JPS58126830A - Preparation of 3-hydroxyacetophenone - Google Patents

Preparation of 3-hydroxyacetophenone

Info

Publication number
JPS58126830A
JPS58126830A JP57008264A JP826482A JPS58126830A JP S58126830 A JPS58126830 A JP S58126830A JP 57008264 A JP57008264 A JP 57008264A JP 826482 A JP826482 A JP 826482A JP S58126830 A JPS58126830 A JP S58126830A
Authority
JP
Japan
Prior art keywords
reaction
isopropylacetophenone
hydroxyacetophenone
present
acetylcumyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57008264A
Other languages
Japanese (ja)
Inventor
Einosuke Fujimoto
栄之助 藤本
Yasumasa Takahashi
高橋 予正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57008264A priority Critical patent/JPS58126830A/en
Publication of JPS58126830A publication Critical patent/JPS58126830A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare the titled compound, in short steps, by using the relatively easily available 3-isopropylacetophenone as a starting material, oxidizing the material in the presence of a peroxide catalyst, and decomposing the resultant 3-acetylcumyl hydroperoxide under acidic conditions. CONSTITUTION:3-Isopropylacetophenone obtained by the reaction of acetophenone with propylene or isopropyl halide in the presence of Friedel-Crafts catalyst, is oxidized in the presence of 0.01-0.5mol of a peroxide catalyst (e.g. t- butyl peracetate) per 1mol of the 3-isopropylacetophenone in an inert solvent or in the absence of solvent, and the resultant 3-acetylcumyl hydroperoxide is subjucted to the acidic treatment decomposition to obtain objective 3-hydroxyacetophenone. The oxidation reaction can be carried out by the radiation of ultraviolet rays as well as heating at 50-200 deg.C. USE:Raw material of pharmaceuticals, agricultural chemicals, dyes, etc.

Description

【発明の詳細な説明】 本発明は3−ヒドロキシアセトフェノンの新規な製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing 3-hydroxyacetophenone.

本発明方法によって製造される3−ヒドロキシアセトフ
ェノンは、医薬、農薬、染料等の合成出発原料として極
めて重要な物質である。しかしながら、従来、3−ヒド
ロキシアセトフェノンは極めて複雑な多段階の反応によ
って製造され、その製造方法は工業的に有利な方法とは
云えなかった。
3-Hydroxyacetophenone produced by the method of the present invention is an extremely important substance as a starting material for the synthesis of medicines, agricultural chemicals, dyes, and the like. However, 3-hydroxyacetophenone has conventionally been produced by an extremely complicated multi-step reaction, and the production method cannot be said to be industrially advantageous.

即ち、従来法は、 (1)アセトフェノンのニトロ化反応、(2)還元反応
によるアミノ化、 (3)ジアゾ化、 (4)酸性処理分解による3−ヒドロキシ化、という四
段階反応によるものであった。
That is, the conventional method involves a four-step reaction: (1) nitration reaction of acetophenone, (2) amination by reduction reaction, (3) diazotization, and (4) 3-hydroxylation by acidic treatment and decomposition. Ta.

従って、本発明の目的は、このような従来の3−ヒドロ
キシアセトフェノンの複雑な製造方法の問題点を解決し
、極めて簡単で短い反応過程により3−ヒドロキシアセ
トフェノンを効果的に製造する方法を提供することにあ
る。
Therefore, an object of the present invention is to solve the problems of the conventional complicated production method of 3-hydroxyacetophenone and to provide a method for effectively producing 3-hydroxyacetophenone through an extremely simple and short reaction process. There is a particular thing.

本発明に従った3−ヒドロキシアセトフェノンの製造方
法は、3−イソプロピルアセトフェノンを不活性溶媒中
又は無溶媒で、パーオキサイド触媒の存在下に酸化反応
させ、一旦3−アセチルクミルハイドロパーオキサイド
を生成させ、更に酸性処理分解することから成る。
The method for producing 3-hydroxyacetophenone according to the present invention involves oxidizing 3-isopropylacetophenone in an inert solvent or without a solvent in the presence of a peroxide catalyst to once produce 3-acetylcumyl hydroperoxide. The process consists of decomposition and further decomposition by acid treatment.

本発明の出発原料である3−イソプロピルアセトフェノ
ンは、アセトフェノンとプロピレン又はイソプロピルハ
ライドをフリーデルタラット触媒、例えば塩化アルミ等
を使って反応させることにより、比較的容品に合成する
ことができる。この場合に、反応転化率を上げ過ぎると
、3.5−ジイソプロピルアセトフェノンの副生量が増
大スるが、これも反応系へ戻して循環使用することによ
って再び3−イソプロピルアセトフェノンに返すことが
できる。
3-isopropylacetophenone, which is the starting material of the present invention, can be synthesized in a relatively simple manner by reacting acetophenone with propylene or isopropyl halide using a free delta rat catalyst such as aluminum chloride. In this case, if the reaction conversion rate is increased too much, the amount of by-product 3,5-diisopropylacetophenone will increase, but this can also be returned to 3-isopropylacetophenone by returning it to the reaction system and recycling it. .

