JPS5812947A - Water controller - Google Patents

Water controller

Info

Publication number
JPS5812947A
JPS5812947A JP11183581A JP11183581A JPS5812947A JP S5812947 A JPS5812947 A JP S5812947A JP 11183581 A JP11183581 A JP 11183581A JP 11183581 A JP11183581 A JP 11183581A JP S5812947 A JPS5812947 A JP S5812947A
Authority
JP
Japan
Prior art keywords
differential pressure
water
chamber
valve
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11183581A
Other languages
Japanese (ja)
Other versions
JPS6260623B2 (en
Inventor
Yoshio Yamamoto
山本 芳雄
Yukio Nagaoka
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11183581A priority Critical patent/JPS5812947A/en
Publication of JPS5812947A publication Critical patent/JPS5812947A/en
Publication of JPS6260623B2 publication Critical patent/JPS6260623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0106Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To miniaturize a water quantity variable operating part and reduce the manipulation strength by providing an adjusting valve whose opening degree is changed by the pressure difference between both chambers, in a first communication path of the communication paths connecting a primary chamber and a secondary chamber to each other which are partitioned by a diaphragm. CONSTITUTION:The primary chamber 5 and the secondary chamber 14 which are partitioned by a diaphragm 6 are provided, and water passes from an inlet path 2 through a valve chest 3 and reaches the primary chamber 5 via a control hole 4 having a valve 7. Further, water passes from the primary chamber 5 through a differential pressure generating part 11 consisting of a differential pressure hole 8, a differential pressure valve 9 and a differential pressure spring 10 and reaches the secondary chamber 14 via an outlet path 12 and a secondary communication path 17 including an adjusting valve 18. On the other hand, the primary chamber 5 and the secondary chamber 14 are communicated with each other by means of the secondary communication path 17. By adjusting an adjusting valve 18 by means of an adjusting shaft 20, the quantity of water is set.

Description

【発明の詳細な説明】 本発明はガスや石油を使う瞬間湯沸器の水量検出や水量
制御の目的で用いられる水制御装置の水量可変手段に関
するものである。通水量とある一定の関係にある圧力差
をダイヤフラムに作用せしめ、このダイヤフラムと連動
する弁によつ、て供給水圧の変化があっても水量を安定
させる水ガバナは良く知られている。そして、水量値を
変化させる場合は、通水路中に設けられた絞シ弁部の細
度を変えることによって水量と差圧の関係を変え、水ガ
バナが安定する水量値を変えている。この手段で水量値
を変える場合には、通水路中に設ける絞り弁は通水抵抗
の都合上あまり小径にすることが難しく、全体としての
小型化や操作力の低減化には限界があった。又、水ガバ
ナのダイヤフラム動作を検出して通水検知をする場合に
、検知可能な最少水量値が前記、絞り弁の開度によって
変化するという問題がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water amount variable means for a water control device used for the purpose of detecting and controlling the amount of water in instantaneous water heaters that use gas or oil. Water governors are well known in which a pressure difference that has a certain relationship with the amount of water flowing is applied to a diaphragm, and a valve that operates in conjunction with the diaphragm stabilizes the amount of water even if the supplied water pressure changes. When changing the water amount value, the relationship between the water amount and the differential pressure is changed by changing the fineness of the throttle valve provided in the water passage, and the water amount value at which the water governor is stabilized is changed. When changing the water flow value using this method, it is difficult to make the diameter of the throttle valve installed in the water passageway too small due to water flow resistance, and there is a limit to overall miniaturization and reduction of operating force. . Further, when water flow is detected by detecting the operation of the diaphragm of the water governor, there is a problem in that the detectable minimum water amount value changes depending on the opening degree of the throttle valve.

本発明では水量可変手段としてダイヤフラム差圧を間接
的に変化せしめると共に、水量と差圧の関係をある水量
値以上の領域のみ変化する構成であり、水級可変操作部
の小型化と操作力の低減化及び検知可能水量の安定化を
目的としたものである。
In the present invention, the diaphragm differential pressure is indirectly changed as the water amount variable means, and the relationship between the water amount and the differential pressure is changed only in the region above a certain water amount value, which allows for miniaturization of the water class variable operation section and reduction in operating force. The purpose is to reduce the amount of water that can be detected and stabilize the amount of water that can be detected.

