JPS58127707A - Method and apparatus for catalyst supply - Google Patents

Method and apparatus for catalyst supply

Info

Publication number
JPS58127707A
JPS58127707A JP1034682A JP1034682A JPS58127707A JP S58127707 A JPS58127707 A JP S58127707A JP 1034682 A JP1034682 A JP 1034682A JP 1034682 A JP1034682 A JP 1034682A JP S58127707 A JPS58127707 A JP S58127707A
Authority
JP
Japan
Prior art keywords
catalyst
carrier fluid
rotating body
passage
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1034682A
Other languages
Japanese (ja)
Other versions
JPH0249322B2 (en
Inventor
Tadashi Yamamoto
匡 山本
Tetsuo Kuniyuki
国行 徹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1034682A priority Critical patent/JPH0249322B2/en
Publication of JPS58127707A publication Critical patent/JPS58127707A/en
Publication of JPH0249322B2 publication Critical patent/JPH0249322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To supply a high-concentration catalyst smoothly to a reaction vessel, by disposing a rotating body having two uncrossed passages in a carrier fluid flowing into the reaction vessel, and filling one passage with the high-concentration catalyst while allowing the carrier fluid to pass through the other passage. CONSTITUTION:A storage tank 6 holding a high-concentration slurry catalyst 7 is pressurized with inert gas to maintain the inside under a pressure somewhat higher than that in the polymerization vessel 3. The carrier supply line 9 is connected to the catalyst supply line 2 by putting, in position, a first passage 31A of the rotating body 12 of a catalyst supply apparatus 1 to supply the carrier fluid to the vessel 3 and, at the same time, the second passage 31B is connected to the catalyst inlet line 5 to fill the passage with the catalyst 7. The extra portion of the catalyst is returned to the storage tank 6 through a line 8. Then, the rotating body 12 is rotated to bring lines 9 and 2 and lines 5 and 8 into the state of disconnection to discharge the carrier fluid within the passage 31A into a discharge line 10. Then, the rotating body 12 is rotated and the lines 9 and 2 are connected to each other through the passage 31B. The catalyst 7 is pushed foward by the carrier fluid and supplied to the tank 3.

Description

【発明の詳細な説明】 本発明は、触媒全反応槽に供給する方法およびその実施
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for feeding a catalyst total reactor and an apparatus for its implementation.

従来、例えばポリオレフィンを製造するために用いるチ
ーグラー系触媒はポンプによる移送供給方法が採られる
ことが一般的であった。このようなポンプによる触媒供
給方法にあっては、触媒スラリーの濃度が高いと触媒供
給ラインを詰まらせてしまい又濃度が高いと触媒の定量
供給が困難になるなど触媒の円滑な供給ができないため
、不活性溶剤により触媒を希釈して供給せざるを得なか
った。しかしながら不活性溶剤により触媒を希釈して用
いると不活性溶剤中の不純物等により触媒活性が低下し
てしまい、しかも、後処理工程において不活性溶剤全分
離除去する必要があり、そのため多くのエネルギーヲ要
し省資源化の要請にも反するという欠点’i崩していた
Conventionally, Ziegler catalysts used for producing polyolefins, for example, have generally been supplied by pumping. In this type of catalyst supply method using a pump, if the concentration of the catalyst slurry is high, the catalyst supply line will be clogged, and if the concentration is high, it will be difficult to supply the catalyst in a constant quantity, making it impossible to supply the catalyst smoothly. However, the catalyst had to be diluted with an inert solvent before being supplied. However, if the catalyst is diluted with an inert solvent, the catalytic activity will decrease due to impurities in the inert solvent, and it is necessary to completely separate and remove the inert solvent in the post-treatment process, which requires a lot of energy. However, it also had the disadvantage of going against the call for resource conservation.

本発明の目的は、触媒全高濃度の′!1円滑に反応槽に
供給する触媒の供給方法および供給装置を提供するにあ
る、 本発明に係る供給方法は、反応槽へと流入する搬送流体
の流れ中に、互いに交差することのない2つの流路を有
する回転体全配置し、一方の流路により搬送流体が流さ
れているときには他方の流路には高濃度触媒が充填され
るようにしながら、前記回転体全回転させて搬送流体中
に前記高濃度触媒が適宜供給されるようにし、高濃度触
媒は搬送流体に搬送されて前記反応槽へと供給されるよ
うにして前記目的を達成しようとするものである。
The purpose of the present invention is to achieve a high total catalyst concentration. 1. To provide a method and a device for supplying a catalyst to a reaction tank smoothly. The supply method according to the present invention has two catalysts that do not intersect with each other during the flow of a carrier fluid flowing into a reaction tank. All rotating bodies having flow channels are arranged, and when the carrier fluid is flowing through one channel, the high concentration catalyst is filled in the other channel, and the rotating bodies are rotated fully to flow into the carrier fluid. In order to achieve the above object, the high concentration catalyst is appropriately supplied to the reactor, and the high concentration catalyst is transported by a carrier fluid and supplied to the reaction tank.

