JPS5812555A - Rotor coil defect diagnosing device for rotary electric machine - Google Patents

Rotor coil defect diagnosing device for rotary electric machine

Info

Publication number
JPS5812555A
JPS5812555A JP56108180A JP10818081A JPS5812555A JP S5812555 A JPS5812555 A JP S5812555A JP 56108180 A JP56108180 A JP 56108180A JP 10818081 A JP10818081 A JP 10818081A JP S5812555 A JPS5812555 A JP S5812555A
Authority
JP
Japan
Prior art keywords
rotor
signal
pulsating waveform
magnetic flux
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56108180A
Other languages
Japanese (ja)
Other versions
JPS6314573B2 (en
Inventor
Toshio Saito
齋藤 敏雄
Motoya Ito
元哉 伊藤
Noriyoshi Takahashi
高橋 典義
Yukinori Sato
佐藤 征規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56108180A priority Critical patent/JPS5812555A/en
Publication of JPS5812555A publication Critical patent/JPS5812555A/en
Publication of JPS6314573B2 publication Critical patent/JPS6314573B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Abstract

PURPOSE:To accurately and rapidly perform the diagnosis of the defect of a coil to be detected for the presence or absence of the defect by obtaining a position signal with a rotor position detector installed and discriminating a pulsating wave form signal from a magnetic flux detector synchronously with the position signal. CONSTITUTION:A magnetic flux detector 13 is installed oppositely to a rotor 3, and a pulsating waveform signal of the output signal of the detector is inputted to a discriminator 18. Further, a position detector 39 for detecting the position of the rotor is installed, and the position signal of the output signal is inputted to the discriminator 18. Only the pulsating waveform signal corresponding to the predetermined rotor position is produced synchronously with the position signal to discriminate the presence or absence of the defect. In this manner, only the pulsating waveform component of the magnetic flux generated by the current flowing through the rotor coil to be discriminated for the presence or absence of the defect is extracted to discriminate the defect. Accordingly, the defect can be accurately and rapidly diagnosed.

Description

【発明の詳細な説明】 本発明は大容量タービン発電機等の様な回転電機の回転
子巻線異常診断装置に係り、特に回転子巻線の層間短絡
を検出するに好適な異常診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor winding abnormality diagnosing device for a rotating electric machine such as a large-capacity turbine generator, and more particularly to an abnormality diagnosing device suitable for detecting an interlayer short circuit in a rotor winding. .

一般に大容量のタービン発電機は、第1図に示す如く、
固定子1と、この固定子lに空隙2を介して対向配置さ
れた回転子8から構成されている。
Generally, a large capacity turbine generator is as shown in Figure 1.
The rotor 8 is composed of a stator 1 and a rotor 8 disposed opposite to the stator 1 with a gap 2 interposed therebetween.

前記固定子lは積層固定子鉄心4に固定子巻線、つまり
電機子巻線5を巻装するととKよりて構成され、また前
記回転子8は軸部6と一体に形成された胴部、つまり回
転子鉄心7に回転子巻線、つまり互に層間絶縁された5
〜10層の導体からなる界磁巻線8を巻装することによ
って構成されており、回転予巻1i18は楔9でスロッ
ト内に保持されるとともに、保持環lOでその端部が覆
われている。
The stator l is composed of a stator winding, that is, an armature winding 5, wound around a laminated stator core 4, and the rotor 8 has a body part formed integrally with the shaft part 6. , that is, the rotor core 7 and the rotor winding, that is, the 5
It is constructed by winding a field winding 8 consisting of ~10 layers of conductors, and the rotating pre-winding 1i18 is held in the slot by a wedge 9, and its end is covered with a retaining ring 10. There is.