本発明方法において使用することができるパーオキサイ
ド触媒は多数あるが、その代表的なものを、分解温度と
共に、以下の第1表にかかげる。
There are many peroxide catalysts that can be used in the method of the present invention, and representative ones are listed in Table 1 below, along with their decomposition temperatures.

以下余白 本発明方法の反応過程は、次の通りであり、この反応式
から本発明方法が極めて簡単な反応であることが明らか
であろう。
The reaction process of the method of the present invention is as follows, and it is clear from this reaction formula that the method of the present invention is an extremely simple reaction.

本発明方法における酸化反応温度は、使用するパーオキ
サイドの種類によって異なるが、第1表に示した分解温
度よりも若干低い温度を選んだ方が反応の選択率が高く
なるので好ましい。例えば、アゾビスイソブチロニトリ
ルの場合は60’Cないし70℃が適当であり、ジクミ
ルパーオキサイドを使用するばあいには90℃前後の反
応温度が好、ましい。
The oxidation reaction temperature in the method of the present invention varies depending on the type of peroxide used, but it is preferable to select a temperature slightly lower than the decomposition temperature shown in Table 1 because the selectivity of the reaction will be higher. For example, in the case of azobisisobutyronitrile, a reaction temperature of 60'C to 70°C is suitable, and when dicumyl peroxide is used, a reaction temperature of around 90°C is preferred.

一般的にいえば、本発明方法における酸化反応温度は5
0℃ないし200℃の範囲内に選定するのが好ましい。
Generally speaking, the oxidation reaction temperature in the method of the present invention is 5
It is preferable to select the temperature within the range of 0°C to 200°C.

換言すれば、この範囲内の温度で反応を進行させると、
反応転化率を50%以内に制御することが容易になる。
In other words, if the reaction proceeds at a temperature within this range,
It becomes easy to control the reaction conversion rate within 50%.

転化率が50%を超えると、副反応の進行する割合が増
大し、特に原料アセトフェノンのアセチル基が攻撃を受
け、選択率が低下する傾向にある。
When the conversion rate exceeds 50%, the rate at which side reactions proceed increases, and in particular, the acetyl group of the raw material acetophenone is attacked, and the selectivity tends to decrease.

本発明方法においては、温度を加えるだけでなく、紫外
線を照射することによっても反応を容易に促進させるこ
とができる。特に触媒としてジ−t−ブチルパーオキサ
イド及びアゾビスイソブチロニトリル等を使用した場合
に、紫外線照射の効果が著しい。紫外線照射を併用した
場合には、触媒としてはパーオキサイド類だけでなく、
ベンゾフェノン等のケトン類も有効になってくる。
In the method of the present invention, the reaction can be easily promoted not only by applying temperature but also by irradiating with ultraviolet rays. In particular, when di-t-butyl peroxide, azobisisobutyronitrile, or the like is used as a catalyst, the effect of ultraviolet irradiation is remarkable. When UV irradiation is used together, not only peroxides can be used as catalysts, but also
Ketones such as benzophenone are also effective.

本発明方法における酸化反応は不活性溶媒又は無溶媒で
実施できる。
The oxidation reaction in the method of the present invention can be carried out in an inert solvent or without a solvent.

本発明方法において使用することができる不活性溶媒と
しては、例えばシクロヘキサン、シクロヘキセン、ベン
ゼン、クロロベンゼン、ニトロベンゼン、アセトニトリ
ル、トリエチルアミン、N。
Inert solvents that can be used in the process of the invention include, for example, cyclohexane, cyclohexene, benzene, chlorobenzene, nitrobenzene, acetonitrile, triethylamine, N.

N−ジメチルアニリン、テトラヒドロフラン、t−ブチ
ルアルコール、t−アミルアルコール、安息香酸エチル
及び酢酸などが好ましい。
Preferred are N-dimethylaniline, tetrahydrofuran, t-butyl alcohol, t-amyl alcohol, ethyl benzoate and acetic acid.

本発明方法の酸化反応の補助材料である酸素は、純粋な
酸素ガスとして供給してもよく、また空気そのままで使
用してもよい。反応の圧力は常圧ないし加圧下であって
もよいが、20気圧以上に加圧しても特に反応選択率が
そのために向上することはない。
Oxygen, which is an auxiliary material for the oxidation reaction in the method of the present invention, may be supplied as pure oxygen gas, or may be used as air. The reaction pressure may be normal pressure or elevated pressure, but even if the pressure is increased to 20 atmospheres or more, the reaction selectivity will not be particularly improved.