また、本発明に係る供給装置は、互いに交差することの
ない第1および第2の流路を有する回転体yca宜回紙
回転、この回転体が所定の回転角度に位置するときは第
1の流路により搬送流体の流入する搬送流体流入口と反
応槽に触媒を供給する触媒供給ラインとが連通されて搬
送流体の反応槽への流れが形成され、かつ、第2の流路
には触媒貯槽に連通された触媒流入口が連通されてこの
流路内に触媒が充填されるようにし、この状態から回転
体を所定の回転角度だけ回転させると第1の流路が搬送
流体を排除するための搬送流体排除口に連通されて流路
内の搬送流体が流路外へと排除され、更に回転体を所定
の回転角度だけ回転すると、前記第2の流路は搬送流体
流入口および触媒流出口に連通され第2の流路内の触媒
は反応槽へと流入する搬送流体の流れの中に搬送流体に
置き換えられるようにして供給されて触媒は前記搬送流
体に搬送されて触媒供給ラインを介して反応槽へと供給
されるとともに、前記第1の流路には触媒流入口が連通
されて触媒が充填されるようにして前記目的を達成しよ
うとするものである。
Further, the feeding device according to the present invention has a rotating body yca that has first and second flow paths that do not intersect with each other, and rotates the paper as needed, and when this rotating body is located at a predetermined rotation angle, the first A flow path connects a carrier fluid inlet into which a carrier fluid flows and a catalyst supply line that supplies a catalyst to a reaction tank to form a flow of the carrier fluid to the reaction tank, and a second flow path has a catalyst A catalyst inlet that communicates with the storage tank is communicated so that the catalyst is filled in this flow path, and when the rotating body is rotated by a predetermined rotation angle from this state, the first flow path removes the carrier fluid. The carrier fluid in the flow path is removed to the outside of the flow path by being communicated with the carrier fluid discharge port, and when the rotating body is further rotated by a predetermined rotation angle, the second flow path is connected to the carrier fluid inlet and the catalyst. The catalyst in the second flow path communicating with the outlet is supplied to be replaced by the carrier fluid in the flow of the carrier fluid flowing into the reaction tank, and the catalyst is carried by the carrier fluid and connected to the catalyst supply line. In order to achieve the above object, the catalyst is supplied to the reaction tank through the catalyst, and the first flow path is connected to a catalyst inlet to be filled with the catalyst.

以下、本発明の実施例全図面に基づいて説明する。Embodiments of the present invention will be described below with reference to all the drawings.

第1図には、本発明による触媒供給装置の一実施例が重
合反応プロセスに適用された場合のプロセス工程が示さ
れている。この図において、触媒供給装置1は触媒供給
ライン2を介して反応槽としての重合反応槽3と連結さ
れ、触媒供給ライン2の所定の位置には助触媒供給ライ
ン4より助触媒が適宜供給されるようになっている。
FIG. 1 shows process steps when an embodiment of the catalyst supply device according to the present invention is applied to a polymerization reaction process. In this figure, a catalyst supply device 1 is connected to a polymerization reaction tank 3 as a reaction tank via a catalyst supply line 2, and a co-catalyst is appropriately supplied to a predetermined position of the catalyst supply line 2 from a co-catalyst supply line 4. It has become so.

また、触媒供給装置1には触媒流入ライン5を介して触
媒貯槽6が連結され、触媒貯槽6内の触媒7は触媒供給
装置1に供給され、適宜必要に応じて触媒返還ライン8
により触媒貯槽6へと返還されるようになっている。さ
らに、触媒供給装置1には搬送流体供給ライン9および
搬送流体排除ライン10が連結されている。
Further, a catalyst storage tank 6 is connected to the catalyst supply device 1 via a catalyst inflow line 5, and the catalyst 7 in the catalyst storage tank 6 is supplied to the catalyst supply device 1.
The catalyst is then returned to the catalyst storage tank 6. Further, a carrier fluid supply line 9 and a carrier fluid removal line 10 are connected to the catalyst supply device 1 .

第2図には前記触媒供給装置1の外観が示され、第3図
および第4図にはそれぞれ一部を切欠いた正面図および
要部の一部を切欠いた右側面図が示されでいる。これら
の図において、略肉厚円筒状の本体11内には回転体と
しての円錐台状の弁体12が軸方向回転自在に嵌入され
、触媒供給装置1はいわゆるロータリパルプ形式に構成
されている。
FIG. 2 shows the external appearance of the catalyst supply device 1, and FIGS. 3 and 4 show a partially cutaway front view and a partially cutaway right side view of the main parts, respectively. . In these figures, a truncated cone-shaped valve body 12 as a rotating body is fitted into a substantially thick-walled cylindrical main body 11 so as to be rotatable in the axial direction, and the catalyst supply device 1 is configured in a so-called rotary pulp type. .

本体11には、搬送流体流入口13および触媒流出口1
4が図中水平方向に沿った仮想同一直線上全前記弁体1
2を中心として互いに反対方向に向って設けられ、才た
触媒流入口15および触媒返還口16が、弁体12を中
心として互いに反対方向に向って且前記搬送流体流入口
13および触媒流出口14と同一仮想水平面上でしかも
搬送流体流入口13および触媒流出口14に対して亘角
方向に向って設けられている。ここにおいて、搬送流体
流入口13には搬送流体供給ライン97jX。
The main body 11 has a carrier fluid inlet 13 and a catalyst outlet 1.
4 indicates all the valve bodies 1 on the same virtual straight line along the horizontal direction in the figure.
A round catalyst inlet 15 and a catalyst return port 16 are provided facing in opposite directions centering on the valve body 12 and facing in mutually opposite directions centering on the valve body 12, and the carrier fluid inlet 13 and catalyst outlet 14 It is provided on the same virtual horizontal plane as the carrier fluid inlet 13 and the catalyst outlet 14 in the angular direction. Here, the carrier fluid inlet 13 is provided with a carrier fluid supply line 97jX.