ところで、回転子巻線の層間絶縁がこの巻線の熱伸びや
機械的衝撃を受けて破壊され、巻線が短絡すると、一般
に2極のタービン発電機では回転子のN極側とSaWの
起磁力アンバランスを始めとして磁気的不平衡が生じ、
この結果異常振動が発生する。異常振動が発生すると、
発電機の軸受破損や巻線の絶縁物破壊など発電機に悪影
響が生じ、ついには運転不能に到る虞れがある。そのた
め、回転子巻線の層間短絡を速やかに検出し、必要な処
置を取らねばならない。
By the way, if the interlayer insulation of the rotor winding is destroyed due to the winding's thermal expansion or mechanical shock, and the winding is short-circuited, generally in a two-pole turbine generator, the N pole side of the rotor and the SaW origin Magnetic imbalance occurs, including magnetic force imbalance,
As a result, abnormal vibration occurs. When abnormal vibration occurs,
There is a risk that the generator will be adversely affected, such as damage to the generator's bearings or breakdown of the insulation in the windings, and may eventually become inoperable. Therefore, it is necessary to promptly detect an interlayer short circuit in the rotor winding and take necessary measures.

この回転子巻線の層間短絡を検出する公知な方法につい
て以下述べる。
A known method for detecting this interlayer short circuit in the rotor winding will be described below.

第1図において、回転子を輪切りにする面、つまり径方
向断面を展開した面における磁束の流れを模式的に示し
たのが第2図(a)である。磁束は大きく2種類に分け
られ、一方は図中実線で示す主磁束11で、他方は破線
で示す回転子巻線を取り巻くように通る漏れ磁束12で
ある。この漏れ磁束12を捕える目的で例えば、空隙中
に静止したサーチコイルなどの磁束検出素子18を設置
する。そして、回転する回転予巻#8に電流が流れた場
合に発生する漏れ磁束12をつかまえる。
In FIG. 1, FIG. 2(a) schematically shows the flow of magnetic flux in a plane where the rotor is sliced into rings, that is, a plane in which a radial cross section is developed. The magnetic flux is roughly divided into two types; one is a main magnetic flux 11 shown by a solid line in the figure, and the other is a leakage magnetic flux 12 that surrounds the rotor winding and shown by a broken line. For the purpose of capturing this leakage magnetic flux 12, for example, a magnetic flux detection element 18 such as a stationary search coil is installed in the air gap. Then, the leakage magnetic flux 12 generated when a current flows through the rotating pre-winding #8 is caught.

第2図(b)はこの漏れ磁束の波形を示すが、その大き
さは、漏れ磁束が取り巻く回転子巻線導体を流れる電流
と導体本数との積、すなわちアンペア回数と密接な関係
にあり、アンペア回数が小さくなると漏れ磁束は小さく
なり、逆にアンペア回数が大きくなるとそれに伴い漏れ
磁束は大きくなる。
FIG. 2(b) shows the waveform of this leakage flux, and its magnitude is closely related to the product of the current flowing through the rotor winding conductors surrounding the leakage flux and the number of conductors, that is, the amperage. As the ampere frequency decreases, the leakage magnetic flux decreases, and conversely, as the ampere frequency increases, the leakage magnetic flux increases accordingly.

したがって、回転子巻線に層間短絡が生じると、その巻
−の作るアンペア回数が減り、結局漏れ磁束量も減小す
る。
Therefore, when an interlayer short circuit occurs in the rotor winding, the number of amperes generated by that winding decreases, and the amount of leakage magnetic flux also decreases.

一方、漏れ磁束検出用のサーチコイル111は、第2図
(C)に示すように、漏れ磁束に対応した脈動波形の誘
起電圧が発生する。回転子巻線が健全であれば、例えば
実線14で示すような脈動波形となる。しかし、もしも
、ある回転子巻線で層間短絡が発生して、その部分の漏
れ磁束が第2図中)の破線で示す如く小さくなると、第
2図(C)の破線15で示す如く、その巻線に対応した
脈動波形の波高値が小さくなる。一般に、タービン発電
機のような同転電機は、N極側と8極側で磁気的性質と
して磁束などは大きさが等しく符号が反対となり、漏れ
磁束や磁束検出用サーチコイルの誘起電圧も同じ対称性
を有している。
On the other hand, the search coil 111 for detecting leakage magnetic flux generates an induced voltage with a pulsating waveform corresponding to the leakage magnetic flux, as shown in FIG. 2(C). If the rotor winding is healthy, it will have a pulsating waveform as shown by the solid line 14, for example. However, if an interlayer short circuit occurs in a certain rotor winding, and the leakage magnetic flux at that part becomes small as shown by the broken line 15 in Fig. 2(C), The peak value of the pulsating waveform corresponding to the winding becomes smaller. In general, in a rotary electric machine such as a turbine generator, magnetic flux is equal in magnitude and opposite in sign on the N-pole side and the 8-pole side, and leakage magnetic flux and induced voltage of the search coil for detecting magnetic flux are also the same. It has symmetry.

