton converter, four double-pipe blades were installed, and the inner pipe with an inner pipe diameter of 25+lIlφ was used to supply a total of 4,0 OON/hour of oxygen, and the outer pipe was supplied with 2.91 Nd/hour of propane. Continuous operation was performed without using a sink or orifice. As a result, an accident occurred at the 123rd charge and subsequent operations were suspended. This siding accident occurred when one siding became extremely clogged, causing the gas flow rate in the siding pipe to drop abnormally, causing the cooling propane gas in the outer pipe to flow backwards upstream from the siding, resulting in a mixture of oxygen and propane. The piping became red hot due to combustion, and abnormal erosion of the lining progressed during this process, and the average erosion coefficient of the 123 charge reached 5.6 Wa/f yardage. The average erosion coefficient for other linings is 3.3 from 1.81 charge.
The size of the tuyere was as large as 515 mm, and it was a big problem in terms of safety and lifespan of the tuyere.

次に本発明法に基づき、各羽目に到る枝管に口径21嘔
φのオリフィスを設け、これによる羽口断面積に対する
絞り率を約30%として、上記の実施例と同じ条件で操
業を行なった。この時の平均溶損係数は最小で0.55
−チャージ、最大で080rMn/−tヤージで、羽目
の寿命は1250回と極めて安定した長寿命が達成され
た。またこの開先の実施例で見られた羽目事故、および
、羽口の異常溶損の現象は皆無であった。両実施例の比
較で、顕著な現象の差は、従来法では羽ロヘ送るガスの
圧力が5Kg/cd〜7.5 K〜と大きく変動したの
に対し、本発明による上記の実施例では、7(−〜 7
.5Kg/cr/Iと極めて安定していることである。
Next, based on the method of the present invention, an orifice with a diameter of 21 mm was provided in the branch pipe leading to each tuyere, and the operation was carried out under the same conditions as in the above example, with the reduction ratio of the tuyere cross-sectional area being approximately 30%. I did it. The average erosion coefficient at this time is at least 0.55
- With a charge of up to 080 rMn/-t yardage, an extremely stable and long life of 1250 cycles was achieved. Furthermore, there were no tuyere accidents or abnormal tuyere melting phenomena that were observed in the examples with this groove. Comparing the two examples, there is a noticeable difference in the phenomenon.In the conventional method, the pressure of the gas sent to the blade fluctuated greatly from 5Kg/cd to 7.5K, whereas in the above example according to the present invention, 7 (-~ 7
.. It is extremely stable at 5Kg/cr/I.

このことは、本発明による方法が、羽目先端の閉塞率を
如何に低位に安定させる効果があるかを明らかに示すも
のである。
This clearly shows how effective the method according to the invention is in stabilizing the blockage rate of the slat tips to a low level.