触媒流出口14には触媒供給ライン2が、触媒流入口1
5には触媒流入ライン5が、また触媒返還口16には触
媒返還ライン8がそれぞれ連通されている。
A catalyst supply line 2 is connected to the catalyst outlet 14 and a catalyst inlet 1 is connected to the catalyst supply line 2.
A catalyst inflow line 5 is connected to the catalyst inlet 5, and a catalyst return line 8 is connected to the catalyst return port 16.

前記弁体12は、本体11の中央部に設けられた円柱形
状の中空部21内に収納されるとともに、弁体12の底
面中心位置には円錐形状の四部22が形成され、この凹
部22に所定量だけ挿入された超硬ポール23により弁
体12は回転自在に支持されでいる。超硬ボール23は
、弁体12の下方に位置する円盤状の軸受材24の上端
面中ノしに形成された円錐形状の四部25に所定音だけ
挿入され、捷た、軸受材24は、本体11の下部に取付
けられた蓋部26と軸受材24との間に介装された圧縮
コイルはね27により図中上方に付勢されており、これ
により弁体12は図中上方に付勢された状態で支持され
ている。
The valve body 12 is housed in a cylindrical hollow part 21 provided at the center of the main body 11, and four conical parts 22 are formed at the center of the bottom surface of the valve body 12. The valve body 12 is rotatably supported by the carbide pole 23 inserted by a predetermined amount. The carbide ball 23 is inserted by a predetermined amount into the four conical portions 25 formed in the upper end surface of the disk-shaped bearing material 24 located below the valve body 12, and the bearing material 24 which has been twisted is A compression coil spring 27 interposed between the lid 26 attached to the lower part of the main body 11 and the bearing material 24 urges the valve element 12 upward in the figure. It is strongly supported.

弁体12の外周部には、短寸円筒状の案内リング28が
被嵌固定され、この案内リング28により弁体12の中
空部21内における回転が案内されるとともに、弁体1
2の上下方向の移動量が規制されている。また、案内リ
ング28の所定の位置には連通孔29が穿設されている
A short cylindrical guide ring 28 is fitted and fixed on the outer periphery of the valve body 12, and this guide ring 28 guides the rotation of the valve body 12 in the hollow portion 21, and also guides the rotation of the valve body 12 within the hollow portion 21.
The vertical movement amount of 2 is regulated. Further, a communication hole 29 is bored at a predetermined position of the guide ring 28 .

弁体12には第1の流路31Aおよび第2の流路31B
が弁体12内部において互いに交差することのないよう
穿設されている。これら2つの流路31A、31Bは図
中上方から見て互いに垂直方向に向いて配置され、流路
31A、31Bの両端開口部は弁体12の外周部におい
て略同−高さに位置され且周方向に沿って互いに90度
間隔と々るようにされでいる。これらの流路31A、3
’lBにより、弁体12が第3図に示される回転角度に
位置するときは、第1の流路31Aにより搬送流体流入
口13および触媒流出口14が連通されるとともに第2
の流路31Bにより触媒流入口15および触媒返還口1
6が連通され、この回転角度から90度だけ弁体12が
回転されると、第1の流路31Aにより触媒流入口15
および触媒返還口16が連通されるとともに、第2の流
路31Bにより搬送流体流入口13および触媒流出口1
4が連通されるようになっている。なお、前記案内リン
グ28の連通孔29は、流路31A、31Bのそれぞれ
の両端開口部の位置に設けられており、案内リング28
によって触媒7や搬送流体の流れが遮られることはない
The valve body 12 has a first flow path 31A and a second flow path 31B.
are bored inside the valve body 12 so that they do not intersect with each other. These two channels 31A and 31B are arranged to face each other in a vertical direction when viewed from above in the figure, and the openings at both ends of the channels 31A and 31B are located at approximately the same height on the outer periphery of the valve body 12. They are arranged at intervals of 90 degrees from each other along the circumferential direction. These channels 31A, 3
When the valve body 12 is positioned at the rotation angle shown in FIG.
The catalyst inflow port 15 and the catalyst return port 1 are
When the valve body 12 is rotated by 90 degrees from this rotation angle, the catalyst inlet 15 is opened by the first flow path 31A.
and the catalyst return port 16 are communicated with each other, and the carrier fluid inlet 13 and the catalyst outlet 1 are communicated with each other by the second flow path 31B.
4 are communicated. The communication holes 29 of the guide ring 28 are provided at the openings at both ends of the flow paths 31A and 31B.
The flow of the catalyst 7 and the carrier fluid is not obstructed by this.

本体11の搬送流体流入口13と触媒流入口15との中
間位置には、第5図および第6図に示されるように、搬
送流体排除口41が設けられ、弁体12が所定の回転角
度に位置されると流路31Aまたは31Bが接手80を
介して搬送流体排除ライン10に連通されるようになっ
ている。
As shown in FIGS. 5 and 6, a carrier fluid discharge port 41 is provided at an intermediate position between the carrier fluid inlet 13 and the catalyst inlet 15 of the main body 11, and the valve body 12 is rotated at a predetermined rotation angle. When the flow path 31A or 31B is located at , the flow path 31A or 31B is communicated with the carrier fluid removal line 10 via the joint 80.

