JPS58129266A - Measuring device for micro current - Google Patents

Measuring device for micro current

Info

Publication number
JPS58129266A
JPS58129266A JP1113582A JP1113582A JPS58129266A JP S58129266 A JPS58129266 A JP S58129266A JP 1113582 A JP1113582 A JP 1113582A JP 1113582 A JP1113582 A JP 1113582A JP S58129266 A JPS58129266 A JP S58129266A
Authority
JP
Japan
Prior art keywords
current
voltage
output
signal
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1113582A
Other languages
Japanese (ja)
Inventor
Shinobu Takahashi
忍 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1113582A priority Critical patent/JPS58129266A/en
Publication of JPS58129266A publication Critical patent/JPS58129266A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0023Measuring currents or voltages from sources with high internal resistance by means of measuring circuits with high input impedance, e.g. OP-amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To eliminate errors by fluctuations in the amplification factor of an amplifier and to measure micro currents such as leak currents of semiconductors with good stability and accuracy by comparing the micro current to be measured and reference current and measuring the difference thereof. CONSTITUTION:Leak current il to be measured is supplied to the inversion input terminal of an operational amplifier 21. The voltage signal which increases gradually from 0V is generated from a reference voltage generator 20, and reference current ig is increased gradually. In this case, right after the start of measurement, the current il is larger than the current ig, and the output signal of the amplifier 21 is negative. The negative output signal thereof is outputted to a control line E. Right after the voltage of the generator 20 rises to ig=il and further to ig>il, the output signal of the amplifier 21 inverts positive, and the output voltage of the generator 20 at this moment is sampled and held with a capacitor 27 and is read out from an output terminal B. Thus, from the relation il=iR=V/R<3>, the value of the leak current il is determind.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えばトランジスタ、IC、FETなどの
各種半導体素子のリーク電流などの測定のための微小電
流測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a microcurrent measuring device for measuring leakage current of various semiconductor elements such as transistors, ICs, and FETs.

〔開明の技術的背景〕[Technical background of the discovery]

トランジスタ、IC1FET  などの各種の半導体素
子の製造や管理などにおいて、リーク電流の測定が行な
われている。このとき、測定されるリーク電流値が極め
て小さいために、通常第1図に示すような回路を用いて
一度リーク電流を増幅してから測定する。すなわち、演
算増幅器11の非反転入力端12を接地し、入力端子A
より抵抗R,を介して反転入力端13にり−出力端子B
より増幅された電圧を出力する。この演算tIll−器
11の出力電圧■。には、リーク電流itにより入力端
子Aに発生した電圧Vlに対圧■。、抵抗R1およびR
,の櫃から入力端子Aにおけるリークの状!114を検
出する。
2. Description of the Related Art Leakage current is measured in the manufacturing and management of various semiconductor devices such as transistors and IC1FETs. At this time, since the leakage current value to be measured is extremely small, the leakage current is usually amplified once using a circuit as shown in FIG. 1 and then measured. That is, the non-inverting input terminal 12 of the operational amplifier 11 is grounded, and the input terminal A
from the inverting input terminal 13 to the output terminal B via the resistor R.
Outputs a more amplified voltage. This calculation tIll-output voltage of the circuit 11. , the voltage Vl generated at the input terminal A due to the leakage current it is equal to the voltage Vl. , resistors R1 and R
, there is a leak at input terminal A from the box! 114 is detected.

