JPS58130103A - Supplying method of reducing agent to reducing tower - Google Patents

Supplying method of reducing agent to reducing tower

Info

Publication number
JPS58130103A
JPS58130103A JP57010145A JP1014582A JPS58130103A JP S58130103 A JPS58130103 A JP S58130103A JP 57010145 A JP57010145 A JP 57010145A JP 1014582 A JP1014582 A JP 1014582A JP S58130103 A JPS58130103 A JP S58130103A
Authority
JP
Japan
Prior art keywords
tower
reducing agent
reducing
gas
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57010145A
Other languages
Japanese (ja)
Inventor
Shigeru Nozawa
野沢 滋
Tsukasa Nishimura
西村 士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57010145A priority Critical patent/JPS58130103A/en
Publication of JPS58130103A publication Critical patent/JPS58130103A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To optimize the supply of reducing agents by controlling the rate of supplying of the reducing agents by the product of the flow rate of the SO2- contg. gas to be supplied into a reducing tower and the concn. of SO2 therein and the product of the concn. of O2 in the gas to be supplied to the reducing tower and the quantity of the air to be added. CONSTITUTION:An SO2-contg. gas is fed through a main pipeline 8 into a reducing tower 2 and is discharged as H2S into a main pipeline 9. The data calculated by reaction formulas is beforehand put into a control box 12, and the concn. of SO2 in the gas to be supplied into the tower 2 is measured with a measuring instrument 19 and is fed to the box 12. The concn. of O2 is measured with a measuring instrument 16 and is fed to the box 12. The amt. of the SO2 to be supplied is known from the product of the measured value of a gas flowmeter 8b and the concn. of SO2 and for the air to be added, the amt. of the O2 to be supplied is determined by the product of the measured value of a flowmeter 15 and the concn. of O2. Thus, the rate of supplying the reducing agents is determined, and the rate of discharging the reducing agents from a hopper 20 is determined, whereby the rate of supply of the reducing agents with good efficiency into the tower 2 is determined.

Description

【発明の詳細な説明】 この発明は硫黄回収プラントを構成する装置の一つであ
る還元塔へ還元剤を好適に供給し還元剤の節約をはかる
還元剤供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reducing agent supply method for suitably supplying a reducing agent to a reduction tower, which is one of the devices constituting a sulfur recovery plant, to save the reducing agent.

燃焼排ガス中の硫黄分を除去する方法の一つとして排ガ
ス中の硫黄分を吸着剤により吸着除去する方法があるが
、この方法を実施する場合吸着した硫黄分を脱離し吸着
剤を再生すると共に、脱離した硫黄分を含むガスから硫
黄単体(S)を分離して回収して経済性を高めることが
一般的に行われている。
One method for removing sulfur from combustion exhaust gas is to adsorb and remove the sulfur from flue gas using an adsorbent.When implementing this method, the adsorbed sulfur is desorbed and the adsorbent is regenerated. It is common practice to separate and recover elemental sulfur (S) from the desorbed sulfur-containing gas to improve economic efficiency.

第1図は従来の乾式による硫黄分の脱離および回収方法
を示す。図において脱離した硫黄分はS02としてこれ
を含有するガスと共に還元塔2に流入する。還元塔2に
おいては塔内に供給S02の一部は次式の如く単体のS
となる。
FIG. 1 shows a conventional dry method for removing and recovering sulfur. In the figure, the desorbed sulfur component flows into the reduction tower 2 together with the gas containing it as S02. In the reduction tower 2, a part of the S02 supplied into the tower is converted into single S as shown in the following equation.
becomes.