この酸化反応の特徴は、反応転化率を適正に制御すれば
、はとんど定量的に酸素を吸収することである。この事
実もまた本発明方法の反応選択性が極めて高いことを示
している。
A feature of this oxidation reaction is that if the conversion rate of the reaction is properly controlled, oxygen can be absorbed almost quantitatively. This fact also shows that the reaction selectivity of the method of the present invention is extremely high.

本発明方法における酸化反応によって生成した純度の高
い3−アセチルクミルハイドロパーオキサイドは、酸性
雰囲気下において極めて容易に分解し、目的とする3−
ヒドロキシアセトフェノン及びアセトンを生成する。
The highly pure 3-acetylcumyl hydroperoxide produced by the oxidation reaction in the method of the present invention is extremely easily decomposed in an acidic atmosphere, and the desired 3-acetyl cumyl hydroperoxide is
Produces hydroxyacetophenone and acetone.

この酸性処理に使用する酸は、例えば塩酸、硫酸、硝酸
及びリン酸等の一般的な無機酸でよい。
The acids used in this acidic treatment may be common inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.

このような酸性水溶液の中に酸化反応系全体を投入し攪
拌することによって3−アセチルクミルハイドロパーオ
キサイドは分解反応を行なうが、その際反応系の親水性
を増すために、アルコールを添加してもよく、また適切
な乳化剤を使用してもよい。
By pouring the entire oxidation reaction system into such an acidic aqueous solution and stirring, 3-acetylcumyl hydroperoxide undergoes a decomposition reaction. At this time, alcohol is added to increase the hydrophilicity of the reaction system. Also, suitable emulsifiers may be used.

酸性の程度、即ちpHは、3ないしlの範囲が好ましい
、高い温度のもとであまり強い酸性にすると、生成した
3−ヒドロキシアセトフェノンの一部がアルドール縮合
により、三量化することがあるので注意が必要である。
The degree of acidity, that is, the pH, is preferably in the range of 3 to 1. Be careful, if the acidity is too strong at high temperatures, a part of the generated 3-hydroxyacetophenone may be trimerized by aldol condensation. is necessary.

上記、酸性処理分解反応はほとんど定量的に進行する。The above acidic treatment decomposition reaction proceeds almost quantitatively.

以上、本発明の内容を詳細に説明して来たが、更に本発
明の特徴を明確にするために、以下に実層側を示し、本
発明の製造方法を更に具体的に説明する。しかしながら
、本発明の範囲をこれらの実施例に限定するもの−でな
いことはいうまでもない。
The contents of the present invention have been explained in detail above, but in order to further clarify the features of the present invention, the actual layer side will be shown below and the manufacturing method of the present invention will be explained in more detail. However, it goes without saying that the scope of the present invention is not limited to these examples.

実施例1 容1250 m lのフラスコに攪拌機を取り付け、内
部を完全に酸素置換しシールする。このフラスコ中に0
.18モルの3−イソプロピルアセトフェノンと100
m1のクロルベンゼンを装入し、0、0075モルのア
ゾビスイソブチロニトリルを添加し、十分に攪拌しなが
ら、反応を65℃に保ち5時間反応させた。この間に0
.047モルの酸素を吸収した。反応終了後、塩酸でρ
旧、5に調整したIAの酸性水溶液中に、上で得られた
反応液を投入し、乳化状態になるまで激しく攪拌し、約
1時間分解させた。
Example 1 A flask with a volume of 1250 ml is equipped with a stirrer, the inside of the flask is completely replaced with oxygen, and the flask is sealed. 0 in this flask
.. 18 moles of 3-isopropylacetophenone and 100
ml of chlorobenzene was charged, 0,0075 mol of azobisisobutyronitrile was added, and the reaction was maintained at 65° C. for 5 hours with thorough stirring. During this time 0
.. 047 moles of oxygen were absorbed. After the reaction is complete, remove ρ with hydrochloric acid.
The reaction solution obtained above was poured into an acidic aqueous solution of IA that had been adjusted to a concentration of 5, and was vigorously stirred until it became an emulsified state, and was allowed to decompose for about 1 hour.

分解終了後静置して二層分離させ、有機層をガスクロ分
析したところ、反応転化率は26.1%であり、3−ヒ
ドロキシアセトフェノンの生成選択率は95.7%であ
った。
After the decomposition was completed, the mixture was allowed to stand to separate into two layers, and the organic layer was analyzed by gas chromatography. The reaction conversion rate was 26.1%, and the selectivity for 3-hydroxyacetophenone production was 95.7%.