以上のことから、サーチコイルの誘起電圧波形において
、Ni11411とS極側の対応する脈動波形の各派の
波高値、例えば12図(C)における波高値PL。
From the above, in the induced voltage waveform of the search coil, the peak value of each group of the pulsating waveform corresponding to Ni11411 and the S pole side, for example, the peak value PL in FIG. 12(C).

Q、を比較し、大きさに差が有るか否か調べ、もしも有
意差がある場合には、波高値の小さい方の回転子巻線に
眉間短絡が発生していると分る。
Q, to see if there is a difference in size, and if there is a significant difference, it is determined that a glabella short circuit has occurred in the rotor winding with the smaller peak value.

七のため、従来は磁束検出用素子からの信号波形を写真
に撮り、人が遂−N極側とS極側の対応する点どうしの
比較をし、層間短絡の有無を調べていたが、これでは手
数と時間がかかり、非能率で緊急の場合に対処するのが
難かしい。
Therefore, conventionally, a person took a photograph of the signal waveform from the magnetic flux detection element and compared the corresponding points on the north and south pole sides to check for interlayer short circuits. This takes time and effort, is inefficient, and makes it difficult to deal with emergencies.

また最近、時代の要請で、タービン発電機の回転子巻線
の層間短絡の有無を常時オンラインで監視することが望
まれており、以下に述べるような自動診断装置が考えら
れている。
Furthermore, in response to the demands of the times, there has recently been a desire to constantly monitor on-line the presence or absence of interlayer short circuits in the rotor windings of turbine generators, and automatic diagnostic devices such as those described below have been considered.

第8図は自動診断装置の概略ブロック図である。FIG. 8 is a schematic block diagram of the automatic diagnostic device.

図において、16は回転電機とそれに取り付けられた磁
束検出用素子からなる回転電機部で、磁束検出用孝子で
検出された脈動波形信号は信号線17を通して判定装置
18に送られる。判定値[18は大きく分けて処理装[
19と監視装[21で構成され、処理装置19では信号
波形の各派の波高値をとらえたり、タービン発電機に異
常があるか否かの異常診断処理がなされる。もしも、タ
ービン発電機に異常があるとの判定が出た場合、信号線
20を通して異常を知らせる信号が監視装置21に伝送
され、そこで信号が処理される。
In the figure, reference numeral 16 denotes a rotating electrical machine section consisting of a rotating electrical machine and a magnetic flux detecting element attached thereto, and a pulsating waveform signal detected by the magnetic flux detecting element is sent to a determination device 18 through a signal line 17. Judgment value [18 can be roughly divided into processing equipment [
19 and a monitoring device 21, the processing device 19 captures the peak values of each group of signal waveforms and performs abnormality diagnosis processing to determine whether there is an abnormality in the turbine generator. If it is determined that there is an abnormality in the turbine generator, a signal notifying the abnormality is transmitted through the signal line 20 to the monitoring device 21, where the signal is processed.