C+802−−8+002      ・・・(1)し
かし大部分の802は式(2)t (3)に示す過程を
経て還元塔後流に配置した反応器においてクラウス反応
を行うべくH2Sとなる。
C+802--8+002 (1) However, most of 802 undergoes the process shown in formula (2)t (3) and becomes H2S in order to undergo a Claus reaction in a reactor placed downstream of the reduction tower.

a + H20→H2+ Co       ・・・(
2)H2,+ SO2→H2S+ 02    ・・・
(3)還元塔2を出た反応ガスは集塵器3において含有
するダストを除去し、ダスト除去を完了したガスは凝縮
器4において所定の温度まで冷却され、前記ガス中のS
は析出し回収される。Sが回収された反応ガスはさらに
クラウス反応器5に流入し、次式(4)および(5)に
より単体Sを生じSの回収を行う。
a + H20→H2+ Co...(
2) H2,+ SO2 → H2S+ 02...
(3) The reaction gas that has exited the reduction tower 2 undergoes removal of dust in a precipitator 3, and the gas from which dust has been removed is cooled to a predetermined temperature in a condenser 4.
is precipitated and recovered. The reaction gas from which S has been recovered further flows into the Claus reactor 5, where a simple substance S is produced according to the following equations (4) and (5), and S is recovered.

H2S + 1−202−−u 2 o + s O2
・・・(4)2H2S +5o2−4−38 + 2H
20・(5)この場合・1、式(4)の如く還元塔2か
ら供給されたH2 Sから一且SO2を生成し、さらに
このS O2と未反応のH2Sを式(5)の如く反応さ
せてSを回収するものであるため反応の状態によっては
SO2が不足し、式(5)によるSの回収が十分に行な
われない。ここで式(4)の反応はH2Sの一部を空気
供給管5aにより供給した空気(02)と化合させて8
02とするものであり、Sの回収が不十分となるのはS
O2発生量が不安定であることによる。すなわち式(5
)における適正なモル比、つまりH,2Sが2に対して
SO2が1の比を保持し得ないことに起因する。
H2S + 1-202--u 2 o + s O2
...(4) 2H2S +5o2-4-38 + 2H
20. (5) In this case, 1. SO2 is generated from the H2S supplied from the reduction tower 2 as shown in formula (4), and then this SO2 and unreacted H2S are reacted as shown in formula (5). Since S is recovered by the reaction, SO2 may be insufficient depending on the state of the reaction, and S may not be recovered sufficiently according to equation (5). Here, the reaction of formula (4) is performed by combining a part of H2S with air (02) supplied through the air supply pipe 5a.
02, and the S recovery is insufficient.
This is because the amount of O2 generated is unstable. In other words, the formula (5
This is due to the fact that it is not possible to maintain an appropriate molar ratio in ), that is, a ratio of 1 for SO2 to 2 for H, 2S.

このため発明者等はさきに第1図に一点鎖線で示す還元
塔をバイパスする管路7を設け、還元塔下流のガス中の
SO2とH2Sのモル比を1対2に調節し、クラウス反
応を適正に行わせるようにした発明を提案しく特願昭5
6−91610号)このような問題を解決した。
For this reason, the inventors first installed a pipe 7 that bypasses the reduction tower shown by the dashed line in FIG. A patent application was filed in 1973 requesting an invention for properly carrying out the
No. 6-91610) This problem was solved.

この発明はこの硫黄回収プラントのさらに効率良い運転
のため消耗材ともなる酸化剤の使用量を適正にし運転費
用の低減をはかる還元剤供給方法を提案することを目的
とする。
The purpose of this invention is to propose a method for supplying a reducing agent that reduces operating costs by using an appropriate amount of an oxidizing agent, which also serves as a consumable material, in order to operate the sulfur recovery plant more efficiently.

要するにこの発明は硫黄回収装置の還元塔へ還元剤を供
給する方法において、還元塔へ供給するSO2含有ガス
の流量とその802の濃度の積と還元塔へ供給されるガ
ス中の0(度と添加空気量の積とをそれぞれ信号どして
記憶と指令信号を出す制御箱に送り還元塔へ供給する還
元剤の量を制御する還元塔への還元剤供給方法であるこ
とを特徴とする。
In short, this invention provides a method for supplying a reducing agent to a reduction tower of a sulfur recovery device. This method is characterized in that the product of the amount of added air is sent as a signal to a control box which stores and issues a command signal to control the amount of reducing agent supplied to the reducing tower.

以下この発明を添付する図面により説明する。The present invention will be explained below with reference to the accompanying drawings.

