JPS58127149A - Spectral analyzing device - Google Patents
Spectral analyzing deviceInfo
- Publication number
- JPS58127149A JPS58127149A JP1109582A JP1109582A JPS58127149A JP S58127149 A JPS58127149 A JP S58127149A JP 1109582 A JP1109582 A JP 1109582A JP 1109582 A JP1109582 A JP 1109582A JP S58127149 A JPS58127149 A JP S58127149A
- Authority
- JP
- Japan
- Prior art keywords
- amplifier
- lock
- received light
- output
- differential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003595 spectral effect Effects 0.000 title abstract 3
- 239000000126 substance Substances 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000004611 spectroscopical analysis Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- -1 that is Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/10—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
- G01J1/16—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は赤外線の共鳴吸収を利用し、−次微分 ^^
噌計測を行う分光分析方法に係り、特に微分計測を行う
際に微分受光パワー/受光パワーの除算を行う必要がな
い分光分析装置に関する。[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention utilizes resonance absorption of infrared rays, and calculates the −th order differential ^^
The present invention relates to a spectroscopic analysis method for performing differential measurement, and particularly to a spectroscopic analysis device that does not require division of differential received light power/received light power when performing differential measurement.
(至)技術の背景
近年化学工業技術などの急速外発達に伴って、例えば特
定の物質を所定の濃度のガス雰囲気中で処理する工程が
増大して来ているが、この処理工程中において、上記物
質にさらすべき被検出物としてのガスの濃度をモニター
するような必要が数多く生じて来ている。(To) Background of the Technology In recent years, with the rapid development of chemical industry technology, the number of processes in which specific substances are treated in a gas atmosphere of a predetermined concentration has increased, but during this treatment process, There is a growing need to monitor the concentration of gases as analytes to be exposed to the above substances.
このような場合には上記ガス(あるいはエアロゾ/I/
)を適宜サンプリングして来て試験を行う必要が生じる
。In such a case, the above gas (or aerosol/I/
) will need to be sampled appropriately and tested.
一方、この濃度測定には最近では光源、特にレーザが発
達して来たところから、対象ガス中に特定の波長のレー
ザ光(赤外線)を透過して該レーザ光の上記ガスによる
吸収量を求め、これからガス濃度を定量化する技術が確
立されて来ている。On the other hand, recently, light sources, especially lasers, have been developed for this concentration measurement, and laser light of a specific wavelength (infrared rays) is transmitted through the target gas to measure the amount of laser light absorbed by the gas. , technology for quantifying gas concentrations is now being established.
(Q) 従来技術と問題点
こうしたことから考えられたのが第1図の構成であって
、ガヌセ/I/GC中にはサンプリングして来た気体状
物質つまりガス(以下便宜上ガスのみを対象とする)が
封入されてあシ、レーザLから放射された光は矢印で示
した光路Hをたどって上記ガス七/L/GC中に入射す
る。この光はガスセルGO中のガスによる吸収に基づい
て減衰を生じるので、該ガスセ1vcrcから出て来た
光の量は低下しているのであるが、この光を受光素子り
で光電変換して前置増幅器Aの出力端子に電気信号量と
して現わし、ガスが無かった場合、つまシガスセルがか
らであった場合と上記のようにガスが充満している場合
とを比較して、該ガスの濃度を決定することが行われて
いた。ただし第1図中におけるREGは設定によシ出力
が変化する電源、O20は正弦波発生器、Sは上記電源
REGの出力に正弦波発生器O8Cの出力を重畳するだ
めの重畳器、lはレーザ駆動電源であシ、OHは光チョ
ッパ、壕だ工はレーザ駆動電流である。(Q) Prior art and problems Based on these considerations, the configuration shown in Figure 1 was created, in which gaseous substances, that is, gases sampled during Ganuse/I/GC (hereinafter, for convenience, only gases are ) is enclosed, and the light emitted from the laser L follows the optical path H indicated by the arrow and enters the gas 7/L/GC. This light is attenuated due to absorption by the gas in the gas cell GO, so the amount of light coming out of the gas cell GO is decreasing, but this light is photoelectrically converted by the light receiving element and forwarded. The concentration of the gas is expressed as an electrical signal at the output terminal of the stationary amplifier A, and the concentration of the gas is compared when there is no gas, when the gas cell is empty, and when it is full of gas as described above. was being determined. However, in Fig. 1, REG is a power supply whose output changes depending on the settings, O20 is a sine wave generator, S is a superimposition device that superimposes the output of the sine wave generator O8C on the output of the power supply REG, and l is a The laser drive power supply is the laser drive power supply, OH is the optical chopper, and the trench cutter is the laser drive current.
