JPS58125653A - Manufacture of calcium silicate shape - Google Patents

Manufacture of calcium silicate shape

Info

Publication number
JPS58125653A
JPS58125653A JP634782A JP634782A JPS58125653A JP S58125653 A JPS58125653 A JP S58125653A JP 634782 A JP634782 A JP 634782A JP 634782 A JP634782 A JP 634782A JP S58125653 A JPS58125653 A JP S58125653A
Authority
JP
Japan
Prior art keywords
calcium silicate
molded body
aqueous slurry
weight
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP634782A
Other languages
Japanese (ja)
Other versions
JPH0338226B2 (en
Inventor
康生 小栗
隆志 横山
阿部 光信
若林 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP634782A priority Critical patent/JPS58125653A/en
Publication of JPS58125653A publication Critical patent/JPS58125653A/en
Publication of JPH0338226B2 publication Critical patent/JPH0338226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は珪酸カルシウム成形体の製造方法に関するもの
である。詳しくは、低嵩密度で耐熱性、機械的強度及び
寸法安定性の優れた、従って、保温材、断熱材として好
適な珪酸カルシウム成形体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a calcium silicate molded body. Specifically, the present invention relates to a method for producing a calcium silicate molded body that has a low bulk density and excellent heat resistance, mechanical strength, and dimensional stability, and is therefore suitable as a heat insulating material or a heat insulating material.

珪酸カルシウム成形体、とくにゾノトライトを主成分と
するものは70000以上の耐熱性を有するため保温材
、断熱材として好適である。
Calcium silicate molded bodies, especially those containing xonotlite as a main component, have a heat resistance of 70,000 or higher and are therefore suitable as heat insulating materials and heat insulating materials.

一般に、保温材、断熱材に用いられる珪酸カルシウム成
形体は熱伝導率の低いものガ要求されると共に機械的強
度の大きいものが要求される。
Generally, calcium silicate molded bodies used for heat insulating materials and heat insulating materials are required to have low thermal conductivity and high mechanical strength.

しかしながら、熱伝導率を低くするためには嵩密度の低
い成形体を製造することが必要であふが、嵩密度が低下
すると強度も低下するので嵩密度が低く、機械的強叶も
大きい成形体を製造することは極めて困難である。
However, in order to lower the thermal conductivity, it is necessary to produce a molded product with a low bulk density, but as the bulk density decreases, the strength also decreases, so the molded product has a low bulk density and a high mechanical strength. is extremely difficult to manufacture.

本発明者らの一部は、このよう庁成形体を製造する方法
として特定の珪酸カルシウム水利物を含む水性スラリー
を脱水成形した後、水蒸気養生することにより珪酸カル
シウム成形体を製造する方法が有効であることを見出し
先に提案した。(特願昭5−2−6362/) この方法は極めて有利な方法であるが、脱水成形時の珪
酸カルシウム水和物が非常に嵩高いため成形圧が高くな
りそのため、成形作業に時間がかかる。又、成形圧の方
向に成形体が収縮するという更に改善すべき点があった
Some of the present inventors have found that an effective method for producing such compacted bodies is to dehydrate and mold an aqueous slurry containing a specific calcium silicate aqueous product, followed by steam curing. I proposed to the headliner that this is the case. (Japanese Patent Application No. 5-2-6362/) This method is extremely advantageous, but since the calcium silicate hydrate during dehydration molding is very bulky, the molding pressure is high and the molding process takes time. . In addition, there was a further problem that the molded body contracts in the direction of the molding pressure, which should be improved.

との点に鑑み本発明者らは装量研究した結果、特定の珪
酸カルシウム水和物を含むスラリーにワラストナイトを
添加し成形した後、水蒸気養生すれば、成形性が良好で
あり、従来の方法により得られる珪酸カルシウム成形体
に比し同嵩比重であればよシ高い曲げ強度を有し、同程
度の曲げ強度であればより低い嵩比重を有する珪酸カル
シウム成形体が得られることを見出し本発明に到達した
In view of this, the present inventors conducted a loading study and found that if wollastonite is added to a slurry containing a specific calcium silicate hydrate, molded, and then steam-cured, moldability is good, compared to conventional methods. Compared to the calcium silicate molded body obtained by the above method, a calcium silicate molded body having the same bulk specific gravity has a higher bending strength, and a similar bending strength has a lower bulk specific gravity. Heading The present invention has been arrived at.