第2図はこの発明の実施にかかる還元塔とこれに接続す
る管路の機器の制御系統を示す図面である。符号8は脱
離塔1から送出するSO2成分含有ガスの主管路である
。この主管路には802ガスのガス分析器19を設けて
おく。この主管路8より分岐点10でバイパス管路7は
分岐し還元塔2から送出するガスの主管路9に接続する
e主管路、siP、らバイパス管路7が分岐する分岐点
lOの下流の主管路8にはガス流量制御弁8a’とガス
流量計8bとが設けられ、バイパス管路7にはバイパス
ガス流量制御弁7aとガス流量計7bが設けられる。こ
の2つの流量制御弁により主管路9に送出されるH2 
Sとバイパス管路から供給されるS O2含有ガスとは
主管路−9でH2Sが2に対しSO2は1の比率で混合
し好適なSの分離及びクラウス反応器におけるS析出反
応をさせるようにすることができる。
FIG. 2 is a drawing showing a control system for equipment of a reduction tower and pipes connected thereto according to the present invention. Reference numeral 8 is a main pipe line for the SO2 component-containing gas sent out from the desorption tower 1. A gas analyzer 19 for 802 gas is provided in this main pipe. The bypass line 7 branches from this main line 8 at a branch point 10 and connects to the main line 9 for the gas sent out from the reduction tower 2. The main line 8 is provided with a gas flow control valve 8a' and a gas flow meter 8b, and the bypass line 7 is provided with a bypass gas flow control valve 7a and a gas flow meter 7b. H2 sent to the main pipe line 9 by these two flow control valves
S and the SO2-containing gas supplied from the bypass pipe are mixed in the main pipe 9 at a ratio of 2 parts H2S to 1 part SO2, so that a suitable separation of S and S precipitation reaction in the Claus reactor can take place. can do.

炭素(0)分を主成分とする還元剤は還元剤ホッパ20
からロータリフィーダ等の供給量制御装置21により必
要とする量が還元塔内に供給される。
The reducing agent whose main component is carbon (0) is contained in the reducing agent hopper 20.
The required amount is supplied into the reduction tower by a supply amount control device 21 such as a rotary feeder.

また塔内の還元剤のレベルは上限レベル計11a、下限
レベル計11bの信号がハイロウリミッタ(Hlgh 
Low Lim1ttJ llcを経由し記憶と制御指
令を出す制御箱12に送られており、ロータリフィーダ
21,22を制御する還元剤の抜き出しは還元塔2の底
部に取り付けされたロータリフィーダ等の抜き出し量制
御装置22によりされ、抜き出した還元剤は微粉の分離
、冷却をされたのち焼却装置で焼却される。
The level of the reducing agent in the tower is determined by the signals from the upper limit level meter 11a and the lower limit level meter 11b.
The reducing agent is sent via the Low Lim1ttJ LLC to the control box 12 which issues storage and control commands, and the extraction of the reducing agent that controls the rotary feeders 21 and 22 is controlled by the extraction amount of the rotary feeder etc. attached to the bottom of the reduction tower 2. The reducing agent extracted by the device 22 is separated into fine powder, cooled, and then incinerated in the incinerator.

管路8tこはガス流量制御弁8赳流量計8bとが設けら
れ、この流量計8bの下流に添加空気供給管13が接続
し、還元塔2内の温度の制御及U (a 十〇2→C0
2)反応に関与する。この添加空気供給管13には空気
流量制御弁14.及び空気流量計15が設けられ空気流
量信号は制御箱12に送られる。
The pipe line 8t is provided with a gas flow rate control valve 8 and a flowmeter 8b, and an additional air supply pipe 13 is connected downstream of the flowmeter 8b to control the temperature inside the reduction tower 2. →C0
2) Involved in the reaction. This additional air supply pipe 13 has an air flow control valve 14. and an air flow meter 15 are provided, and an air flow signal is sent to the control box 12.

この添加空気供給管13と主管路8の接続点の下流に0
2計測器16が設けられそのo2量信号は制御箱12に
送られる。
0 downstream of the connection point between this additional air supply pipe 13 and the main pipe 8.
Two measuring instruments 16 are provided, and their o2 quantity signals are sent to the control box 12.

還元塔2より送出するガスの主管路9で還元塔2の出口
ノズル近傍にガス分析器17を設け、002濃度信号は
制御箱12に送られる。
A gas analyzer 17 is provided near the outlet nozzle of the reduction tower 2 in the main pipe line 9 for the gas sent out from the reduction tower 2, and the 002 concentration signal is sent to the control box 12.