弁体12にはステム51が設けられ、このステム51は
0リング52を介して本体11に回転自在に支持されて
いる。ステム51は、第2,3図に示されるように、ラ
チェット53を介して駆動軸54に連結され、駆動源と
してのアクチュエータ55によシ駆動軸54が回転され
るとステム51も回転されるが、前記ラチェット53に
よりステム51は常に一方向のみに回転されるようにな
っており、本実施例においては、図中上方から見て弁体
12は反時計方向にのみ回転するようになっている。
A stem 51 is provided on the valve body 12, and this stem 51 is rotatably supported by the main body 11 via an O-ring 52. As shown in FIGS. 2 and 3, the stem 51 is connected to a drive shaft 54 via a ratchet 53, and when the drive shaft 54 is rotated by an actuator 55 serving as a drive source, the stem 51 is also rotated. However, the ratchet 53 allows the stem 51 to always rotate in one direction only, and in this embodiment, the valve body 12 only rotates counterclockwise when viewed from above in the figure. There is.

ラチェット53の上方には、ヨーク61を介して本体1
1の上部に支持された制御部56が設けられている。制
御部56は、駆動軸54の回転数を検出するリミットス
イッチ57のほかに電磁弁58、アクチュエータ55、
スピードコントローラ60を有し、これらの作用により
弁体12は適宜回転あるいは停止されるようになってい
る。
The main body 1 is disposed above the ratchet 53 via a yoke 61.
A control section 56 supported on the upper part of 1 is provided. In addition to a limit switch 57 that detects the rotation speed of the drive shaft 54, the control unit 56 includes a solenoid valve 58, an actuator 55,
A speed controller 60 is provided, and the valve body 12 is rotated or stopped as appropriate by the action of the speed controller 60.

なお、第3図に示されるように、弁体12には弁体12
の上端面側および底面側を連通する第1の調整穴71が
穿設されるとともに、本体11には触媒流出口14およ
び中空部21全連通する第2の調整穴72が穿設され、
これらの調整穴71゜72により弁体12の周囲の圧力
調整がはかられている。
Note that, as shown in FIG. 3, the valve body 12 has a
A first adjustment hole 71 that communicates between the upper end surface side and the bottom surface side is formed, and a second adjustment hole 72 that communicates with the catalyst outlet 14 and the hollow portion 21 is formed in the main body 11.
The pressure around the valve body 12 is adjusted by these adjustment holes 71 and 72.

次に本実施例の作用につき、第7図(4)〜(C) k
も参照して説明する。
Next, regarding the effect of this embodiment, Fig. 7 (4) to (C) k
This will also be explained with reference to

触媒貯槽6に高濃度スラリー状の触媒7を充填し、窒素
等の不活性ガスにより加圧して、槽内の内圧が重合反応
槽3よシ若干高圧と々るように維持しておく。
The catalyst storage tank 6 is filled with a catalyst 7 in the form of a highly concentrated slurry and pressurized with an inert gas such as nitrogen to maintain the internal pressure in the tank slightly higher than that of the polymerization reaction tank 3.

触媒供給装置1の回転体12が第7図(4)に示される
状態に停止されているときには、第1の流路31Aによ
り搬送流体供給ライン9と触媒供給ライン2とが連通さ
れて搬送流体が重合反応槽3へと供給される。搬送流体
としては重合反応用のモノマー自身であることが最も好
ブしい。
When the rotating body 12 of the catalyst supply device 1 is stopped in the state shown in FIG. 7(4), the carrier fluid supply line 9 and the catalyst supply line 2 are communicated with each other by the first flow path 31A, and the carrier fluid is is supplied to the polymerization reaction tank 3. Most preferably, the carrier fluid is the monomer itself for the polymerization reaction.

一方、第2の流路31Bには、触媒流入ライン5が連通
され、第2の流路31B内には触媒7が充填される。こ
の際、余分な触媒7は触媒返還ライン8により触媒貯槽
6へと戻される。
On the other hand, a catalyst inflow line 5 is communicated with the second flow path 31B, and a catalyst 7 is filled in the second flow path 31B. At this time, the excess catalyst 7 is returned to the catalyst storage tank 6 via a catalyst return line 8.

これより、回転体12を第7図中反時計方向に回転させ
て第7図CB)に示される状態にすると、搬送流体供給
ライン9と触媒供給ライン2、および、触媒流入ライン
5と触媒返還ライン8のそれぞれは一旦非連通状態とな
るとともに、第1の流路31Aは搬送流体排除ライン1
0に連通され、第1の流路31A内の搬送流体は搬送流
体排除ライン10へ排除される。一方、第2の流路31
B内には一定量の触媒7が充填された1まとなっている
From this, when the rotating body 12 is rotated counterclockwise in FIG. 7 to the state shown in FIG. 7 CB), the carrier fluid supply line 9, the catalyst supply line 2, the catalyst inflow line 5, and the catalyst return Each of the lines 8 is temporarily disconnected, and the first flow path 31A is connected to the carrier fluid removal line 1.
0, and the carrier fluid in the first flow path 31A is discharged to the carrier fluid removal line 10. On the other hand, the second flow path 31
Inside B is filled with a certain amount of catalyst 7.