すなわち、本発明の要旨とするところは、水中に分散さ
せた石灰質原料と珪酸質原料とを加熱下反応させて得ら
れる沈降体積が/ j crd / 9以上の珪酸カル
シウム水和物を含む水性スラリーを脱水成形した後、水
蒸気養生することにより珪酸カルシウム成形体を製造す
る方法において、該水性スラリーに、ワラストナイトを
成形体中にタ〜6θ重tチ含有するように添加すること
を特徴とする珪酸カルシウム成形体の製造方法に存する
That is, the gist of the present invention is an aqueous slurry containing a calcium silicate hydrate having a sedimentation volume of / j crd / 9 or more obtained by reacting a calcareous raw material and a silicate raw material dispersed in water under heating. A method for producing a calcium silicate molded body by dehydrating and molding and then curing with steam, characterized by adding wollastonite to the aqueous slurry so that the molded body contains t-6θ weight. The present invention relates to a method for producing a calcium silicate molded body.

 3− 法において珪酸質原料としては珪藻土、珪石等の天然品
あるいけ、シリコンダスト、湿式燐酸製造プロセスで副
生する珪弗化水素酸と水酸化アルミニウムとを反応させ
て得られるシリカ(以下勇に湿玄燐酸副生シリカという
)等の工業副産物が用いられる。また、石灰質原料とし
ては生石灰、消石灰、カーバイド滓等の周知のものがい
ずれも使用できるが、生石灰がとくに好適である。
In the 3- method, the siliceous raw materials include natural products such as diatomaceous earth and silica stone, silicon dust, and silica obtained by reacting hydrosilicofluoric acid and aluminum hydroxide, which are by-produced in the wet phosphoric acid production process (hereinafter referred to as silica). Industrial by-products such as wet brown phosphoric acid by-product silica) are used. Further, as the calcareous raw material, any of the well-known materials such as quicklime, slaked lime, and carbide slag can be used, but quicklime is particularly suitable.

珪酸質原料と石灰質原料の配合モル比(Oak/EIi
O,)は、最終成形品中の珪酸カルシウム水和物の結晶
としてゾノトライトを所望する場合、普通θ、、!r〜
ハコの範囲内であり、結晶性トバモライトを所望する場
合、普通0.2〜/、θの範囲内である。
Mixing molar ratio of siliceous raw material and calcareous raw material (Oak/EIi
O, ) is usually θ,,! when xonotlite is desired as the calcium silicate hydrate crystal in the final molded product. r~
If crystalline tobermorite is desired, it is usually within the range of 0.2 to θ.

前記両原料を分散させる水の量は、原料固形分に対し/
夕重量倍以上であればよく、とくに17〜yo重量倍の
範囲が好ましい。
The amount of water for dispersing both of the above raw materials is / based on the solid content of the raw materials.
It is sufficient that the amount is at least twice the weight of the yoke, and a range of 17 to yo times the weight is particularly preferable.

勿論両原料を分散させるのに石灰質原料含有−番 − スラリー中の水では不十分なときは更に水を加えてもよ
い。
Of course, if the water in the calcareous material-containing slurry is insufficient to disperse both materials, more water may be added.

水中に分散させた前記両原料を加熱下反応させれば珪偕
カルシウム水和物結晶を含む水性スラリーが得られる。
By reacting the above-mentioned raw materials dispersed in water under heating, an aqueous slurry containing silica calcium hydrate crystals can be obtained.

水性スラリー中の珪酸カルシウム水和物結晶の沈降体積
は/1all/f以上、好ましくは、/r〜3θcd/
fであることが必要である。沈降体積が/ s crl
/ vより低い場合には高強度の成形体は得られない。
The sedimentation volume of calcium silicate hydrate crystals in the aqueous slurry is /1all/f or more, preferably /r~3θcd/
It is necessary that f. Sedimentation volume / s crl
/v, a molded article with high strength cannot be obtained.

工 ここで沈降体積とは次式(11によって算出される値で
ある。
Here, the sedimentation volume is a value calculated by the following equation (11).