〔背景技術の問題点〕[Problems with background technology]

このような構成の微小電流測定装置においては、抵抗R
,およびR3のそれぞれの誤差、変動によυ、増−率が
変動する。この増−率の変動車は、抵抗R1およびR1
のそれぞれの相対誤差、変動の和と1にシ、精度の良い
安定な測定が困離であった。
In a microcurrent measuring device with such a configuration, the resistance R
, and R3, the increase rate of υ changes depending on the respective errors and fluctuations. The variable wheel of this increase rate is resistors R1 and R1
It has been difficult to obtain accurate and stable measurements due to the relative error of each, the sum of the fluctuations, and the sum of the fluctuations.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような点に鑑みてなされたもので、抵
抗などの誤差や変動による影響を受けやすい増幅回路を
用いずに、リーク電流などを^い精度で安定に測定する
微小電流測定装置を提供しようとするものである。
This invention was made in view of the above points, and provides a microcurrent measuring device that stably measures leakage current with high accuracy without using an amplifier circuit that is susceptible to errors and fluctuations in resistance. This is what we are trying to provide.

〔発明の概要〕[Summary of the invention]

すなわち、この発明に係る微小電流測定装置は、徐々に
増加あるいは減少していく校正された電圧を発生する基
準電圧発生器からの電圧を、電圧電流変換手段で徐々に
増加あるいは減少する基準電/iln号に変換し、この
基準電流信号と半導体装置のリーク電流などの被測定微
小電流とを例えは演算増幅器などの比較手段で比較し・
1.1:記の基準電流信号と被測定微小電流が一致し九
ときの基準電圧発生器の出力電圧をサングルホールドし
て読みとるようにし、この出力電圧値から被測定微小電
流の値を知るようにするものである。
That is, the microcurrent measuring device according to the present invention converts a voltage from a reference voltage generator that generates a calibrated voltage that gradually increases or decreases into a reference voltage that gradually increases or decreases using a voltage-current conversion means. This reference current signal is then compared with a small current to be measured, such as leakage current of a semiconductor device, using comparison means such as an operational amplifier.
1.1: Sample and hold the output voltage of the reference voltage generator when the reference current signal described above and the measured microcurrent match and read it, and find out the value of the measured microcurrent from this output voltage value. It is something to do.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例について説明す
る。第2図はその構成を示すもので、入力端子Cは測定
動作開始と共に立ち上る定電圧信号の供給される測定動
作信号入力端であり、20は端子Cに測定動作信号が入
力すると例えばQVから徐々に上昇してゆく電圧を発生
する基準電圧発生器でおる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows its configuration. Input terminal C is a measurement operation signal input terminal to which a constant voltage signal that rises at the start of measurement operation is supplied, and 20 is a measurement operation signal input terminal that is supplied with a constant voltage signal that rises at the start of measurement operation. When a measurement operation signal is input to terminal C, for example, A reference voltage generator generates a voltage that increases.

この基準電圧発生器20の出力nIDは抵抗R,を介し
て第1の演算増幅器2.1の非反転入力端に接゛続する
。上記抵抗R3は電圧電fIt変換手段として作用する
もので、上記基準電圧発生器20の出力電圧を基準電圧
Vとすると、 ■ 「5IL=電」となる基準電fi’aを演算増幅I!2
1に供給する。すなわち、基準電圧Vの上昇に伴い、徐
々に電流値iが増加する。
The output nID of this reference voltage generator 20 is connected via a resistor R to the non-inverting input of a first operational amplifier 2.1. The resistor R3 acts as a voltage-to-electricity fIt conversion means, and if the output voltage of the reference voltage generator 20 is the reference voltage V, then the reference voltage fi'a where "5IL=voltage" is operationally amplified by I! 2
Supply to 1. That is, as the reference voltage V increases, the current value i gradually increases.

また、入力端子Aよりは、被測定電流とじて例えばリー
ク電流41を第1の演算増幅器21の反転入力端に流し
込む。
Further, from the input terminal A, a leakage current 41, for example, as well as the current to be measured is fed into the inverting input terminal of the first operational amplifier 21.

すなわち、第1の演算増幅器21は、非反転入力端に例
えば徐々に上昇する基準電流iが、反転入力端に被側定
リーク電flitがそ1れ流れ込むようになり、これら
の電fi値の大小を比較し、rLz(SmJならば正の
信号を、r it >を鼠」ならば負の信号を出力する
コン・9レータとして機能する。
That is, in the first operational amplifier 21, for example, a gradually increasing reference current i flows into the non-inverting input terminal, and a constant leakage current flit flows into the inverting input terminal. It functions as a converter that compares the magnitude and outputs a positive signal if rLz (SmJ, and a negative signal if r it > is a mouse).