以下、図面に示した実施例に基づいて詳しく説明を行う
。第1図は、本発明の一実施例を示す構成断面図で、こ
こで、1が本水制御装置で、水は流入路2から弁室3に
入り制御孔4を経て一火室6に到る。−火室6の上部は
ダイヤフラム6があってこのダイヤフラム6と弁7は連
動状態に支持されている。弁7は制御孔40通水面積を
可変する役割を果している。次に、水は一火室6から差
圧孔8と差圧弁9と差圧スプリング1oで構成さる差圧
発生部11を通過して流出路12から図示していない熱
交換器へ到る。差圧弁9は差圧スプリング10によって
差圧孔8を閉じる方向に附勢されておシ、穴13を通る
水の圧力差による力が差圧スプリング1oの力を超える
と差圧孔8での通過面積が増大するよう動作をする。
Hereinafter, a detailed explanation will be given based on the embodiment shown in the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the present invention, in which 1 is a main water control device, and water enters a valve chamber 3 from an inflow path 2, passes through a control hole 4, and enters a fire chamber 6. Arrive. - In the upper part of the firebox 6 is a diaphragm 6, and the diaphragm 6 and the valve 7 are supported in an interlocking manner. The valve 7 plays a role of varying the water flow area of the control hole 40. Next, water passes from the first fire chamber 6 through a differential pressure generating section 11 composed of a differential pressure hole 8, a differential pressure valve 9, and a differential pressure spring 1o, and reaches a heat exchanger (not shown) through an outflow path 12. The differential pressure valve 9 is biased in the direction of closing the differential pressure hole 8 by the differential pressure spring 10, and when the force due to the pressure difference of the water passing through the hole 13 exceeds the force of the differential pressure spring 1o, the differential pressure at the differential pressure hole 8 closes. Operates to increase the passing area.

ダイヤフラム6の背面は二次室14になっており、ダイ
ヤフラムスプリング15を収納して常時−法案5側へ押
圧附勢している。16は一火室5と二次室14を結ぶ第
一連通路であり、一方、17は二次室14と差圧発生部
11とを結ぶ第二連通路である。そして、第一連通路1
6の途中には調節弁18が挿入されており、この調節弁
18を二゛火室14側から一火室5側へ抑圧附勢するス
プリング19が作用していてそのスプリング19の他端
は調節軸2oで支持されている。すなわ・ち、−火室6
の圧力が、二次室14の圧力よりもスプリング19の力
相当分だけ上回ってはじめて調節弁18が開き第一連通
路16が開くことになる。
The back side of the diaphragm 6 is a secondary chamber 14 which houses a diaphragm spring 15 and is always pressed toward the bill 5 side. 16 is a first communication passage connecting the primary fire chamber 5 and the secondary chamber 14, while 17 is a second communication passage connecting the secondary chamber 14 and the differential pressure generating section 11. And the first series of passages 1
A control valve 18 is inserted in the middle of 6, and a spring 19 is acting to suppress and bias this control valve 18 from the second firebox 14 side to the first firebox 5 side, and the other end of the spring 19 is It is supported by an adjustment shaft 2o. Sunawa Chi--Firebox 6
The control valve 18 opens and the first communication passage 16 opens only when the pressure in the secondary chamber 14 exceeds the pressure in the secondary chamber 14 by an amount equivalent to the force of the spring 19.

調節軸2oは手で回しても良いが、モータ21、減速ギ
ア22で構成される駆動機構によって回転する方法もあ
る。又ダイヤフラム6の上下動作はピン23によって外
部へ取出し、検出スイッチ241″#36・“′65・
l’E”V75”°0“6   !。
The adjustment shaft 2o may be rotated by hand, but there is also a method in which it is rotated by a drive mechanism composed of a motor 21 and a reduction gear 22. Also, the vertical movement of the diaphragm 6 is taken out to the outside by the pin 23, and the detection switch 241''#36・``'65・
l'E"V75"°0"6!.

がある値以上になり、ダイヤ7ラムスグリング16に打
勝って設定距離だけ移動した時にスイッチ24− を切
換え、水が流れたことを検出するものである。
When the value exceeds a certain value and the diamond 7 ram ring 16 has been overcome and the water has moved a set distance, the switch 24- is switched to detect that water has flowed.