式(n)においてWは原料固形分(例えば生石灰十珪酸
質原料)の総重量(生石灰以外の石灰質原料を用いる場
合には生石灰に換算して総重量を求める。)であり、■
は反応後得られたスラリーを、29時間靜買置後沈降し
た固形分が占める体積である。実際には通常次のように
して求める。まず反応後得られた総重量W。2のスラリ
ーからW、fをメスシリンダーに採取し、これを2’1
時間静置し、沈降した固形分が占める体積■ V、C1fIを測定し、次式(1)より算出する。
In formula (n), W is the total weight of the solid content of the raw material (for example, quicklime decasilicate raw material) (if a calcareous raw material other than quicklime is used, calculate the total weight by converting it to quicklime), and ■
is the volume occupied by the solid content that settled after the slurry obtained after the reaction was left undisturbed for 29 hours. In practice, it is usually determined as follows. First, the total weight W obtained after the reaction. Collect W and f from the slurry in step 2 into a graduated cylinder, and add this to 2'1.
The volume occupied by the settled solids after being allowed to stand for a period of time is measured, and calculated using the following formula (1).

■ 表お、Wは式中と同義で原料の総重量を示す。■ In the table, W has the same meaning as in the formula and indicates the total weight of the raw materials.

沈降体積を11771以上にする方法としては、反応を
檀拌下、/3θC以上、とくに75θ〜23θC,最適
には16θ〜210Cで実施する方法が挙げらねる。そ
の際、反応系は液状に保持する必要があり、従って反応
は加圧下で実施される。
As a method for increasing the sedimentation volume to 11,771 or more, there is a method in which the reaction is carried out under stirring at a temperature of /3θC or higher, particularly 75θ to 23θC, most preferably 16θ to 210C. In this case, the reaction system must be kept in a liquid state, and therefore the reaction is carried out under pressure.

更にスラリー中の珪酸カルシウム水和物はトバモライト
グループの化合物であることが必要である。
Furthermore, the calcium silicate hydrate in the slurry needs to be a tobermorite group compound.

珪酸カルシウム水和物結晶は種々知られており、一般に
テーラ−(H3P、*、Taylor )著[ザケミス
トリーオプセメント(The Chemistry o
fOemθntθ)−1第1巻第1!コ頁表■に示す分
類に従ってlplされる。トバモライトグループの化合
物にはトバモライトケル、O−8−H(1)、a−s−
Hm及び結晶灼トバモライトが含壕れるが、そのいずれ
であってもよい。珪酸カルシウム水和物結晶は、トバモ
ライトゲル→0−S−I((IT)→0−8−)1(1
)→/ / X )−バモライl(結晶性トバモライト
)→ゾノトライトの順で普通転移するので、所望の結晶
を得るには反応温!W、時間を脚筒するだけで充分であ
る。すなわち、反応温度を高くすれば、あるいけ反応時
間を長くすれば、結晶は矢(→)印の方向に転移する。
Various types of calcium silicate hydrate crystals are known, and they are generally described in the book by Taylor (H3P, *, The Chemistry Opcement).
fOemθntθ)-1 Volume 1, Volume 1! It is lpl according to the classification shown in the table ■ on the page. Compounds of the tobermorite group include tobermorite kel, O-8-H(1), a-s-
Hm and crystalline tobermorite are included, but any of them may be used. Calcium silicate hydrate crystals are produced by tobermorite gel→0-S-I((IT)→0-8-)1(1
) → / / W, it's enough to just take the time. In other words, if the reaction temperature is increased or the reaction time is increased, the crystals will transition in the direction of the arrow (→).

第1の条件を達成するための温度範囲で反応を実施すれ
ば、通常トバモライトグループの化合物が得られる。し
かし、反応温度がとくに高かったり反応時間がとくに艮
いとゾノトライトカX得られるので、その場合は温度を
下げるか、反応時[111を短縮すればよい。なお、最
終成形品中の結晶として結晶性l・バモライトを所望す
る場合には、スラリー中の珪酸カルシウム水和物はトバ
モライトゲル、O−0−8−Hたは0−8−H([1で
あることが必要である。
If the reaction is carried out in a temperature range to achieve the first condition, compounds of the tobermorite group are usually obtained. However, if the reaction temperature is particularly high or the reaction time is particularly high, Xonotolyte X may be obtained, so in that case, the temperature may be lowered or the reaction time [111] may be shortened. In addition, when crystalline l.bamorite is desired as crystals in the final molded product, the calcium silicate hydrate in the slurry is tobermorite gel, O-0-8-H or 0-8-H ([1 It is necessary that

本発明においては、上記水性スラリーにワラストナイト
を添加する。ここでいうワラストナイトとけ1石膏石灰
)・ノドブック1石膏石灰学会編27/頁〜、27タ頁
に説明されているものの総称であり以下のように分類で
きる。
In the present invention, wollastonite is added to the aqueous slurry. Wollastonite here is a general term for those explained in Nodobook 1 (edited by the Gypsum and Lime Society), p. 27-, p. 27, and can be classified as follows.