第8図は、例えば第4図のように具体的に構成されてい
る。第4図において、磁束検出用素子18、例えばサー
チコイルが回転子80表面近(に設置され、回転子巻線
を流れる電流によってこの表面近くに発生する磁束、例
えば漏れ磁束などをこの磁束検出用素子18を用いて検
出する。この漏れ磁束の電磁誘導作用によって磁束検出
用素子18に発生する脈動波形信号が信号線17を通し
て、判定装置18中の処理装置19へ伝送される。そし
て、信号はまず、増幅器22で適当な大きさとなり、信
号線28を通して波高値保持器24へ伝送され、比較判
断器25へ信号線26aを通して伝送される。波高値保
持器24は比較判断器25が波高値信号を入力するのに
十分な時間波高値を保持し、さらに次の脈動波高値が来
る前に保持を自動的に解除する構成となっており、比較
判断器25が波高値の入力を開始してよいという入力開
始信号を信号@ gabを通して波高値保持器24に出
力したとき、比較判断器25に波高値信号を信号線26
aを通して伝送する。
FIG. 8 has a specific configuration as shown in FIG. 4, for example. In FIG. 4, a magnetic flux detection element 18, for example a search coil, is installed near the surface of the rotor 80, and is used to detect magnetic flux, such as leakage flux, generated near the surface of the rotor 80 by current flowing through the rotor windings. The pulsating waveform signal generated in the magnetic flux detection element 18 by the electromagnetic induction effect of this leakage magnetic flux is transmitted to the processing device 19 in the determination device 18 through the signal line 17.Then, the signal is First, the amplifier 22 adjusts the size to an appropriate value, and transmits it to the peak value holder 24 through the signal line 28, and then to the comparator 25 through the signal line 26a. The wave height value is held for a sufficient period of time to input the signal, and the holding is automatically released before the next pulsating wave height value arrives, so that the comparator 25 starts inputting the wave height value. When the input start signal indicating that the signal is OK is output to the peak value holder 24 through the signal @ gab, the peak value signal is sent to the comparator 25 through the signal line 26.
Transmit through a.

比較判断器25では、波高値保持器24で保持された波
高値を1周期分順次入力してそのデータを信号# 28
aを通して記録器27に貯わえておき、他方では遂次、
信号線28bを通して記録器27から対称部の波高値デ
ータを入力して対称部分同志の波高値データを比較し、
その大きい方の波高値に対する両者の差、つまり相対差
が例えば10%というような設定レベルを越えたかどう
かチェックをする。そして、設定レベルを越えた場合に
は異常有りと判定し、信号m 20a 、  20bを
通して監視装置21へ異常の程度や異常発生個所を知ら
せる信号を伝送する。
The comparator 25 sequentially inputs the peak values held by the peak value holder 24 for one cycle and sends the data to the signal #28.
A is stored in the recorder 27 through a, and on the other hand, one after another,
Input the peak value data of the symmetrical part from the recorder 27 through the signal line 28b, compare the peak value data of the symmetrical parts,
It is checked whether the difference between the two with respect to the larger peak value, that is, the relative difference, exceeds a set level such as 10%. If the set level is exceeded, it is determined that there is an abnormality, and a signal is transmitted to the monitoring device 21 through the signals m 20a and 20b to inform the monitoring device 21 of the extent of the abnormality and the location where the abnormality has occurred.

監視装置21は、信号m 20aにより伝送される信号
で作動する警報ランプやブザーなどからなる警報器z9
と異常の発生場所や異常の程度を信号線20bの信号で
表示する表示盤80から構成されている。
The monitoring device 21 is an alarm device z9 consisting of an alarm lamp, a buzzer, etc. that is activated by a signal transmitted by the signal m20a.
and a display panel 80 that displays the location of the abnormality and the degree of the abnormality using a signal on the signal line 20b.

この自動診断装置によれば、タービン発電機などにおけ
る回転子巻線の層間短絡の有無を自動的に判定すること
ができる。しかし、この例も含めて一般に自動診断装置
には次のような欠点があった。
According to this automatic diagnostic device, it is possible to automatically determine the presence or absence of an interlayer short circuit in a rotor winding in a turbine generator or the like. However, automatic diagnostic devices in general, including this example, have the following drawbacks.