実施例2〜5 パーオキサイド触媒及びその使用量、溶媒、反応温度並
びに反応時間を下記第2表に示すように変化させて実施
例1と同様の反応を実施した。
Examples 2 to 5 Reactions similar to those in Example 1 were carried out by changing the peroxide catalyst, its usage amount, solvent, reaction temperature, and reaction time as shown in Table 2 below.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

以下余白 声Margin below voice

Claims (2)

【特許請求の範囲】[Claims] 1.3−イソプロピルアセトフェノンを不活性溶媒中又
1ま無溶媒で、パーオキサイド触媒の存在下に酸化反応
させ、一旦3−アセチルクミルノ\イドロバ−オキサイ
ドを生成させ、更に酸性処理分解することを特徴とする
3−ヒドロキシアセトフェノンを製造する方法。
1. 3-isopropylacetophenone is subjected to an oxidation reaction in an inert solvent or without a solvent in the presence of a peroxide catalyst to once generate 3-acetylcumylhydrobar oxide, which is then further decomposed by acid treatment. A method for producing characterized 3-hydroxyacetophenone.
2.3−イソプロピルアセトフェノン1モルに対して、
パーオキサイド触媒を0.01モルないし0.5モルの
範囲で使用する特許請求の範囲第1項記載の製造方法。 3、酸化反応の転化率を50%以下に制御する特許請求
の範囲第1項記載の製造方法。
2. For 1 mole of 3-isopropylacetophenone,
The manufacturing method according to claim 1, wherein the peroxide catalyst is used in an amount of 0.01 mol to 0.5 mol. 3. The manufacturing method according to claim 1, wherein the conversion rate of the oxidation reaction is controlled to 50% or less.
JP57008264A 1982-01-23 1982-01-23 Preparation of 3-hydroxyacetophenone Pending JPS58126830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008264A JPS58126830A (en) 1982-01-23 1982-01-23 Preparation of 3-hydroxyacetophenone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008264A JPS58126830A (en) 1982-01-23 1982-01-23 Preparation of 3-hydroxyacetophenone

Publications (1)

Publication Number Publication Date
JPS58126830A true JPS58126830A (en) 1983-07-28

Family

ID=11688288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008264A Pending JPS58126830A (en) 1982-01-23 1982-01-23 Preparation of 3-hydroxyacetophenone

Country Status (1)

Country Link
JP (1) JPS58126830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0149176A2 (en) * 1983-12-20 1985-07-24 Sumitomo Chemical Company, Limited Process for producing m-hydroxyacetophenone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0149176A2 (en) * 1983-12-20 1985-07-24 Sumitomo Chemical Company, Limited Process for producing m-hydroxyacetophenone

Similar Documents

Publication Publication Date Title
FR2887248A1 (en) Preparing dicarboxylic acids by oxidation of a hydrocarbon with e.g. oxygen, comprises oxidizing hydrocarbon, extracting diacids, recovering diacids and recycling organic phase recovered at the end of oxidation
JPS58192839A (en) Cyclohexanol and manufacture
US9670123B2 (en) Process for preparation of unsaturated ketone
JPS62294636A (en) Production of 2-methyl-1,4-naphthoquinone
BE1009990A3 (en) Heteropolyoxometallates microporous and method of making.
JPS58126830A (en) Preparation of 3-hydroxyacetophenone
US5082973A (en) Process for the preparation of bis(4-chlorophenyl) sulfone
WO2005110962A1 (en) Process for producing adipic acid
JPH0354656B2 (en)
JP2841696B2 (en) Method for producing cyclohexanone and cyclohexanol
HU207706B (en) Process for producing alpha-omega-diacids
JP3282372B2 (en) Piperonal manufacturing method
EP0527642B1 (en) Process for simultaneously producing lactone and aromatic carboxylic acid
JPS6345666B2 (en)
JPS63104932A (en) Post treatment of reaction mixture containing cyclohexylhydroperoxide
JPH02200653A (en) Preparation of aldehyde from primary alcohol
CN108440289B (en) Method for preparing pyruvate by water-phase catalytic oxidation of lactate
JPH01117859A (en) Production of aromatic percarboxylic acid
JPS62298546A (en) Production of anisaldehyde
JPH0449261A (en) Production of 2-alkoxycyclohexanol
JPS58120507A (en) Continuous manufacture of hydrazine
FR2643633A1 (en) PROCESS FOR HYDROXYLATION OF PHENOLS AND PHENOL ETHERS
US3947490A (en) Process for preparing omega-formyloxy-alkanals
US20040073068A1 (en) Method for preparing cyclohexyl phenyl ketone from 1,3- butadiene and acrylic acid
JPH08198795A (en) Production of senecioaldehyde