即ち、ワラストナイト(化学式〇aO−5in2)は低
温型(β−C!ao 1181.02 )と高温型(α
−Oa、0−81、O,)の211’i類に分類される
。低温型は約//2りC以上で高温型にかわる。低温型
には天然品とゾノトライトなどを加熱脱水して得られる
合成品があり、高温型は主に合成品である。
That is, wollastonite (chemical formula 〇aO-5in2) has a low temperature type (β-C!ao 1181.02) and a high temperature type (α
-Oa, 0-81, O,) is classified as 211'i. The low-temperature type changes to the high-temperature type at temperatures above about 2°C. Low-temperature types include natural products and synthetic products obtained by heating and dehydrating xonotlite, while high-temperature types are mainly synthetic products.

本発明で使用するワラストナイトは、上記いずれのタイ
プでもよいが、特に繊組状結晶の著しい低温型の天然品
が好ましい。またワラストナイトの添加量は最終的に得
られる成形体中にり〜60重肴チ、好)シくけ、lO〜
jO重購−係、特に好まI〜くけ、/θ〜35重駿係含
有するように使用するのが好寸しく、10重It %以
下では成形性の面で十分な効果が得られず、またりθ重
量係以上では成形体の@量化を阻害するとともに、マト
リックスを形成する珪酸カルシウム水和物の量が相対的
に減少するため、成形体の機械的強度が低下し好ましく
ない。
The wollastonite used in the present invention may be any of the types mentioned above, but a low-temperature type natural product with significant fibrous crystals is particularly preferred. In addition, the amount of wollastonite to be added is approximately 60%, preferably 10%, and 10% in the final molded product.
It is preferable to use it in such a way that it contains a weight of 10%, particularly preferably 1%, /θ~35%, and if it is less than 10% it will not give a sufficient effect in terms of moldability. Moreover, if it exceeds the θ weight coefficient, the quantification of the molded product is inhibited, and the amount of calcium silicate hydrate forming the matrix is relatively reduced, so that the mechanical strength of the molded product decreases, which is not preferable.

本発明においては、通常、上記水性スラリーに補強繊維
を添加する。補強繊維としては周知の種々のものがいず
れも使用で無、例えば石綿、岩綿、ガラス繊維等が使用
される。普通、最終成形品中にO35〜/θ重−II 
%含有するように添加される。
In the present invention, reinforcing fibers are usually added to the aqueous slurry. As reinforcing fibers, any of a variety of well-known reinforcing fibers may be used; for example, asbestos, rock wool, glass fiber, etc. may be used. Usually, O35~/θ weight-II in the final molded product
%.

かくして得られる上記水性スラリーは常法にフjく、 従って加圧脱す成形される。その際の圧力は通常/〜λ
θθkP / cdt Gの範囲であり、成形体の嵩比
貢の調整は加圧成形機のビストンストロークの調整によ
り行なわれる。
The above-mentioned aqueous slurry thus obtained is shaped in a conventional manner by depressurization. The pressure at that time is usually /~λ
The range is θθkP/cdtG, and the bulk ratio of the molded body is adjusted by adjusting the piston stroke of the pressure molding machine.

次いで得られた成形体を常法に従って加圧下で水蒸気養
生いわゆるオートクレーブ養生する。
Next, the obtained molded body is subjected to steam curing under pressure, so-called autoclave curing, according to a conventional method.

この水蒸気養生により成形体の結晶を、トバモライトゲ
ル、a−s−H(I)またはO−8−H(■)−日 − の場合は結晶性トバモライ)またけゾノトライトに、結
晶性トバモライトの場合はゾノトライトに転移させるこ
とが必要である。この水蒸気養生による結晶の転移によ
り嵩密度が低く機械的強度の優れた成形体を得ることが
できる。水蒸気圧は一般に高い程度応時間な短縮できる
が、通常は夕〜りθky / ti Gの範囲である。
By this steam curing, the crystals of the molded body are spread over tobermorite gel, a-s-H (I) or O-8-H (■) (in the case of crystalline tobermorite) and xonotlite, in the case of crystalline tobermorite. It is necessary to transfer to xonotlite. The crystal transformation caused by this steam curing makes it possible to obtain a molded article with low bulk density and excellent mechanical strength. Water vapor pressure can generally be reduced to a high degree over time, but is usually in the range θky/ti G from evening to night.