上記ガス濃度をモニタするには、前置増幅器Aの出力端
子に現われた電気信号を第1および第2のロックイン増
幅器LAI、LA2にそれぞれ導入し、経路イおよび口
を介して正弦波発生器○SCからの信号とチョッパCH
からの信号のそれぞれを上記各ロックイン増幅器LAI
、LA2に導入するのであるが、こうすれば第2のロッ
クイン増幅器LA2は微分モードで働くのに対して、第
1のロックイン増幅器LAlは通常モードで働くので、
それぞれのロックイン増幅器LA1.LA2の各出力に
は微分受光パワーPおよび受光パワーPがそれぞれ出力
される。To monitor the above gas concentration, the electrical signal appearing at the output terminal of preamplifier A is introduced into the first and second lock-in amplifiers LAI, LA2, respectively, and is connected to a sine wave generator via paths A and A. ○Signal from SC and chopper CH
Each of the signals from the lock-in amplifier LAI
, LA2. In this way, the second lock-in amplifier LA2 works in the differential mode, while the first lock-in amplifier LA1 works in the normal mode.
Each lock-in amplifier LA1. Differential received light power P and received light power P are output to each output of LA2, respectively.
ところで微分計測を行うにはこの2つの出力P′および
Pの商を求めなければなら々いから、これら出力は割算
器り工Vの2つの入力にそれぞれ導入すると、その出力
2にはPl’/Pなる値が表われてここに赤外線のガス
による吸収量のゆらぎを無くした測定が可能となる。By the way, in order to perform differential measurement, it is necessary to find the quotient of these two outputs P' and P, so if these outputs are respectively introduced into the two inputs of the divider V, the output 2 will have Pl. The value '/P appears, and it becomes possible to perform measurements without fluctuations in the amount of infrared rays absorbed by the gas.
しかるに割算器り工■として市販の除算器を用いると小
型にまとまシはするが、ダイナミックレンジがいたって
狭く、その上に割算精度が良好でないといつだ問題が生
じる。そのために上記P。However, if a commercially available divider is used as a divider, it can be made compact, but the dynamic range is extremely narrow, and if the division accuracy is not good, problems will always arise. For that reason, the above P.
P′なる量をそれぞれA/D変換器に通した後に電算機
を用いて割算を行うと上記の問題は解消するが、装置全
体の構成が大きくなってしまうという欠点がめった。The above problem can be solved by using a computer to perform division after passing each quantity P' through an A/D converter, but it often has the disadvantage that the overall structure of the device becomes large.
(C1) 発明の目的
本発明は、上記従来の欠点に鑑みてなされたもので、微
分計測法を行う際に受光パワーが一定となるように電気
信号の増幅度を制御することによって、特に除算を必要
としないよシ簡単な分光分析装置を提供することを目的
とするものである。(C1) Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks of the conventional art. The purpose of this invention is to provide a simple spectroscopic analysis device that does not require
(e) 発明の構成
そしてこの目的は、本発明によれば、波長可変なレーザ
と受光素子間に気体状の被測定物質の存在空間を通過す
る光路を形成すると共に、上記受光素子で光電変換され
た信号を増幅する前置増幅器と当該前置増幅器の後段に
つながる2つのロックイン増幅器とをそなえ、微分受光
パワーと受光、パワーとの比から被測定物質の濃度を計
測する構を
成において、上記受光パワーに対応した一方のロックイ
ン増幅器の出力端子よシ前記前置増幅器に対して負帰還
を設け、他方のロックイン増幅器の出力端子よシ微分受
光と受光パワーとの比に対応した信号を直接数シ出すよ
うにしたことを特徴とする分光分析装置を提供すること
によって達成される。(e) Structure and object of the invention According to the present invention, an optical path passing through a space in which a gaseous substance to be measured exists is formed between a wavelength tunable laser and a light receiving element, and the light receiving element performs photoelectric conversion. A preamplifier for amplifying the received signal and two lock-in amplifiers connected to the rear stage of the preamplifier are provided, and the concentration of the substance to be measured is measured from the ratio of the differential received light power and the received light power. , Negative feedback is provided to the preamplifier from the output terminal of one lock-in amplifier corresponding to the received light power, and negative feedback is provided to the output terminal of the other lock-in amplifier corresponding to the ratio of the differential received light and the received light power. This is achieved by providing a spectroscopic analyzer characterized in that it directly outputs several signals.