この第1のmm増幅器21の出力信号は、適当なゲイン
で増幅する第2の演算増幅′622に供給する。この第
2の演算増暢嚢22は、例えば、反転入力端を接地し、
非反転入力端に適当なゲインを与えるフィードパ、り抵
抗R4を接続し、この非反転入力端に上記第1の演算増
幅器21の出力端を接続するようにして構成する。
The output signal of the first mm amplifier 21 is supplied to a second operational amplifier '622 which amplifies it with an appropriate gain. This second arithmetic booster 22, for example, has an inverting input end grounded,
A feed resistor R4 providing an appropriate gain is connected to the non-inverting input terminal, and the output terminal of the first operational amplifier 21 is connected to the non-inverting input terminal.

そして、との箒2の演算増幅器22の出力信号を、ダー
ト制御ラインEに出力する。
Then, the output signal of the operational amplifier 22 of the broom 2 is output to the dirt control line E.

一方、前記の基準電圧発生器20の出力端りは、さらに
サンダルホールド回路23へ嵌絖する。このサンダルホ
ールド回路23は、前述のダート制御ラインE上のf−
)制御信号によって、サンブリング制御されるもので、
例えば次のように構成する。まず、上記出力4Dからの
信号電圧の供給されるパ、ファアング構成の第3の演算
増+m器24を初段に設け、その出力端に前述のr−1
制御信号ラインEの制御信号で開閉制御されるFETア
ナログスイ、チなどのゲート25を接続する。
On the other hand, the output end of the reference voltage generator 20 is further fitted into a sandal hold circuit 23. This sandal hold circuit 23 is connected to the f− on the dirt control line E mentioned above.
) Controlled by sampling control signals,
For example, configure it as follows. First, a third arithmetic multiplier 24 having a power amplifier configuration to which the signal voltage from the output 4D is supplied is provided at the first stage, and its output terminal is connected to the above-mentioned r-1
A gate 25 such as an FET analog switch or switch whose opening/closing is controlled by a control signal on a control signal line E is connected.

このf−ト25は、例えばダート制御信号が正ならば開
き、負ならば閉じた状態となるものである。そして、こ
のゲート25の出力端は、抵抗R6およびコンデンサ2
7からなる積分回路を介して、第4の演算項@器26の
非反転入力端に接続する。
For example, if the dart control signal is positive, the gate 25 is open, and if the dart control signal is negative, it is closed. The output terminal of this gate 25 is connected to a resistor R6 and a capacitor 2.
7 is connected to the non-inverting input terminal of the fourth operand unit 26.

このように構成され九微小電流検出装置において、第1
の演算増幅器21の反転入力端には、例えば被検査F’
ETのオフ状態時のドレイン・ソース間の漏れ電流など
の被測定リーク電流S1を供給する。そして、基準電圧
発生器20から「OvJより徐々に上昇する電圧信号を
発生させ、基準に流iを徐々に上昇させる。すなわち、
測定開始1麹後は上記基準電tlimよりもリーク電流
(tの方が大きく、第1の演算項@器2)の出力信号は
負となっている。この負の出力信号は、第2の演算増幅
器22を介し、負のダート制御信号としてf−)制御ラ
インEに出力する。
In the nine microcurrent detection devices configured in this way, the first
For example, the inverting input terminal of the operational amplifier 21 is connected to the F' to be tested.
A leakage current S1 to be measured, such as a leakage current between the drain and source when the ET is in the off state, is supplied. Then, the reference voltage generator 20 generates a voltage signal that gradually increases from OvJ, and gradually increases the current i based on the reference.
After the start of measurement, the output signal of the leakage current (t is larger than the reference voltage tlim, and the first operational term @ device 2) is negative. This negative output signal is output to f-) control line E via the second operational amplifier 22 as a negative dart control signal.