最終成形品の結晶としてゾノトライトを所望する場合に
は7.2〜グθkq / crll a、結晶性トバモ
ライトを所望する場合には6〜30kg / cyll
 ()水蒸気が好適である。このようが条件において前
記した転移は普通容易に行なわれる。転移が所望するよ
うに行なわれない場合、このような場合は極めて稀であ
るが、例えばゾノトライトを所望するのに結晶性トバモ
ライトが得られる場合は水蒸気圧を上げるか水蒸気養生
の時間を延長すればよいし、捷た結晶性トバモライトを
所望するのにゾノトライトが得られる場合ね逆に水蒸気
圧を下げるか水蒸気養生の時間を短縮すわばよい。
If xonotlite is desired as the crystal of the final molded product, 7.2 to θkq/crll a, and if crystalline tobermorite is desired, 6 to 30 kg/cyll.
() Water vapor is preferred. Under these conditions, the above-mentioned transformation is usually easily carried out. If the transformation does not occur as desired, which is extremely rare, for example, if xonotlite is desired but crystalline tobermorite is obtained, increasing the steam pressure or extending the steam curing time will solve the problem. If you want crushed crystalline tobermorite and can obtain xonotlite, you can conversely lower the steam pressure or shorten the steam curing time.

高耐熱性の要求される用途においてはゾノトライトに転
移させることが好ましい。
In applications requiring high heat resistance, it is preferable to transform it into xonotlite.

以上本発明について詳細に説明したが、本発明方法によ
れば嵩密度θ、lr f /cA程度のもので曲げ強度
が10kg、/crl以−ヒ、θ8.2θP/m程度の
ものでtsky/af1以上と常法で得られる成形体に
比べ同嵩密度で約1倍以上の高い曲げ強度を有する珪酸
カルシウム成形体を成形圧、成形速度の面から成形性が
秀れ、寸法安定性よく得ることができる。
The present invention has been described in detail above, and according to the method of the present invention, a material with a bulk density θ, lr f /cA has a bending strength of 10 kg, a material with a bending strength of 10 kg or more, and a material with a bending strength of θ8.2 Obtain a calcium silicate molded body that has an af of 1 or more and a bending strength that is about 1 times higher than that obtained by conventional methods at the same bulk density, with excellent moldability in terms of molding pressure and molding speed, and good dimensional stability. be able to.

しかも得られる成形体は、耐熱性のあるワラストナイト
とマトリックスである珪酸カルシウム水和物結晶がから
み合って秀れた耐熱性を有しているので、一般の保温材
、断熱材の他加熱炉、乾燥炉、ダクト、アルミニウム工
業における各種工業用耐火断熱材として広範囲な用途が
期待できる。
In addition, the resulting molded product has excellent heat resistance due to the intertwining of heat-resistant wollastonite and matrix calcium silicate hydrate crystals, so it can be used as a general heat insulating material, heat insulating material, etc. It can be expected to have a wide range of applications as a fireproof insulation material for various industrial applications in furnaces, drying furnaces, ducts, and the aluminum industry.

次に本発明を実施例により更に具体的に説明するが、本
発明はその要旨をこえかい限り以下の実施例に限定され
るものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the invention is exceeded.

なお、実施例中1部1及び[係1とあるは夫夫[重量部
1 [重1←を示す。
In addition, 1 part 1 and [person 1] indicate husband [weight part 1 [weight 1←].