還元塔2の塔内温度は温度計18で計測されその温度信
号は制御箱12に送られる。
The temperature inside the reduction column 2 is measured by a thermometer 18, and the temperature signal is sent to the control box 12.

ここで還元塔内における還元剤の主成分たるCとS02
との反応と、S単体を析出する反応とを考察してみる。
Here, C and S02, which are the main components of the reducing agent in the reduction tower,
Let us consider the reaction with S and the reaction that precipitates simple S.

0−8.complex +E302 002+Sノg
)   −(8)(活性点) 実験によればCの利用率が低い場合、即ちso2に対し
てCが多い場合には式(7)までの反応で終り還元剤を
O−S cnmpl鯨の状態で排出することとなる。従
ってこの廃還元剤をボイラ等で焼却すると802が再発
生し、またその処理を必要とするという不都合を生ずる
。Cの利用率は少くとも一定値以上でなければならぬし
、一方で必要以上のCの供給もまたso2の再発生で固
るのでつつしまわばならぬ。
0-8. complex +E302 002+Snog
) - (8) (Active point) According to experiments, when the utilization rate of C is low, that is, when there is a large amount of C relative to so2, the reaction up to equation (7) is completed, and the reducing agent is O-S cnmpl of the whale. It will be discharged in this condition. Therefore, if this waste reducing agent is incinerated in a boiler or the like, 802 will be regenerated and it will be necessary to dispose of it, which is an inconvenience. The utilization rate of C must be at least above a certain value, and on the other hand, the supply of C in excess of what is necessary will also harden due to the re-occurrence of SO2, so it must be eliminated.

一方還元塔内で生ずる他の反応としては、下記のものが
あり、Cの消費量は計算することができる。
On the other hand, other reactions occurring within the reduction tower include the following, and the amount of C consumed can be calculated.

C+02−−−CO2・・・(9) (9)の反応は添加する空気量により算出することがで
きる。
C+02--CO2...(9) The reaction in (9) can be calculated based on the amount of air added.

0−1− H2O−m−00十H2・・・(10)この
反応は水性ガス反応である。H2O量は吸着塔(図示せ
ず。ボイラ排ガス等の含有するso2ガスの処理をする
塔)内で生成されるH 2 S O4濃度によりS O
2量と関係をつけられるものであり、(lO)式の反応
は還元塔2内の温度でその反応率が決定できる。
0-1- H2O-m-001H2... (10) This reaction is a water gas reaction. The amount of H2O is determined by the concentration of H2SO4 generated in the adsorption tower (not shown; a tower that processes SO2 gas contained in boiler exhaust gas, etc.).
The reaction rate of the reaction of formula (lO) can be determined by the temperature inside the reduction column 2.

パイロットプラントで計測した結果の一例を下記する。An example of the results measured at the pilot plant is shown below.

例:還元塔入口ガス温度 130°C 水分7%のときH2SO4濃度は80%である。(HS
o  ・1.36H20)従って   4 H2O量は802量の2.36倍となる。
Example: When the gas temperature at the inlet of the reduction tower is 130°C and the moisture content is 7%, the H2SO4 concentration is 80%. (HS
o ・1.36H20) Therefore, the amount of 4 H2O is 2.36 times the amount of 802.

以上説明したことより還元塔2における還元剤の消費量
は(6)式より明らかなごとく還元塔入口のsog量に
より変化するものであり、また(9)式y  (’o)
式より明らかなごと<o2量に依存するものである。従
って運転条件を考慮し化学反、応式で算出したデータを
制御箱12に入れておけば、還元塔へ供給するガス中の
so2濃度をガス計測器19で計測して信号として制御
箱12に送りまた02計測器16で04度を計測しその
信号を制 4・御箱12に送っておけば、ガス流量計8
bとS O2濃度との積により供給S02量がわがり、
がっ添加空気は流量計15と04度の積により供給o2
量が確定する。これにより還元剤の供給量が決定し、従
って還元剤の抜き出し量を決定することができる。
From the above explanation, the amount of reducing agent consumed in the reducing tower 2 changes depending on the sog amount at the inlet of the reducing tower, as is clear from equation (6), and equation (9) y ('o)
As is clear from the formula, it depends on the amount of <o2. Therefore, if the data calculated by the chemical reaction formula considering the operating conditions is stored in the control box 12, the SO2 concentration in the gas supplied to the reduction tower is measured by the gas measuring device 19 and sent as a signal to the control box 12. If you measure 04 degrees with the 02 measuring device 16 and send the signal to the control box 12, the gas flow meter 8
The amount of S02 supplied decreases by the product of b and the S O2 concentration,
Added air is supplied by the product of flowmeter 15 and 04 degrees.
The amount is determined. This determines the amount of reducing agent supplied, and therefore the amount of reducing agent extracted.