(f) 発明の実施例
第2図は本発明に係る分光分析装置の回路系統図の一実
施例を示したもので、第1図と同等部位には同一符号を
付して示しである。(f) Embodiment of the Invention FIG. 2 shows an embodiment of a circuit diagram of a spectroscopic analyzer according to the present invention, and the same parts as in FIG. 1 are denoted by the same reference numerals.
この第2図の回路系統図が第1図と異なる所は、割算器
り工■が該系統図中になく、そのかわシに第1のロック
イン増幅器LAlの出力端子91点は第2のロックイン
増幅器LA2の出力端子92点とは分かれて、自動利得
調整型増幅器4の制御端子Q点に接続される負帰還路ハ
を有することである。The difference between the circuit diagram in FIG. 2 and that in FIG. A negative feedback path C is provided which is separated from the 92 output terminals of the lock-in amplifier LA2 and connected to the control terminal Q of the automatic gain adjustment amplifier 4.
したがって、レーザLに流れる駆動電流工に微小交流信
号が重畳し、その結果、周波数変調が施ヨツパCH,ガ
スセルGCを経て受光素子りで光電変換された」−で自
動利得調整型増幅器4で増幅されて、点Rに現われるが
、この信号は第1のロックイン増幅器LAIの出力端子
P1に現われ、経路ハを介して再び自動利得調整型増幅
器4の制御端子Qに加わるため、点Plに現われる受光
パワーPは一定値に保たれる。Therefore, a minute alternating current signal is superimposed on the drive current flowing to the laser L, and as a result, frequency modulation is applied and photoelectric conversion is performed by the photodetector through the laser channel CH, gas cell GC, and is amplified by the automatic gain adjustment type amplifier 4. This signal appears at the output terminal P1 of the first lock-in amplifier LAI and is again applied to the control terminal Q of the automatic gain control amplifier 4 via the path C, so that it appears at the point Pl. The received light power P is kept at a constant value.
このため、微分受光パワ一対受光パワー、すなわちP/
Pにおける分母の受光パワーPは一定値と彦って正規化
されるので、ガス濃度を計測するには、点P2すなわち
第2図の装置の出力端子3の出力電圧をたとえばXYレ
コーダなどに描かせるだけでよいことに々シ、測定のた
びごとにP’/Pの演算を行う必要性はなくなる。Therefore, the differential received light power is the pair of received light power, that is, P/
Since the received light power P in the denominator at P is normalized to a constant value, in order to measure the gas concentration, the output voltage at point P2, that is, the output terminal 3 of the device in Fig. 2, is drawn on an XY recorder, etc. There is no need to calculate P'/P every time a measurement is made.
ちなみにこの装置を用いての測定中には、ロックイン増
幅器LAIの出力変動に対して自動利得調整型増幅器4
の利得を変化させるのであるから、受光パワーP1すな
わち第2図中の点Rの電圧は厳密にいえば変動する。し
かし、自動利得調整型増幅器4に到る帰還蓋を大きくし
ておくことによって、受光パワーPの変動を少なくしこ
の変動を押えておくならばよシ高い精度で測定ができる
。By the way, during measurements using this device, the automatic gain adjustment type amplifier 4
Strictly speaking, the received light power P1, that is, the voltage at point R in FIG. 2 changes. However, if the feedback lid to the automatic gain adjustment type amplifier 4 is enlarged to reduce fluctuations in the received light power P, and if this fluctuation is suppressed, measurement can be performed with higher accuracy.
(2)発明の効果
以上、詳細に説明したように、本発明の分光分析装置を
用いれば微分計測法によって気体状物質の検出を行う際
に、P/Pの除算を行う必要がなくなるのでよシ簡単に
計測が可能となるため実用上多大の効果が期待できる。(2) Effects of the Invention As explained in detail above, when using the spectroscopic analyzer of the present invention, there is no need to divide P/P when detecting gaseous substances by differential measurement. Since it can be easily measured, great practical effects can be expected.
第1図は従来の分光分析装置の要部ブロックダイヤグラ
ムを示す図、第2図は本発明に係る分光分析装置の要部
ブロックダイヤグラムを示す図である。
図面において、■はレーザ駆動電源、2は割算器り工■
の出力端子、8はロックイン増幅器LA2の出力端子、
Dは受光素子、GOはガスセル、CHはチョッパ、Hは
光路、■はレーザ駆動電流、Lはレーザ、ハは負帰還路
をそれぞれ示す。FIG. 1 is a diagram showing a block diagram of a main part of a conventional spectroscopic analyzer, and FIG. 2 is a diagram showing a block diagram of a main part of a spectroscopic analyzer according to the present invention. In the drawing, ■ is the laser drive power supply, and 2 is the dividing machine ■
8 is the output terminal of the lock-in amplifier LA2,
D is a light receiving element, GO is a gas cell, CH is a chopper, H is an optical path, ■ is a laser drive current, L is a laser, and C is a negative feedback path.