次に、第2図の水量−差圧曲線によって本発明の詳細な
説明する。この図は通水量とダイヤフラム6に作用する
一火室5と二次室14の圧力差との関係を示したもので
ある。ここで、破線で示した曲線Aは差圧発生部11の
作用によって発生する正味の圧力差である。前述したよ
うに、少水量時は穴13で決まる差圧を生じているが、
その差圧は差圧弁9を押し開く方向に作用するので、あ
る水量以上では差圧の増加傾向が鈍くなる。次に、調節
軸2oを締め込んでスプリング19の設定荷重を最大に
すると、調節弁18は開くことなく、第一連通路16が
無い場合と等価になって曲線Aに添った8曲線を示すこ
とになる。ところで、ダイヤフラム6は差圧を受けて弁
7が制御孔4を閉じる方向に移動するので、ダイヤフラ
ム面積とダイヤフラムスプリング16の荷重によって定
まる、ある差圧値に於て安定状態に達し、これ以上には
供給水圧を高くしても水量の増加が無くなる。曲線Bで
は水量Q1.差圧ΔP1がその点である。
Next, the present invention will be explained in detail with reference to the water amount-differential pressure curve shown in FIG. This figure shows the relationship between the water flow rate and the pressure difference between the primary fire chamber 5 and the secondary chamber 14 acting on the diaphragm 6. Here, the curve A shown by the broken line is the net pressure difference generated by the action of the differential pressure generating section 11. As mentioned above, when the amount of water is small, a pressure difference determined by hole 13 is generated,
Since the differential pressure acts in the direction of pushing the differential pressure valve 9 open, the increasing tendency of the differential pressure slows down above a certain amount of water. Next, when the adjustment shaft 2o is tightened to maximize the set load of the spring 19, the adjustment valve 18 will not open and will show an 8 curve along curve A, which is equivalent to the case without the first continuous passage 16. It turns out. By the way, the diaphragm 6 moves in the direction in which the valve 7 closes the control hole 4 in response to the differential pressure, so a stable state is reached at a certain differential pressure value determined by the diaphragm area and the load of the diaphragm spring 16. Even if the supply water pressure is increased, the amount of water will not increase. In curve B, water amount Q1. This point is the differential pressure ΔP1.

次に、調節軸2oをゆるめるとスプリング19の荷重が
減少する。しかし、差圧が少ない間は調節弁18に働く
力が弱いので、水量−差圧特性は曲線Bと一致している
。水量が増加して差圧がΔP′2 に到ると調節弁18
はスプリング19の力に打勝って少しずつ開き始める。
Next, when the adjustment shaft 2o is loosened, the load on the spring 19 is reduced. However, while the differential pressure is small, the force acting on the control valve 18 is weak, so the water amount-differential pressure characteristic matches curve B. When the water amount increases and the differential pressure reaches ΔP'2, the control valve 18
overcomes the force of spring 19 and begins to open little by little.

この結果、二次室14の圧力は、−火室6の圧力と差圧
発生部11の圧力の両者の影響を受けることになる。そ
の影響度は調節弁18の一度によって決まるものであり
、開度が少ない時は差圧発生部11の圧°力に近く、大
きい時は一火室6の圧力に近くなる。これは、第一連通
路16と、第二連通路17の通水抵抗の比によって差圧
発生部11の発生差圧を分圧して二次室14の圧力が決
まることを意味している。従って、調節弁18が開き始
めると、二次室14は一火室6の影響を受けて、差圧の
増加傾向が鈍くなる。これが曲線Cで示されている。こ
の場合も、ある差圧を生じる水量値以上には増加しなく
なる安定点がある。曲線Bの場合よりも水量値が多いの
で弁6と制御孔4が形成する間隙が広い状態で安定する
結果安定点の差圧ΔP2IfiΔP1よりも少ない値に
なっている。
As a result, the pressure in the secondary chamber 14 is influenced by both the pressure in the firebox 6 and the pressure in the differential pressure generating section 11. The degree of influence is determined by the degree of opening of the control valve 18, and when the degree of opening is small, the pressure is close to the pressure of the differential pressure generating section 11, and when the degree of opening is large, the pressure is close to the pressure of the first fire chamber 6. This means that the pressure in the secondary chamber 14 is determined by dividing the differential pressure generated in the differential pressure generating section 11 depending on the ratio of the water flow resistances of the first communication passage 16 and the second communication passage 17. Therefore, when the control valve 18 starts to open, the secondary chamber 14 is influenced by the first fire chamber 6, and the tendency of the differential pressure to increase becomes slower. This is shown by curve C. In this case as well, there is a stable point at which the water volume does not increase above a value that produces a certain differential pressure. Since the water flow value is larger than in the case of curve B, the gap formed by the valve 6 and the control hole 4 is stabilized in a wide state, resulting in a value smaller than the differential pressure ΔP2IfiΔP1 at the stable point.