さらに回転体12を反時計方向に回転させ、第7図(C
)に示される状態、すなわち第7図(4)に示される状
態から丁度90度回転して停止されると、第2の流路3
1Bにより搬送流体供給ライン9と触媒供給ライン2と
が連通され、搬送流体供給ライン9から触媒供給装置1
内に流入する搬送流体により第2の流路31B内を充填
していた触媒7は触媒供給ライン2へと押し出され、搬
送流体の流れとともに重合反応槽3へと供給される。一
方、空となった第1の流路31Aには触媒流入ライン5
が連通され、第1の流路31A内には触媒7が充填され
る。
Furthermore, the rotating body 12 is rotated counterclockwise, and as shown in FIG.
), that is, the state shown in FIG. 7(4), when the second flow path 3 is rotated exactly 90 degrees and stopped.
1B communicates the carrier fluid supply line 9 with the catalyst supply line 2, and the carrier fluid supply line 9 communicates with the catalyst supply device 1.
The catalyst 7 filling the second flow path 31B is pushed out to the catalyst supply line 2 by the carrier fluid flowing into the catalyst, and is supplied to the polymerization reaction tank 3 along with the flow of the carrier fluid. On the other hand, the catalyst inflow line 5 is in the empty first flow path 31A.
are in communication with each other, and the first flow path 31A is filled with the catalyst 7.

このようにして回転体12を適宜回転、停止させること
を繰り返していくことにより、重合反応槽3へと流入す
る搬送流体の流れの中に、適宜、所定量の触媒7が希釈
されることなく高濃度スラリー状態のままで、前記搬送
流体と置き換わるようにして供給され、触媒7は搬送流
体に搬送されて重合反応槽3へと供給される。
By repeatedly rotating and stopping the rotating body 12 as described above, a predetermined amount of the catalyst 7 is appropriately added to the flow of the carrier fluid flowing into the polymerization reaction tank 3 without being diluted. The catalyst 7 is supplied in a highly concentrated slurry state to replace the carrier fluid, and the catalyst 7 is carried by the carrier fluid and supplied to the polymerization reaction tank 3.

回転体12が第7図(4)から(B)に示される状態に
至る間は搬送流体供給ライン9と触媒供給ライン2とは
一時的に不通になるが、この間の時間は通常数秒以内の
極めて短時間であるため、触媒供給ライン2における流
れが停溜して詰フヲ起こすようなことは全く無い。なお
、回転体12は第7図(4)〜(C)に示される状態に
一旦停止される必要は必らずしも無く、回転体12を常
に連続回転しておいてもよく、回転体120回転状態は
必要に応じて適宜選択される。すなわち、流路31A、
31B内に充填される触媒7の量は一定であるから、例
えは一定流速の搬送流体に対してより多くの触媒7を供
給しようとする場合には前記制御部56の操作により回
転体12の回転数を速くすればよいし、あるいは葦だ、
制御部56の働きによυ、変動する搬送流体の流量に回
転体12の回転数を対応させて搬送流体の流量が変動し
ても常に一定の割合で触媒7が供給されるようにしても
よい。
While the rotating body 12 reaches the state shown in FIGS. 7(4) to 7(B), the carrier fluid supply line 9 and the catalyst supply line 2 are temporarily disconnected, but this period is usually within a few seconds. Since the time is extremely short, there is no possibility that the flow in the catalyst supply line 2 will stagnate and cause clogging. Note that the rotating body 12 does not necessarily need to be temporarily stopped in the states shown in FIGS. 7(4) to (C), and the rotating body 12 may be continuously rotated. The 120 rotation state is appropriately selected as necessary. That is, the flow path 31A,
Since the amount of catalyst 7 filled in 31B is constant, for example, when trying to supply more catalyst 7 to a carrier fluid with a constant flow rate, the control unit 56 can be operated to control the rotation body 12. You just need to speed up the rotation, or you can use reeds.
Even if the number of revolutions of the rotating body 12 is made to correspond to the changing flow rate of the carrier fluid by the function of the control unit 56, the catalyst 7 is always supplied at a constant rate even if the flow rate of the carrier fluid fluctuates. good.

壕だ、搬送流体表して重合反応用のモノマーを用いると
きなどは、助触媒供給ライン4より助触媒を供給して触
媒供給ライン2内において予備重合が行なわれるように
してもよい。
However, when a monomer for a polymerization reaction is used as a carrier fluid, a co-catalyst may be supplied from the co-catalyst supply line 4 and preliminary polymerization may be carried out in the catalyst supply line 2.

このような本実施例によれば次のような効果がある。This embodiment has the following effects.

触媒7を高濃度スラリーの一!まで希釈することなく極
めて円滑に重合反応槽3へと供給できる。
Catalyst 7 is one of the highly concentrated slurries! It can be extremely smoothly supplied to the polymerization reaction tank 3 without being diluted.

例えば、従来のポンプ移送により触媒を供給する方法に
あっては、ヘプタン等の不活性溶剤や固体成分の性状に
もよるが通常10’  ”体/l−不活性溶剤〜0°1
2一固体/を一不活性溶剤0範囲まで不活性溶剤で希釈
しなければならなかったが、本実施例によれば不活性溶
剤を多くとも従来の0.02 %〜2−程度しか必要で
なくなった。すなわち、従来の50倍〜5000倍の高
濃度で供給することができる。
For example, in the conventional method of supplying the catalyst by pump transfer, depending on the inert solvent such as heptane and the properties of the solid component, it is usually 10''' bodies/l-inert solvent to 0°1.
Previously, it was necessary to dilute the 2-solid with an inert solvent to a range of 0. However, according to this example, the amount of inert solvent required is at most 0.02% to 2-2% compared to the conventional method. lost. In other words, it can be supplied at a concentration 50 to 5000 times higher than conventional methods.