一方、基準電圧発生器20の徐々に上昇する基準電圧V
はサングルホールド回路23において、パ、ファアング
の第3の演算増幅器24を介し、r−ト25に供給され
る。そして、とのパ、ファアン!出力は、負のr−ト制
御信号により開状態とされたp−ト26を通じ、抵抗R
,を介してコンデンサ27に電荷を供給する。
On the other hand, the reference voltage V of the reference voltage generator 20 gradually increases.
is supplied to the RT 25 in the sample hold circuit 23 via the third operational amplifier 24 of PA and FA. And pa, fan! The output is passed through the resistor R through the p-t 26 which is opened by the negative r-t control signal.
, to supply electric charge to the capacitor 27.

すなわち、上記r −) 25が開いている間、前述の
基準電圧Vに対応する信性電圧でコンデンサ27が充電
されている。
That is, while the r-) 25 is open, the capacitor 27 is charged with a reliability voltage corresponding to the reference voltage V mentioned above.

このようにして基準電圧発生器20の電圧が1゛輸=i
tJとなり、さらに[i鼠>izJとなった直後、第1
の演算増幅器21の出力信号がなシ、この瞬間の基準電
圧発生器20の出力電圧Vがコンデンサ27にてサング
ルホールドされ、サングルホールドされた電圧に対応す
る出力電圧信号が出力端子Bから読み出される。
In this way, the voltage of the reference voltage generator 20 is increased by 1 = i
tJ, and immediately after [i mouse > izJ, the first
When the output signal of the operational amplifier 21 is absent, the output voltage V of the reference voltage generator 20 at this moment is sample-held by the capacitor 27, and an output voltage signal corresponding to the sample-held voltage is read out from the output terminal B. .

従って、上記出力端子Bに現れる最終的な出、    
■ 力電圧■を読み取り、「1t=S凰=読」の関係からリ
ーク電流41の値を求めることができる。この場合、出
力端子Bに現われる電圧と、基準電流sBとの関係を較
正しておけば正確な電流測定が行ない得る。
Therefore, the final output appearing at the output terminal B,
■ The value of the leakage current 41 can be determined by reading the force voltage (■) and using the relationship "1t=S凰=read". In this case, if the relationship between the voltage appearing at the output terminal B and the reference current sB is calibrated, accurate current measurement can be performed.

このような微小′区流測定装置では、測定すべき微小電
流と基準電流とを直接比較するもので、例えば第1図で
示した従来の増m器で増幅する場合で問題となった抵抗
Rt+R1を含む増−器自体の増一度の変動を完全に除
去することができる。
Such a minute current measuring device directly compares the minute current to be measured with a reference current. It is possible to completely eliminate fluctuations in the amplification rate of the intensifier itself.

なお、第2図の基準電圧発生器20は例えは第3図で示
すような回路で構成することができる。すなわち、端子
Cからの測定開始を指示する測定動作開始信号をFET
 31のf−)に供給し、この信号の立ち上りからFF
:T 31のソースに接続した抵抗32およびコンデン
サ33からなる積分回路のコンデン?33に時定数をも
って光電する。すなわち、コンデンサ33の充電電圧は
途々に上列するものである。この場合、set圧神にお
ける基準電圧の上昇する速度は、抵抗32およびコンデ
ンサ33′によって調整することができる。
Note that the reference voltage generator 20 shown in FIG. 2 can be constructed by, for example, a circuit as shown in FIG. 3. In other words, the measurement operation start signal instructing the start of measurement from terminal C is sent to the FET.
31 f-), and from the rising edge of this signal, the FF
: The capacitor of the integrating circuit consisting of the resistor 32 and capacitor 33 connected to the source of T 31? 33 with a time constant. That is, the charging voltage of the capacitor 33 gradually increases. In this case, the rate at which the reference voltage at the set pressure rises can be adjusted by resistor 32 and capacitor 33'.