同様に調節軸20を更にゆるめてスプリング19の設定
荷重を下げると曲線りとなって水量Q3にて安定状態に
達する。
Similarly, when the adjustment shaft 20 is further loosened to lower the set load of the spring 19, a curved line is formed and a stable state is reached at the water amount Q3.

以上のように、第一連通路16中の調節弁18設定点を
変更することによって流入流出する全水量全可変するこ
とが出来る。
As described above, by changing the setting point of the control valve 18 in the first communication passage 16, the total amount of water flowing in and out can be completely varied.

さて、差圧増加と共にダイヤ7ラム6は上昇するが、そ
の移動距離はダイヤフラムスプリング15と差圧によっ
て決まる。従って、一定のダイヤスラムスプリングのも
とでは差圧値によって移動距離が定まり、検出スイッチ
24を作動するに必要な最少必要差圧も求められる。第
2図ではその差圧をΔPsとして示し、この差圧以上で
はスイッチ信号が得られる。調節軸20の操作範囲内で
はΔP5  の差圧でFi調節弁18が開かないように
設定しておけば、曲線Cも曲線りも各々差圧ΔIl/2
□ 、ΔP′3以下では曲線Bと一致することになる。
Now, as the differential pressure increases, the diamond 7 ram 6 rises, but the distance it moves is determined by the diaphragm spring 15 and the differential pressure. Therefore, under a constant diaphragm spring, the moving distance is determined by the differential pressure value, and the minimum required differential pressure necessary to operate the detection switch 24 is also determined. In FIG. 2, the differential pressure is shown as ΔPs, and a switch signal is obtained above this differential pressure. If the setting is made so that the Fi control valve 18 will not open with a pressure difference of ΔP5 within the operating range of the control shaft 20, the pressure difference of ΔIl/2 will be maintained on both curve C and curve.
□, below ΔP'3, it matches curve B.

従って水量の設定を01.Q2.Q3のように変更して
も、最少検出可能水量は03一定になる。
Therefore, set the water amount to 01. Q2. Even if you change it like Q3, the minimum detectable water amount will remain constant at 03.

尚、差圧発生部11は通常のベンチュリーやオリフィス
に置き代えても同じ効果は得られる。しかし、第2図の
ような飽和曲線状ではなく、2乗曲線状になる。
Note that the same effect can be obtained even if the differential pressure generating section 11 is replaced with a normal venturi or orifice. However, the curve is not a saturation curve as shown in FIG. 2, but a square curve.

以上述べたように、本発明によれば、閉接的に設けた小
さな調節弁によって主通水量を制、御できるので装置全
体の小型化が図れると共に、操作トルクの低減化に有利
である。特に、図のようにモータ等の力で駆動する場合
に、モータや駆動電源回路の容量低減化おも可能になる
など波及効果をもたらす。又、水量値を変えても、検出
可能水量が変化しないことは瞬間湯沸器に応用した場合
に使い勝手の向上をもたらすものである。
As described above, according to the present invention, since the main water flow rate can be controlled by a small closed control valve, it is possible to downsize the entire device and it is advantageous in reducing the operating torque. In particular, when driving with the power of a motor or the like as shown in the figure, it brings about ripple effects such as the ability to reduce the capacity of the motor and drive power supply circuit. Further, the fact that the detectable water amount does not change even if the water amount value is changed improves usability when applied to an instantaneous water heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成断面図、第2図は
第1図の実施例に於ける水量−差圧特性図である。 6900.、ll−イヤ、ウニ、50.−1−fiミオ
、4    !゛・・・・・・二次室、4・・・・・・
制御孔、2・・・・・・流入路、7゛・・・・・・弁、
16・・・・・・第一連通路、11・・・・・・差圧発
生部、12・・・・・流出路、17・・・・・・第二連
通路、18・・・・・調節弁、19・・・・・・スプリ
ング。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 β
FIG. 1 is a cross-sectional view of the configuration of an embodiment of the present invention, and FIG. 2 is a water flow-differential pressure characteristic diagram in the embodiment of FIG. 6900. , ll-ya, sea urchin, 50. -1-fi mio, 4!゛...Secondary room, 4...
Control hole, 2...Inflow path, 7゛...Valve,
16...First communication passage, 11...Differential pressure generating section, 12...Outflow passage, 17...Second communication passage, 18...・Control valve, 19...Spring. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 β