したがって触媒7の活性低下が防止されるばがりでなく
、後処理工程を複雑にする不活性溶剤全極力使用しない
で済むため省資源化の要請にも応じられ、製造単価の向
上にも大きく貢献することができる。凍た、生成ポリマ
ー乾燥工程での不活性溶剤に起因する製品中の揮発分を
著しく低下させることができる。
Therefore, it not only prevents the activity of the catalyst 7 from decreasing, but also eliminates the use of inert solvents that complicate the post-treatment process as much as possible, meeting the need for resource conservation and greatly contributing to lower manufacturing costs. can do. By freezing, the volatile content in the product caused by inert solvents in the drying process of the resulting polymer can be significantly reduced.

さらに、触媒Tの供給量は、回転体120回転状態を制
御することにより容易に調整することができるという効
果がある。
Furthermore, the supply amount of the catalyst T can be easily adjusted by controlling the rotation state of the rotor 120.

また、搬送流体として重合反応用のモノマー自身を用い
る場合には、搬送流体の分離工程が不要となり、しかも
、モノマー自身は重合反応物であるから任意の量全供給
することができるので、高濃度触媒スラリーを供給して
も触媒供給ライン2の閉塞を来すことは全く無い。
In addition, when using the monomer itself for the polymerization reaction as the carrier fluid, there is no need for a separation process for the carrier fluid, and since the monomer itself is a polymerization reaction product, it can be supplied in any amount in its entirety, resulting in a high concentration. Even if the catalyst slurry is supplied, the catalyst supply line 2 will not be clogged at all.

なお、上述の触媒供給装置1にあっては、流路31A、
31Bはいずれも回転体12の回転軸と垂直方向に向い
ているものとしたが、例えば拳銃の回転式弾装の如く、
回転体の複数の流路はそれぞれ回転体の回転軸と平行方
向に沿って設けられているものでもよい。
In addition, in the above-mentioned catalyst supply device 1, the flow path 31A,
31B are all oriented in a direction perpendicular to the rotational axis of the rotary body 12, but, for example, like a rotary ammunition for a handgun,
Each of the plurality of flow paths of the rotary body may be provided along a direction parallel to the rotation axis of the rotary body.

さらに上述においては、重合反応における場合について
説明したが、本発明は重合反応に限らず、触媒’klP
する化学反応工程全般に適用できる。
Further, in the above description, the case of polymerization reaction was explained, but the present invention is not limited to polymerization reaction, and the catalyst 'klP
It can be applied to all chemical reaction processes.

上述のように本発明によれば、触媒を高濃度の11円滑
に反応槽に供給する触媒の供給方法および供給装置を提
供することができる。
As described above, according to the present invention, it is possible to provide a catalyst supply method and a catalyst supply apparatus that smoothly supply a high concentration catalyst to a reaction tank.

次に、以下の実施例により本発明を更に詳細に説明する
Next, the present invention will be explained in more detail with reference to the following examples.

実施例 搬送流体として重合反応用モノマーであるプロピレンを
用い、重合反応槽3において塊状重合を行った。この際
、触媒7としては固体成分中の溶剤(ヘプタン)の割合
が50ωf%である触媒スラリー(M、に担持したTj
触媒)で、その濃度が7002#1N    =桓重量
比) 一同’CJE7.  、、ブタ・′ 酸化−グネ・つ・
であるものを用いた。触媒固体成分の性状によっては流
動性改良剤を用いてもよく、本実施例では酸化マグネシ
ウムを流動性改良剤として用いた。
EXAMPLE Bulk polymerization was carried out in a polymerization reaction tank 3 using propylene, which is a polymerization reaction monomer, as a carrier fluid. At this time, the catalyst 7 is Tj supported on a catalyst slurry (M) in which the proportion of the solvent (heptane) in the solid component is 50ωf%.
catalyst), and its concentration is 7002 #1N = weight ratio). ,,buta・′oxidation−gune・tsu・
I used something that is. A fluidity improver may be used depending on the properties of the catalyst solid component, and in this example, magnesium oxide was used as the fluidity improver.

触媒貯槽6は内容量が1tのものを用い、窒素ガスによ
り内圧’i 36 k、/!に維持するようにした。
The catalyst storage tank 6 used has an internal capacity of 1 ton, and the internal pressure is reduced to 'i 36 k, /! by nitrogen gas. I tried to maintain it.

また、搬送流体供給ライン9には液状プロピレンを流速
0.3電/秒で流した。
Further, liquid propylene was flowed through the carrier fluid supply line 9 at a flow rate of 0.3 electric/second.