これに加えて還元塔2内の温度を温度計測器18で計測
して温度信号を制御箱12に送り、還元塔2の出口の主
管路9中のao2濃度を計測するガス計測器17の信号
を制御箱12に送りそれぞれ補正用の信号として使用す
るときはより望ましい還元剤の消費状況を把握し、適正
な還元剤の量を還元塔に供給することができる。
In addition to this, the temperature inside the reduction tower 2 is measured by the temperature measuring device 18 and a temperature signal is sent to the control box 12, and the signal from the gas measuring device 17 which measures the ao2 concentration in the main pipe line 9 at the outlet of the reduction tower 2 is sent. When the signals are sent to the control box 12 and used as correction signals, a more desirable reducing agent consumption situation can be grasped, and an appropriate amount of reducing agent can be supplied to the reduction tower.

この発明を実施することにより還元剤の消費の程度を把
握することができ最も効率良い還元剤の還元塔への供給
速度を定めることができ、硫黄回収プラントの運転に際
し還元剤について無駄な消費がなく、プラント運転効率
を上げることができる。
By implementing this invention, it is possible to grasp the degree of consumption of the reducing agent and determine the most efficient supply rate of the reducing agent to the reduction tower, thereby avoiding wasteful consumption of the reducing agent during operation of the sulfur recovery plant. plant operation efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乾式硫黄回収装置の管系統図、第2図はこの発
明の実施にかかる還元塔特に還元剤供給制御をする装置
の配線図を示す図面である。 1・・・・・・脱離塔 2・・・・・・還元塔 8、8’、  9・・・・・・主管路 7・・・・・・バイパス管路 8 a’・・・・・・ガス流量制御弁 11a  ・・・・・・上限レベル計 11b  ・・・・・・下限レベル計 12・・・・・・制御箱 13・・・・・・添加空気供給管 16・・・・・・O1測器 17・・・・・・ガス分析器(co2)18・・・・・
・温度計測器 19・・・・・・ガス分析器(S02)20・・・・・
・還元剤ホッパ
FIG. 1 is a pipe system diagram of a dry sulfur recovery apparatus, and FIG. 2 is a diagram showing a wiring diagram of a reducing tower, particularly a device for controlling supply of reducing agent, according to the present invention. 1... Desorption tower 2... Reduction tower 8, 8', 9... Main pipe line 7... Bypass pipe line 8 a'... ...Gas flow control valve 11a ...Upper limit level meter 11b ...Lower limit level meter 12 ...Control box 13 ...Additional air supply pipe 16... ...O1 measuring instrument 17...Gas analyzer (CO2) 18...
・Temperature measuring device 19... Gas analyzer (S02) 20...
・Reducing agent hopper

Claims (1)