実施例/〜イ及び比較例/〜3 生石灰(り6.2係 OaO) St9.6部に温水を
加えて消化17、これに珪石(りに、り嘴 11102
)5019部を添加した後、総水−・が固形分に対し2
7.5部になるように水を加えた。このようにして得ら
h fc @ 7a 液をオートクレーブ中で15に9
/CrflG  2θθCの条件下で2.0時間攪拌し
反応させたところ、沈降体積、2/f/crfrのO8
Hを含む水性スラリーが得られた。この水性スラリーに
耐アルカリガラス繊維3部及びワラストナイトを表/に
示す種類と量添加しく比較例3はアルミナを添加)嵩密
度が02.2θ(実施例りのみ(dθ、i j)になる
ようにスラリーを調整し、3θθ×300×り0間(縦
×横×厚さ)の寸法に10kg/crflの圧力にて加
圧脱水成形した。次いで得られた成形体とオートクレー
ブに仕込み、水蒸気/ i ky/at/IG/ z 
7 Uの条件です時間水蒸気養生した後、/!OCでと
時間乾燥した。
Examples/~A and Comparative Examples/~3 Quicklime (Rin 6.2 Section OaO) Add warm water to 9.6 parts of St, digest 17, and add silica stone (Rini, Ribeak 11102)
) After adding 5019 parts of water, the total water was 2% of the solid content.
Water was added to make 7.5 parts. The h fc @ 7a solution thus obtained was 15 to 9 in an autoclave.
/CrflG When stirred and reacted for 2.0 hours under the condition of 2θθC, the sedimentation volume, O8 of 2/f/crfr
An aqueous slurry containing H was obtained. To this aqueous slurry, 3 parts of alkali-resistant glass fiber and wollastonite were added in the types and amounts shown in the table/comparative example 3, in which alumina was added). The slurry was adjusted so as to have the following properties, and was dehydrated under pressure at a pressure of 10 kg/crfl to the dimensions of 3θθ x 300 x 0 (length x width x thickness).Then, the obtained molded body was placed in an autoclave, Water vapor/i ky/at/IG/z
After steam curing for 7 hours, /! It was dried in OC for 1 hour.

表/にプレス時間、乾燥後の板厚収縮率、嵩密度、曲げ
強度及び10θθC3時間加熱後の残存収縮率と重降減
少ヂを示した。
Table 1 shows the pressing time, thickness shrinkage rate after drying, bulk density, bending strength, residual shrinkage rate and weight loss after heating at 10θθC for 3 hours.

比較例ダ〜j 生石灰(り63.2鴫CIq、O) 4t6.7部に温
水を加えて消化し、これにシリカ(湿式燐酸副生シリカ
sxo、 ? 7.r4 )ダタ、2部を添加した後、
総水量が固形分に%J L /θ重量倍になるように水
を加えた。このようにして得られた懸濯1液をりθCで
λ時間袴拌し反応さぜた後、室温で29を時間静置して
熟成を行った。この水性スラリーの沈降体積は♂ゲ/1
であり、生成物はゲルであった。この水性スラリーに耐
アルカリガラス繊維を3部及び比較例Zのみはさらに天
然β−0aO* S i、0.を全固形分に対し3θ重
量%となるように添加した。その後の工程は実施例/と
同様に行って表/の結果を得た。
Comparative example d~j 4t 6.7 parts of quicklime (RI63.2 CIq, O) was digested by adding warm water, and 2 parts of silica (wet phosphoric acid by-product silica SXO, ?7.r4) was added to this. After that,
Water was added so that the total amount of water was %J L /θ weight times the solid content. The suspension solution thus obtained was stirred at θC for λ hours to react, and then allowed to stand at room temperature for 29 hours to ripen. The settling volume of this aqueous slurry is ♂ge/1
and the product was a gel. 3 parts of alkali-resistant glass fiber was added to this aqueous slurry, and only in Comparative Example Z, natural β-0aO* Si, 0. was added in an amount of 3θ weight % based on the total solid content. The subsequent steps were carried out in the same manner as in Example 1 to obtain the results shown in Table 2.

12−12-

Claims (1)

【特許請求の範囲】[Claims] (1)水中に分散させた石灰質原料と珪酸質原料とを加
熱下反応させて得られる沈降体積がlりcrll/r以
上の珪酸カルシウム水和物を含む水性スラリーを脱水成
形した後、水蒸気養生することにより珪酸カルシウム成
形体を製造する方法において、該水性スラリーに、ワラ
ストナイトを成形体中にj −4θ重−1t%含有する
ように添加することを特徴とする珪酸カルシウム成形体
の製造方法。
(1) After dehydrating and molding an aqueous slurry containing calcium silicate hydrate with a sedimentation volume of 1 crll/r or more obtained by reacting a calcareous raw material and a silicic raw material dispersed in water under heating, steam curing is performed. A method for producing a calcium silicate molded body by adding wollastonite to the aqueous slurry so that the molded body contains j -4θ weight -1 t%. Method.
JP634782A 1982-01-19 1982-01-19 Manufacture of calcium silicate shape Granted JPS58125653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP634782A JPS58125653A (en) 1982-01-19 1982-01-19 Manufacture of calcium silicate shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP634782A JPS58125653A (en) 1982-01-19 1982-01-19 Manufacture of calcium silicate shape