流路31A、31Bの容積はともに5−1とし、回転体
12は第7図囚および(C)に示される状態にあっては
約5分間停止させ、回転動作自体は数秒間程度の比較的
迅速なものとし、1時間で12回転するようにした。し
たがって、第7図の)で示される状態に回転体12は特
に停止されないが、液状プロピレンは搬送流体排除ライ
ン10より速やかに減圧パージされてしまう。また、回
転体12の回転動作中は搬送流体供給ライン9と触媒供
給ライン2とは不通状態となるが、この間の時間は数秒
以内の極めて短いものであり、触媒供給ライン2の流速
が滞って触媒供給ライン2が閉塞してしまうことはない
The volumes of the flow paths 31A and 31B are both 5-1, and the rotating body 12 is stopped for about 5 minutes in the state shown in FIGS. It was designed to be quick, rotating 12 times in an hour. Therefore, although the rotating body 12 is not particularly stopped in the state shown in ) in FIG. 7, the liquid propylene is quickly purged under reduced pressure through the carrier fluid removal line 10. Furthermore, while the rotating body 12 is rotating, the carrier fluid supply line 9 and the catalyst supply line 2 are disconnected, but the time during this period is extremely short, within a few seconds, and the flow rate of the catalyst supply line 2 is stagnant. The catalyst supply line 2 will not be blocked.

本実施例によれば製品ポリマー中の揮発成分は0.5%
以下であった。これに対し、従来のポンプ移送によると
製品ポリマー中の揮発成分は2%であった。また、本実
施例では、ポンプ移送の場合に比し70倍のスラリー濃
度の触媒を供給することができ、その触媒活性は単位チ
タン当りの生成ポリプロピレンの量で比較して4.9倍
に達した。
According to this example, the volatile component in the product polymer is 0.5%.
It was below. In contrast, conventional pumping resulted in a volatile content of 2% in the product polymer. Furthermore, in this example, it is possible to supply a catalyst with a slurry concentration 70 times higher than in the case of pump transfer, and the catalytic activity is 4.9 times higher in terms of the amount of polypropylene produced per unit titanium. did.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による触媒供給装置が重合反応プロセス
に適用された場合の一実施例を示す概略構成図、第2図
は前記触媒供給装置の一実施例の外観を示す斜視図、第
3図は前記実施例の一部を切欠いて示す正面図、第4図
は第3図の要部を一部を切欠いて示す右側面図、第5図
は83図の一部を切欠いて示す底面図、第6図は第5図
のVt−■線に従う矢視断面図、第7図(4)〜((1
)はそれぞれ前記実施例の動作状態を示す概略構成図で
ある。 1・・・触媒供給装置、2・・・触媒供給ライン、3・
・・反応槽としての重合反応槽、5・・・触媒流入ライ
ン、6・・・触媒貯槽、7・・・触媒、9・・・搬送流
体供給ライン、10・・・搬送流体排除ライン、11・
・・本体、12・・・回転体としての弁体、13・・・
搬送流体流入口、14・・・触媒流出口、15・・・触
媒流入口、31A、31B−・・第1.第2の流路、4
1・・・搬送流体排除口、56・・・制御部。 代理人 弁理士 木 下 實 三 第1図 第2図 第4図 第6図 11、、X、ア、7f−752 第5図 第7図 (A)     (B) 43− (C) 31Aに。
FIG. 1 is a schematic configuration diagram showing one embodiment of the catalyst supply device according to the present invention applied to a polymerization reaction process, FIG. 2 is a perspective view showing the external appearance of one embodiment of the catalyst supply device, and FIG. The figure is a partially cutaway front view of the embodiment, FIG. 4 is a right side view of the main part of FIG. 3 with a partially cutout, and FIG. 5 is a bottom view of FIG. Figure 6 is a sectional view taken along the line Vt-■ in Figure 5, and Figure 7 (4) to ((1)
) are schematic configuration diagrams showing the operating states of the embodiments. 1... Catalyst supply device, 2... Catalyst supply line, 3.
... Polymerization reaction tank as a reaction tank, 5... Catalyst inflow line, 6... Catalyst storage tank, 7... Catalyst, 9... Carrier fluid supply line, 10... Carrier fluid removal line, 11・
... Main body, 12... Valve body as a rotating body, 13...
Carrier fluid inlet, 14...Catalyst outlet, 15...Catalyst inlet, 31A, 31B--1st. second flow path, 4
1... Carrier fluid discharge port, 56... Control unit. Agent Patent Attorney Minoru Kinoshita Figure 1 Figure 2 Figure 4 Figure 6 Figure 11, X, A, 7f-752 Figure 5 Figure 7 (A) (B) 43- (C) 31A.

Claims (1)