【特許請求の範囲】 1、 硫黄回収装置の還元塔へ還元剤を供給する  3
゜方・法において、還元塔へ供給するSO2含有ガスの
流量とそのso2濃度の積と還元塔へ供給されるガス中
の0声度と添加空気量の積とをそれぞれ信号°として記
憶と指令信号を出す制御箱に送り還元塔への還元剤供給
量を制御することを特徴とする還元塔への還元剤供給方
法。 2、還元塔から抜き出す還元剤とほぼ同量の還元剤を還
元塔へ供給する装置を設けて還元剤を抜き出し、かつ還
元塔内還元剤レベルを補正信号として制御箱に送ること
を特徴とする特許請求の範囲第1項記載の還元塔への還
元剤供給方法。 3、還元塔内の温度を計測する温度計測器の温ス計測器
からのCo2濃度信号とを補正用の信号として制御箱に
送ることを特徴とする特許請求の範囲第1項または第2
項記載の還元塔への還元剤供給方法。
[Claims] 1. Supplying a reducing agent to a reduction tower of a sulfur recovery device 3.
In the ゜method, the product of the flow rate of the SO2-containing gas supplied to the reduction tower and its SO2 concentration, and the product of the zero-voice degree in the gas supplied to the reduction tower and the amount of added air are stored and commanded as signals respectively. A method for supplying reducing agent to a reducing tower, characterized in that the amount of reducing agent supplied to the reducing tower is controlled by a control box that sends a signal. 2. A device is provided to supply almost the same amount of reducing agent to the reducing tower as the reducing agent extracted from the reducing tower, the reducing agent is extracted, and the reducing agent level in the reducing tower is sent as a correction signal to the control box. A method for supplying a reducing agent to a reduction tower according to claim 1. 3. Claims 1 or 2, characterized in that the Co2 concentration signal from the temperature measuring device that measures the temperature inside the reduction tower is sent to the control box as a correction signal.
A method for supplying a reducing agent to a reduction tower as described in Section 1.
JP57010145A 1982-01-27 1982-01-27 Supplying method of reducing agent to reducing tower Pending JPS58130103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010145A JPS58130103A (en) 1982-01-27 1982-01-27 Supplying method of reducing agent to reducing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010145A JPS58130103A (en) 1982-01-27 1982-01-27 Supplying method of reducing agent to reducing tower

Publications (1)

Publication Number Publication Date
JPS58130103A true JPS58130103A (en) 1983-08-03

Family

ID=11742112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010145A Pending JPS58130103A (en) 1982-01-27 1982-01-27 Supplying method of reducing agent to reducing tower

Country Status (1)

Country Link
JP (1) JPS58130103A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595604A (en) * 1979-01-17 1980-07-21 Sumitomo Heavy Ind Ltd Reducing method for sulfur dioxide with coal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595604A (en) * 1979-01-17 1980-07-21 Sumitomo Heavy Ind Ltd Reducing method for sulfur dioxide with coal

Similar Documents

Publication Publication Date Title
CN107456857B (en) Automatic ammonia adding system and method applied to ammonia desulphurization device
WO2018190886A1 (en) Systems and processes for removing hydrogen sulfide from gas streams
PL166828B1 (en) Method of removing hydrogen sulfide and/or carbon disulfide from flue gases
SA517382187B1 (en) Method and Device for The Desulphurisation of a Gas Flow
GB2061242A (en) Method and apparatus for converting sulphur dioxide in a gas to sulphur
JP3831435B2 (en) Gas purification equipment
JPS58130103A (en) Supplying method of reducing agent to reducing tower
JPS5876136A (en) Drain and sample extracting valve assembly for fluidized bed type reactor
TW300169B (en)
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
US6083472A (en) Method for continuously producing thiosulfate ions
JPS62225227A (en) Method for controlling operation of wet stack-gas desulfurization facility
JP4658350B2 (en) Method and apparatus for reducing sulfur compounds
US10449487B2 (en) Mercury control in a seawater flue gas desulfurization system
PT709126E (en) CONTINUING PROCESS FOR THE SIMULTANEOUS HARVEST AND PRECIPITATION OF MERCURY IN GAS CONTAINING IT
CN107497270A (en) The method of ammonia calcium combined desulfurization
JP3700073B2 (en) Method and apparatus for burning hydrogen sulfide-containing gas
JPH05117669A (en) Apparatus for purifying high-temperature reducing gas
CN214457808U (en) Integrated acid-base method combined biogas biological desulfurization device
JPS5858133A (en) Dry desulfurization apparatus
JPS59121103A (en) Method and apparatus for reducing so2 gas
JP3646885B2 (en) Removal of hydrogen sulfide from gas streams
JPH06293888A (en) Method for recovering sulfur from plant for gasifying coal and device therefor
JPS58130102A (en) Operating method of sulfur recovery equipment
JPS59136120A (en) Control device of sulfur oxide adsorption tower