Publications (2)

Publication Number Publication Date
JPS58125653A true JPS58125653A (en) 1983-07-26
JPH0338226B2 JPH0338226B2 (en) 1991-06-10

Family

ID=11635834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP634782A Granted JPS58125653A (en) 1982-01-19 1982-01-19 Manufacture of calcium silicate shape

Country Status (1)

Country Link
JP (1) JPS58125653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223051A (en) * 1986-03-25 1987-10-01 三菱鉱業セメント株式会社 Formed body for glazing and manufacture of glazed formed body
US7513684B2 (en) * 2005-02-17 2009-04-07 Parker-Hannifin Corporation Calcium silicate hydrate material for use as ballast in thermostatic expansion valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135330A (en) * 1976-05-10 1977-11-12 Nippon Asbestos Co Ltd Production of calcium silicate boad free from asbestos
JPS54108822A (en) * 1976-09-17 1979-08-25 Johns Manville High density wollostoniteecontaining tobermolite heat insulator free of asbestos
JPS54109653A (en) * 1978-01-30 1979-08-28 Johns Manville Highhdensity nonnasbestos tvelumolite heat insulator
JPS54135819A (en) * 1978-04-14 1979-10-22 Mitsubishi Chem Ind Production of calcium silicate formed body
JPS55167167A (en) * 1979-05-15 1980-12-26 Nippon Asbestos Co Ltd Manufacture of calcium silicate heat resistant material
JPS577815A (en) * 1980-06-13 1982-01-16 Masayoshi Aoki Calcium silicate hydrate-base aggregate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135330A (en) * 1976-05-10 1977-11-12 Nippon Asbestos Co Ltd Production of calcium silicate boad free from asbestos
JPS54108822A (en) * 1976-09-17 1979-08-25 Johns Manville High density wollostoniteecontaining tobermolite heat insulator free of asbestos
JPS54109653A (en) * 1978-01-30 1979-08-28 Johns Manville Highhdensity nonnasbestos tvelumolite heat insulator
JPS54135819A (en) * 1978-04-14 1979-10-22 Mitsubishi Chem Ind Production of calcium silicate formed body
JPS55167167A (en) * 1979-05-15 1980-12-26 Nippon Asbestos Co Ltd Manufacture of calcium silicate heat resistant material
JPS577815A (en) * 1980-06-13 1982-01-16 Masayoshi Aoki Calcium silicate hydrate-base aggregate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223051A (en) * 1986-03-25 1987-10-01 三菱鉱業セメント株式会社 Formed body for glazing and manufacture of glazed formed body
US7513684B2 (en) * 2005-02-17 2009-04-07 Parker-Hannifin Corporation Calcium silicate hydrate material for use as ballast in thermostatic expansion valve

Also Published As

Publication number Publication date
JPH0338226B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
JP3783734B2 (en) Calcium silicate plate manufacturing method
US4574012A (en) Calcium silicate shaped product
US4193958A (en) Process for preparing calcium silicate shaped product
US4427611A (en) Process for preparing calcium silicate shaped product
US4388257A (en) Process for preparing calcium silicate shaped product
JPS58130149A (en) Manufacture of calcium silicate formed body
US4298561A (en) Process for preparing calcium silicate shaped product
JPS58125653A (en) Manufacture of calcium silicate shape
JPS61232256A (en) Structural material for low melting point metal casting appliance and manufacture
JPS62143854A (en) Manufacture of calcium silicate base formed body
JPS5849654A (en) Heat insulating molded body made from calcium silicate as main component
JPH0524102B2 (en)
JPS5830259B2 (en) Manufacturing method of calcium silicate molded body
JPS6149264B2 (en)
JPS62113745A (en) Manufacture of calcium silicate formed body
KR100455472B1 (en) Calcium silicate board and method of manufacturing same
JPS6143304B2 (en)
CN104761270B (en) An anorthite intermediate used as an industrial kiln high-temperature heat-insulating material
JPS5860656A (en) Heat resistant fiber composition
CA1181227A (en) Process for preparing calcium silicate shaped product
JPS62162663A (en) Manufacture of calcium silicate formed body
JPS59137358A (en) Manufacture of calcium silicate composition
JPS62113747A (en) Manufacture of calcium silicate formed body
JPH07112948B2 (en) Method for producing calcium silicate heat insulating material