【特許請求の範囲】[Claims] (1)反応槽へと流入する搬送流体の流れ中に、互いに
交差することのない2つの流路を有する回転体を配置し
、一方の流路により搬送流体が流されているときには他
方の流路には高濃度触媒が充填されるようにするととも
に、前記回転体を回転させて搬送流体中に前記高?#度
触媒が適宜供給されるようにし、高濃度触媒は搬送流体
に搬送されて前記反応槽へと供給されるようにすること
を特徴とする触媒供給方法。 (Z)  互いに交差することの女い第1および第2の
流路を有する回転体と、触媒貯槽に連通された触媒流入
口と、反応槽に触媒全供給する触媒供給ラインへの流出
口と、搬送流体の流入する搬送流体流入口と、前記流路
内の搬送流体を排除するための搬送流体排除口とが備え
られ、前記回転体が所定の回転角度に位置するときには
第1の流路により搬送流体流入口と触媒流出口とが連通
され且第2の流路には触媒流入口が連通されるとともに
、回転体が所定角度だけ回転されると第10流路は搬送
流体排除口に連通され、更に回転体が所定角度だけ回転
されると第1の流路は触媒流入口に連通され且第2の流
路は搬送流体流入口および触媒流出口に連通されるよう
構成されていることを特徴とする触媒供給装置。
(1) A rotating body having two channels that do not intersect with each other is placed in the flow of the carrier fluid flowing into the reaction tank, and when the carrier fluid is flowing through one channel, the other flow The high-concentration catalyst is filled in the channel, and the rotating body is rotated to introduce the high-concentration catalyst into the conveying fluid. A method for supplying a catalyst, characterized in that the high concentration catalyst is appropriately supplied, and the high concentration catalyst is carried by a carrier fluid and supplied to the reaction tank. (Z) A rotating body having first and second flow paths that intersect with each other, a catalyst inlet communicating with a catalyst storage tank, and an outlet to a catalyst supply line that supplies all of the catalyst to the reaction tank. , a carrier fluid inlet into which the carrier fluid flows, and a carrier fluid outlet for discharging the carrier fluid in the flow path, and when the rotating body is located at a predetermined rotation angle, the first flow path The carrier fluid inlet and the catalyst outlet are communicated with each other, and the catalyst inlet is communicated with the second channel, and when the rotating body is rotated by a predetermined angle, the tenth channel is connected to the carrier fluid outlet. When the rotating body is further rotated by a predetermined angle, the first flow path is communicated with the catalyst inlet, and the second flow path is configured to be communicated with the carrier fluid inlet and the catalyst outlet. A catalyst supply device characterized by:
JP1034682A 1982-01-26 1982-01-26 OREFUINJUGOYOSHOKUBAISEIBUNNOKYOKYUHOHOOYOBIKYOKYUSOCHI Expired - Lifetime JPH0249322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034682A JPH0249322B2 (en) 1982-01-26 1982-01-26 OREFUINJUGOYOSHOKUBAISEIBUNNOKYOKYUHOHOOYOBIKYOKYUSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034682A JPH0249322B2 (en) 1982-01-26 1982-01-26 OREFUINJUGOYOSHOKUBAISEIBUNNOKYOKYUHOHOOYOBIKYOKYUSOCHI

Publications (2)

Publication Number Publication Date
JPS58127707A true JPS58127707A (en) 1983-07-29
JPH0249322B2 JPH0249322B2 (en) 1990-10-29

Family

ID=11747621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034682A Expired - Lifetime JPH0249322B2 (en) 1982-01-26 1982-01-26 OREFUINJUGOYOSHOKUBAISEIBUNNOKYOKYUHOHOOYOBIKYOKYUSOCHI

Country Status (1)

Country Link
JP (1) JPH0249322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314176B1 (en) * 1999-04-19 2001-11-15 조 정 래 Catalyst Injection Device for Liquid phase Polymerization
US8215028B2 (en) * 2007-05-16 2012-07-10 M-I L.L.C. Slurrification process
KR101328040B1 (en) * 2011-12-09 2013-11-13 글로벌 엔지니어링 테크놀로지 피티이. 엘티디. Catalyst supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314176B1 (en) * 1999-04-19 2001-11-15 조 정 래 Catalyst Injection Device for Liquid phase Polymerization
US8215028B2 (en) * 2007-05-16 2012-07-10 M-I L.L.C. Slurrification process
KR101328040B1 (en) * 2011-12-09 2013-11-13 글로벌 엔지니어링 테크놀로지 피티이. 엘티디. Catalyst supply

Also Published As

Publication number Publication date
JPH0249322B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
EP0428054B1 (en) Device for feeding a mud-like catalytic mixture into a polymerization reactor
US6358125B2 (en) Polishing liquid supply apparatus
US6910954B2 (en) Method of supplying slurry and a slurry supply apparatus having a mixing unit at a point of use
DK151951B (en) PLANT FOR STORAGE AND DELIVERY OF LIQUID
KR20090096426A (en) Discharge systems and methods of using the same
TWI384123B (en) A rotary pump, hydrodynamic mixer with a rotary pump, and also the use of the rotary pump for the processing of fluids
US5356599A (en) Continuous powder catalyst supply apparatus and catalyst supply system
TW201134747A (en) Fluid filling device
JPS58127707A (en) Method and apparatus for catalyst supply
US6319995B2 (en) Method of feeding dry catalyst to a polymerization reactor
US20030190200A1 (en) Power weight or volumetric or counting feeder
GB2024158A (en) Metering device
JP6538952B1 (en) Polishing fluid supply device
EP2931164B1 (en) Powder jet device for dispensing a dental material
US3967416A (en) System for compensating the unbalance of a rotating body, especially of a grinding wheel
US20180111069A1 (en) Ballast water treatment device
JP4607862B2 (en) Cartridge filter, cartridge, method of using filter in cartridge, and chemical preparation system for medical treatment
JP2010540736A (en) Method for supplying granular material to polymerization reactor
CN103998120B (en) Continuous feed metering device
CN100411723C (en) Catalyst supply device
US2733725A (en) zachariassen
KR102180282B1 (en) Gas feeding apparatus for depositing thin film and control method thereof
JPH06229400A (en) Method for supplying catalyst
JP6538953B1 (en) Polishing fluid supply device
KR20140089983A (en) Apparatus for supplying gas and processing substrate