44図に示す回路は、他の実施例を示すものである。す
なわち、測定動作信号が入力端子Cよりアンドゲート3
4に供給し、このアント9r−ト34の出力信号は、第
3図で示したような基準電圧発生器を構成するFET 
37のy−トに供給する。そして、このFET 3 J
のソース回路には抵抗32およびコンデンサ33からな
る積分回路を接続し、この積分回路の出力電圧を・f、
−7アアング36で検知し、その出力端りの′直圧を基
準電圧Vとして取り出す。
The circuit shown in FIG. 44 shows another embodiment. That is, the measurement operation signal is input from the input terminal C to the AND gate 3.
The output signal of this antenna 9r-to 34 is supplied to an FET 4, which constitutes a reference voltage generator as shown in FIG.
37 y-to. And this FET 3J
An integrating circuit consisting of a resistor 32 and a capacitor 33 is connected to the source circuit of , and the output voltage of this integrating circuit is expressed as ・f,
-7 is detected by the angle 36, and the direct voltage at the output end is taken out as the reference voltage V.

この基準電圧Vは、電圧電流変換手段とじての抵抗R3
を介し、演算増幅器21の非反転入力端に基準[流iB
を供給する。この演算増幅器21の反転入力端には第2
図と同様に入力端子Aよりリーク電流itが供給され基
準電流i11と比較する。この演舞増幅器21からの出
力信号は、演算増幅器22で適宜増−され、この演舞増
幅器22の出力信号は、r−ト制御ラインEにf−)制
御信号として出力される。そして、このf−)制御徊号
はインノ々−夕35で反転し、i1■記アンドゲート3
4にr−)fぎ号として供給される。
This reference voltage V is connected to a resistor R3 as a voltage-current conversion means.
to the non-inverting input terminal of the operational amplifier 21 via the reference [current iB
supply. The inverting input terminal of this operational amplifier 21 has a second
Similarly to the figure, leakage current it is supplied from input terminal A and compared with reference current i11. The output signal from the performance amplifier 21 is appropriately amplified by an operational amplifier 22, and the output signal from the performance amplifier 22 is outputted to the r-to control line E as an f-) control signal. Then, this f-) control wandering number is reversed at Inno-Ni-Y35, and i1 ■ and gate 3
4 as r−)fg.

すなわち、非測定時には、ダート制御ラインEの信号は
ローレベルであり、従ってアンドゲート34にインバー
タ35からダート信号か与えられている。
That is, during non-measurement, the signal on the dart control line E is at a low level, and therefore the AND gate 34 receives the dart signal from the inverter 35.

ここに、入力端子Cより、正の測定動作信号が入力する
と、アンドグー)34の出力信号が正となり、FET3
1がオンして、抵抗32、コンデンサ33の端子電圧が
徐々に上昇する。こ(1)4子[圧は、バッファアンプ
361r介し、出力4Dに徐々に上昇する基準電圧Vを
与え、この基準電圧Vによシ、演算増幅器2ノの非反転
入力端に徐々に上昇する基準電Rimが15!淀む。
When a positive measurement operation signal is input from input terminal C, the output signal of ANDGOO) 34 becomes positive, and FET3
1 is turned on, and the terminal voltages of the resistor 32 and capacitor 33 gradually rise. (1) A reference voltage V which gradually rises is applied to the output 4D via the buffer amplifier 361r, and due to this reference voltage V, the voltage gradually rises to the non-inverting input terminal of the operational amplifier 2. Reference voltage Rim is 15! Stagnant.

すなわち、@2図の場合と同様に、この演算項@@21
の出力信号は、r ’t > $RJの場合には前述の
ように負となっているが、illが上昇し、r it 
= iB 」となった直後、正に切り換わる。
In other words, as in the case of diagram @2, this operator @@21
The output signal of r 't > $RJ is negative as mentioned above, but ill rises and r it
Immediately after becoming ``= iB'', it switches to positive.