上記実施例は、主として酸素を底吹きする二重管羽目を
用いた場合について述べたが、本発明の実施態様はこれ
に限定されるものではなく、種々のガスを吹き込む多重
管羽目、単管羽口、極小管よシ成る集合羽目、あるいは
レンガ間の目地もしくはレンガとケーシング間の間隙な
どを通じて、種々のガスを溶鋼中に吹き込む場合にも適
用される。
Although the above embodiment mainly describes the case of using a double pipe siding that blows oxygen from the bottom, the embodiments of the present invention are not limited to this, and include a multi-pipe siding that blows various gases, a single pipe siding that blows various gases, etc. It is also applied when various gases are injected into molten steel through tuyeres, clusters of microtubes, joints between bricks, or gaps between bricks and casing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオリフィス無時のガス圧力と空気流量の関係(
羽口径φ22)を示すグラフ、第2図はオリフィス有時
のガス圧力と空気流量の関係(羽ロ径φ22.オリフィ
ス径φ19)を示すグラフ、第3図は羽目閉塞率と実績
流量/理論流量の関係を示すグラフ、第4図は羽目閉塞
率変動に対するオリフィス効果(羽ロ径φn、オリアイ
ス径φ184)を説明するためのグラフである。 特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名)
Figure 1 shows the relationship between gas pressure and air flow rate when the orifice is not in use (
Fig. 2 is a graph showing the relationship between gas pressure and air flow rate when the orifice is present (blade diameter φ22, orifice diameter φ19), Fig. 3 is the graph showing the tuyere blockage rate and actual flow rate/theoretical flow rate. FIG. 4 is a graph for explaining the orifice effect (the blade diameter φn, the orifice diameter φ184) on the fluctuation of the lining blockage rate. Patent applicant Representative patent attorney Tomoyuki Yafuki (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 鋼浴4面下に設けた複数個の羽口を介して該鋼浴中にガ
スを底吹きするにあたり、該底吹きガスを、各羽目に連
通ずる共通管路を用いて炉側近傍まで誘導したのち、前
記共通管路から前記各羽目にそれぞれ連通する各分岐管
路に設けて成る、羽口断面積に対する絞υ率が加〜50
%のガス流路開孔部となるガス流路断面規制装置を介し
て各羽目に分配供給することを特徴とする底吹きガスの
分配方法。
When bottom-blowing gas into the steel bath through multiple tuyeres provided under the four sides of the steel bath, the bottom-blowing gas is guided to the vicinity of the furnace side using a common pipe line that communicates with each panel. After that, the reduction ratio with respect to the cross-sectional area of the tuyere provided in each of the branch pipes communicating from the common pipe to each of the tuyeres is increased by ~50.
A method for distributing bottom-blown gas, characterized in that it is distributed and supplied to each panel through a gas flow path cross-section regulating device that serves as a gas flow path opening.
JP1175282A 1982-01-29 1982-01-29 Distributing method for bottom blowing gas Granted JPS58130211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175282A JPS58130211A (en) 1982-01-29 1982-01-29 Distributing method for bottom blowing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175282A JPS58130211A (en) 1982-01-29 1982-01-29 Distributing method for bottom blowing gas

Publications (2)

Publication Number Publication Date
JPS58130211A true JPS58130211A (en) 1983-08-03
JPS6156291B2 JPS6156291B2 (en) 1986-12-02

Family

ID=11786728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175282A Granted JPS58130211A (en) 1982-01-29 1982-01-29 Distributing method for bottom blowing gas

Country Status (1)

Country Link
JP (1) JPS58130211A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182284A (en) * 1987-12-24 1989-07-20 Marunaga Kk Container

Also Published As

Publication number Publication date
JPS6156291B2 (en) 1986-12-02

Similar Documents

Publication Publication Date Title
JPS58100615A (en) Double pipe tuyere for bottom blowing
JP7007431B2 (en) Tub for basic oxygen converter
WO1999023262A1 (en) Method of operating blast furnace
US3970446A (en) Method of refining an iron base melt
JP2007031758A (en) Method for operating blast furnace while blowing pulverized coal
JPS58130211A (en) Distributing method for bottom blowing gas
WO2006098129A1 (en) Gas blower of coke dry fire extinguishing facility and its operating method
CN109628670B (en) Air supply recovery method
JP2010159444A (en) Apparatus for preventing backflow in metallurgical lance having burner function
EP0059459A1 (en) Method of switching bottom-blown gases and apparatus therefor
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JP5547799B2 (en) Hot gas feed method to shaft furnace
CN111328349B (en) Injection of process fluids into a shaft furnace with injector condition testing
JP2001073014A (en) Lowered stock level operation in blast furnace
JP2584382B2 (en) Apparatus and method for monitoring abnormal erosion of triple tube tuyere
JPS6136051B2 (en)
CN218435820U (en) Blast furnace humidification blower
JP2004115832A (en) Molten metal refining furnace and its operating method
CN116300677A (en) Device for uniformly regulating local oxygen-enriched furnace condition of blast furnace tuyere and application method thereof
JPS5933162B2 (en) Blast furnace operating method
JPS58221207A (en) Detection of abnormality in transport piping for blowing powder fuel into blast furnace
JPS5887210A (en) Operating method for blast furnace
JPS5910968B2 (en) Blast furnace operating method
JPS5932582Y2 (en) Gas blowing nozzle for below the surface of the molten metal bath
JPS6293304A (en) Method for operating blast furnace