Claims (3)

【特許請求の範囲】[Claims] (1)  ダイヤフラムと、ダイヤスラムで区画された
一次室及び二次室と、制御孔を経て一次室に到る流入路
と、ダイヤフラムと連動して制御孔開度を制御する弁と
、−次室から差圧発生部を経て流出する流出路と、−次
室と二次室を結ぶ第一連通路と、差圧発生部と二次室を
結ぶ第二連通路とを有し、第一連通路には圧力差によっ
て開度が変化する調節弁を設けたことを特徴とする水制
御装置。
(1) A diaphragm, a primary chamber and a secondary chamber divided by a diaphragm, an inflow path that reaches the primary chamber via a control hole, a valve that controls the opening degree of the control hole in conjunction with the diaphragm, and - It has an outflow path that flows out from the chamber via the differential pressure generating section, a first communicating path connecting the secondary chamber and the secondary chamber, and a second communicating path connecting the differential pressure generating section and the secondary chamber, and A water control device characterized in that the communication path is provided with a control valve whose opening degree changes depending on the pressure difference.
(2)調節弁は一次室と二次室の圧力差が設定値以下で
は閉状態であシ、設定値以上になれば、圧力差に応じて
開度が上るよう構成したことを特徴とする特許請求の範
囲第1項記載の水制御装置。
(2) The control valve is characterized in that it remains closed when the pressure difference between the primary chamber and the secondary chamber is below a set value, and when the pressure difference exceeds the set value, the opening degree increases in accordance with the pressure difference. A water control device according to claim 1.
(3)調節弁は、圧力差によシ生じる力と対抗するスプ
リングを有し、とのスプリングの設定荷重を変化し得る
構成としたことを特徴とする特許請求の範囲第1項記載
の水制御装置。
(3) The control valve has a spring that opposes the force caused by the pressure difference, and the set load of the spring can be changed. Control device.
JP11183581A 1981-07-16 1981-07-16 Water controller Granted JPS5812947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11183581A JPS5812947A (en) 1981-07-16 1981-07-16 Water controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11183581A JPS5812947A (en) 1981-07-16 1981-07-16 Water controller

Publications (2)

Publication Number Publication Date
JPS5812947A true JPS5812947A (en) 1983-01-25
JPS6260623B2 JPS6260623B2 (en) 1987-12-17

Family

ID=14571360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11183581A Granted JPS5812947A (en) 1981-07-16 1981-07-16 Water controller

Country Status (1)

Country Link
JP (1) JPS5812947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153060A (en) * 1983-02-22 1984-08-31 Matsushita Electric Ind Co Ltd Hot water feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153060A (en) * 1983-02-22 1984-08-31 Matsushita Electric Ind Co Ltd Hot water feeder
JPH0377419B2 (en) * 1983-02-22 1991-12-10 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPS6260623B2 (en) 1987-12-17

Similar Documents

Publication Publication Date Title
JP2661242B2 (en) Automatic pressure control valve
CA2324033A1 (en) A hydraulically actuated mixing valve
JPS5812947A (en) Water controller
JPS6154130B2 (en)
JPS6311685B2 (en)
JPH0361203B2 (en)
JPS6121345B2 (en)
JPH0138460Y2 (en)
JPH03239880A (en) Flow rate control valve
JPH0241466Y2 (en)
JPS6250730B2 (en)
JPS6252210B2 (en)
JPH06123377A (en) Mixing device for water combination faucet
JPS5862452A (en) Heating operation controlling apparatus
JP2615059B2 (en) Hot water mixing equipment
JPH029338Y2 (en)
JPS5830571A (en) Mixing valve
JPS61140685A (en) Hot and cold water mixing device
JPH0353289Y2 (en)
JP2805222B2 (en) Two-stage switching type liquid level adjusting valve
JPH0222402B2 (en)
JPS58120044A (en) Control device for flow amount of heater
JPH05296564A (en) Hot water supply controller
JPH0512540Y2 (en)
JP2864605B2 (en) Fluid control valve device