従って、r−ト制御ラインEの信号は、演′S増−器2
1の出力信号と匝1様に変化し、「il=imJとなる
とインバータ35の出力電圧がハイレベルからローレベ
ルになり、アンドr−1−34のff−)を閉じてFE
T31fyF7状題に場せる。このようにして、FET
 31がオフとなると、コンデンサ33への電荷の供給
が正まり、「1t=i凰」となったときのコンデンサ3
3の端子電圧は保持される。この端子電圧はバッファア
ン!36を介して出力端りに基準電圧Vとして出力され
ており、この電圧r読み出せに1gII実弛例と同様に
リーク′蝋流Llの1+Nを求めることができる。
Therefore, the signal on the r-t control line E is
When the output signal of 1 and 1 change, and when il=imJ, the output voltage of the inverter 35 goes from high level to low level, and ff- of AND r-1-34 is closed, and the FE
Appears in the T31fyF7 status issue. In this way, the FET
31 is turned off, the supply of electric charge to the capacitor 33 is corrected, and the capacitor 3 when "1t=i凰" is
The terminal voltage of 3 is maintained. This terminal voltage is buffer un! 36 to the output end as a reference voltage V, and by reading this voltage r, 1+N of the leakage wax flow Ll can be obtained as in the 1gII actual relaxation example.

ホールド手段が、基準電圧を発生させる積分回路のコン
デンサで共用されるようになる。
The holding means is shared by the capacitor of the integrating circuit that generates the reference voltage.

なお、上記実施例では、基準電流iIIと被測定リーク
電流41とを比較する比較手段として演算増幅器を用い
て説明し九が、トランジスタ、FgTなどを組み合わせ
たものを用いても良く、同様に第2の演算増幅器22に
よる増I−器やサングルホールド回路23も他の素子を
組み合わせて構成しても良い。
In the above embodiment, an operational amplifier is used as a comparison means for comparing the reference current iII and the measured leakage current 41, but a combination of transistors, FgT, etc. may also be used, and the The I-amplifier using the second operational amplifier 22 and the sample hold circuit 23 may also be constructed by combining other elements.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、被測定微小電流を、直
接項一せずに基準となる電流と比較することにより測定
する。このため、従来間聴となっていた増幅器の増幅率
の変動による測定誤差を除くことができ、安定で楕健良
く半導体のリーク電流などの微小電流の測定を行ない得
る微小電流測定装置を提供することができる。
As described above, according to the present invention, the minute current to be measured is measured by comparing it with a reference current without directly comparing it. Therefore, it is possible to eliminate measurement errors caused by fluctuations in the amplification factor of the amplifier, which conventionally caused intermittent hearing, and to provide a microcurrent measuring device that can measure microcurrents such as semiconductor leakage currents stably and accurately. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の倣小電tllt御j定装置の入力St−
小す図、第2図はこの発明の一実施fl)に係る微小電
流測定装置を示す回路図、第3図は基準電圧発生器の構
成例を示す回路図、第4図はこの発明の他の実施例を示
す回路図である。 20・・・基準電圧発生器、R1・・・批抗、21゜2
2.24.26.36・・・演算項l11!器、25・
・・ケ”−ト、27.33・・・コンデンサ。
Figure 1 shows the input St- of a conventional copying small electric control device.
2 is a circuit diagram showing a microcurrent measuring device according to one embodiment of the present invention, FIG. 3 is a circuit diagram showing a configuration example of a reference voltage generator, and FIG. 4 is a circuit diagram showing a microcurrent measuring device according to one embodiment of the present invention. It is a circuit diagram showing an example of. 20...Reference voltage generator, R1...Resistance, 21゜2
2.24.26.36...operational term l11! Vessel, 25・
...Ket, 27.33...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 徐々に変化する電圧を発生する基準電圧発生器と、上記
基準電圧発生器の電圧出力を電圧電流変換して基準電流
を作り出す電圧電流変換手段と、上記基準電流と被測定
微小電流とを比較し一致を検出する比較手段と、上記基
準電圧発生器の出力電圧を上記比較手段の一致検出に対
応して検出し測定結果を得るサンプルホールドする手段
とを板製したことを%徴とする微小電流測定装置。
A reference voltage generator that generates a gradually changing voltage, a voltage-current conversion means that converts the voltage output of the reference voltage generator into a voltage-current to generate a reference current, and a comparison between the reference current and the minute current to be measured. A minute current characterized by the fact that the comparison means for detecting coincidence and the sample-holding means for detecting the output voltage of the reference voltage generator in correspondence with the coincidence detection of the comparison means and obtaining the measurement result are made of plates. measuring device.
JP1113582A 1982-01-27 1982-01-27 Measuring device for micro current Pending JPS58129266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113582A JPS58129266A (en) 1982-01-27 1982-01-27 Measuring device for micro current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113582A JPS58129266A (en) 1982-01-27 1982-01-27 Measuring device for micro current