Claims (1)
存在空間を通過する光路を形成すると共に、上記受光素
子で光電変換された信号を増幅する前置増幅器と当該前
置増幅器の後段につながる2つのロックイン増幅器とを
そなえ、微分受光パワーと受光パワーとの比から被測定
物質の濃度を計測する構成において、上記受光パワーに
対応した一方のロックイン増幅器の出力を一定に維持す
るよう当該ロックイン増幅器の出力端子よシ前記前置増
幅器に対して負帰還をほどこす帰還路を設け、他方のロ
ックイン増幅器の出力端子よシ微分受光と受光パワーと
の比に対応した信号を直接取り出すようにしたことを特
徴とする分光分析装置。A preamplifier that forms an optical path that passes through a space where a gaseous substance to be measured exists between the wavelength-tunable laser and the photodetector, and amplifies the signal photoelectrically converted by the photodetector, and a preamplifier that is located downstream of the preamplifier. In a configuration that includes two connected lock-in amplifiers and measures the concentration of a substance to be measured from the ratio of the differential received light power and the received light power, the output of one lock-in amplifier corresponding to the above-mentioned received light power is maintained constant. A feedback path that provides negative feedback to the preamplifier is provided from the output terminal of the lock-in amplifier, and a signal corresponding to the ratio of the differential received light and the received light power is directly sent to the output terminal of the other lock-in amplifier. A spectroscopic analysis device characterized in that it can be taken out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1109582A JPS58127149A (en) | 1982-01-26 | 1982-01-26 | Spectral analyzing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1109582A JPS58127149A (en) | 1982-01-26 | 1982-01-26 | Spectral analyzing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58127149A true JPS58127149A (en) | 1983-07-28 |
Family
ID=11768433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1109582A Pending JPS58127149A (en) | 1982-01-26 | 1982-01-26 | Spectral analyzing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58127149A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4726679A (en) * | 1986-03-03 | 1988-02-23 | The Perkin-Elmer Corporation | Flame atomic absorption spectrophtometer including apparatus and method for logarithmic conversion |
-
1982
- 1982-01-26 JP JP1109582A patent/JPS58127149A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4726679A (en) * | 1986-03-03 | 1988-02-23 | The Perkin-Elmer Corporation | Flame atomic absorption spectrophtometer including apparatus and method for logarithmic conversion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3459564B2 (en) | Gas spectrometer and spectrometer | |
US4410273A (en) | Scanning laser spectrometer | |
US4531834A (en) | Fluorimeter | |
US6043881A (en) | Sample cell for gaseous emission spectroscopy | |
WO2023088137A1 (en) | Hemoglobin concentration measurement apparatus and measurement method | |
JPS608735B2 (en) | How to measure contaminated gas | |
US4027972A (en) | Gas analyzer method and apparatus | |
JP2844503B2 (en) | Gas measurement device | |
KR100316487B1 (en) | Method of spectrochemical analysis of impurity in gas | |
US3994592A (en) | Method of determining the concentration ratio of two substances | |
JPS58127149A (en) | Spectral analyzing device | |
JPH0416749A (en) | Method and apparatus for measuring ozone concentration | |
JP2792782B2 (en) | Gas concentration measuring method and its measuring device | |
EP0105659A2 (en) | Carbon monoxide detectors | |
US20030147078A1 (en) | Method for the long-term stable and well-reproducible spectrometric measurement of the concentrations of components of aqueous solutions, and device for carrying out said method | |
JP3206870B2 (en) | Method and apparatus for measuring nitrogen gas or water vapor in argon gas, method and apparatus for simultaneous measurement of nitrogen gas and water vapor | |
EP0015068B1 (en) | Non-dispersive infrared analyzers | |
US4922747A (en) | Method for the determination of volative components in continuous flow condensed phase sample stream | |
JPS6218010B2 (en) | ||
KR100389078B1 (en) | A spectroscopic analysis method for isotope by using a semiconductor laser | |
JPS59162424A (en) | Phase compensating type ratio spectrophotometer | |
JP3179858B2 (en) | Single beam gas analyzer | |
CN110231313B (en) | Online zero calibration method and device for laser gas analyzer | |
JPS60115817A (en) | Measuring device for response characteristic of far infrared detector | |
JP2002350337A (en) | Laser spectroscopic analysis method and apparatus |