Publications (1)

Publication Number Publication Date
JPS58129266A true JPS58129266A (en) 1983-08-02

Family

ID=11769572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113582A Pending JPS58129266A (en) 1982-01-27 1982-01-27 Measuring device for micro current

Country Status (1)

Country Link
JP (1) JPS58129266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345201A (en) * 2013-08-09 2015-02-11 华为技术有限公司 Leakage current detection method and device
US9625517B2 (en) 2013-08-09 2017-04-18 Huawei Technologies Co., Ltd. Leakage current detection method and apparatus for detecting leakage of current from a board-mounted component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345201A (en) * 2013-08-09 2015-02-11 华为技术有限公司 Leakage current detection method and device
WO2015018189A1 (en) * 2013-08-09 2015-02-12 华为技术有限公司 Leakage current detection method and device
EP2977770A4 (en) * 2013-08-09 2016-07-06 Huawei Tech Co Ltd Leakage current detection method and device
US9625517B2 (en) 2013-08-09 2017-04-18 Huawei Technologies Co., Ltd. Leakage current detection method and apparatus for detecting leakage of current from a board-mounted component

Similar Documents

Publication Publication Date Title
JPS6239445B2 (en)
US3490039A (en) Method and apparatus for measuring high resistances in relation to resistance ratio,capacitance,and a time interval
KR0125595B1 (en) Power multiplication circuit
JPH05129093A (en) Triple probe plasma measuring instrument for correcting space electric potential error
JPS58129266A (en) Measuring device for micro current
JP3204091B2 (en) Charge / discharge current measuring device
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
CN101918851B (en) Voltage measurement unit with minimized common mode errors
JP2002351557A (en) Current generator
JPH1172529A (en) Insulation resistance measurement instrument for capacitor
US3025468A (en) Null type transistor beta measuring set
US11774517B2 (en) Leakage and loading detector circuit
US3532983A (en) High input impedance solid state d.c. amplifier suitable for use in electrical measurement
USRE15469E (en) Thermionic voltmeter
JP2977415B2 (en) Battery peak voltage and dip voltage detector
CN118091355B (en) Aging test circuit and aging test method
JPH08146050A (en) Measuring instrument using differential amplifier
JP4533554B2 (en) Charge / discharge current detection circuit, battery state monitoring circuit, secondary battery device, and charge / discharge current detection method
SU1026093A1 (en) Device for measuring field transistor pair difference of shutter-to-source voltage
JP3143036B2 (en) Resistivity measurement circuit
JPS6117300B2 (en)
SU502344A1 (en) Device for measuring the time constant of the collector circuit of the transistor
JPH0725715Y2 (en) Frequency measuring device
SU712775A1 (en) Automatic meter of complex resistance components
JP2002214279A (en) Device evaluation circuit