第5図に示すように、タービン発電機の中には、回転数
が定格回転数(例えば8600rpm )から外れるの
を抑えるため、磁極部81に溝82を設け、その中に導
体を挿入して端部で全導体を短絡した制動巻線88を持
つものがある。このように、磁極部81に溝82が設置
されていると、この部分の主磁束は第5図(a)のll
aのように磁極部溝82の角部82a辺りで曲って流れ
るので、磁束の変化が生じ、磁束検出用素子18には磁
極部#182に対応°した脈動成分が発生し、磁束検出
用素子18から得られる信号の脈動波形は第5図Φ)の
ようkなる。自動診断装置が、この脈動波形から回転子
巻線溝部分84の脈動波形を確実に見つけ出すのは非常
に難かしく、磁極部溝に基づく脈動波形を回転子巻線溝
に基づく脈動波形と見なして異常有無の判定をしてしま
のように流れ、溝出口部の磁束が磁性楔中を通り、磁極
角部の磁束集中が緩和されるため、溝の位置の磁束変化
は小さくなる(第6図中))。結局、磁束検出用素子に
誘起される信号の脈動波形は第6図(e)のようになり
、磁性楔86の入った回転子巻線溝85aの位置におけ
る脈動波形波高値87は小さくなる。ところで、この波
高値87が非常に小さく、磁束検出用素子で検出できな
い場合、自動診断装置は磁性楔の入っていない隣りの溝
85bの波高値88を第1査目の溝の波高値と見なして
判定を行なうので、誤鯰断の危険性があった。
As shown in Fig. 5, some turbine generators have a groove 82 in the magnetic pole part 81 and a conductor inserted into the groove 82 in order to prevent the rotation speed from deviating from the rated rotation speed (for example, 8600 rpm). Some have damper windings 88 with all conductors shorted at the ends. When the groove 82 is installed in the magnetic pole part 81 in this way, the main magnetic flux in this part is as shown in FIG. 5(a).
As the flow curves around the corner 82a of the magnetic pole groove 82 as shown in a, a change in magnetic flux occurs, and a pulsating component corresponding to the magnetic pole #182 is generated in the magnetic flux detection element 18. The pulsating waveform of the signal obtained from 18 is k as shown in FIG. 5 Φ). It is very difficult for an automatic diagnostic device to reliably detect the pulsating waveform of the rotor winding groove portion 84 from this pulsating waveform, and it is difficult for an automatic diagnostic device to reliably find the pulsating waveform of the rotor winding groove portion 84 from this pulsating waveform. The presence or absence of an abnormality is determined and the magnetic flux flows like a stripe, and the magnetic flux at the groove outlet passes through the magnetic wedge, and the concentration of magnetic flux at the corner of the magnetic pole is relaxed, so the change in magnetic flux at the groove position becomes small (Figure 6). During)). As a result, the pulsating waveform of the signal induced in the magnetic flux detecting element becomes as shown in FIG. 6(e), and the pulsating waveform peak value 87 at the position of the rotor winding groove 85a where the magnetic wedge 86 is inserted becomes small. By the way, if this wave height value 87 is so small that it cannot be detected by the magnetic flux detection element, the automatic diagnostic device considers the wave height value 88 of the adjacent groove 85b in which no magnetic wedge is included as the wave height value of the first groove. There was a risk of mistakenly determining the catfish.

本発明の目的は、異常の有無を判定すべき回転子巻線に
流れる電流によって発生する磁束による脈動波形成分の
みを正確に取り込んで、正確で確実にかつ速やかに回転
子巻線の異常の有無を判定することのできる回転電機の
回転子巻線異常診断装置を提供するにある。
An object of the present invention is to accurately capture only the pulsating waveform component due to the magnetic flux generated by the current flowing through the rotor winding to determine the presence or absence of an abnormality, and to accurately, reliably, and quickly determine the presence or absence of an abnormality in the rotor winding. An object of the present invention is to provide a rotor winding abnormality diagnosing device for a rotating electric machine that can determine the following.

この目的を達成するため、本発明は、回転子位置検出装
置を設け、この回転子位置検出装置から得られる回転子
の回転に同期した位置信号を磁束検出素子からの脈動波
形信号とともに判定装置に入力し、脈動波形信号の各派
の5ち所定の回転子位置、つまり異常の有無を判定すべ
き回転子巻線の位置に対応する波のみを有効として判定
するようにしたことを特徴とする。
In order to achieve this object, the present invention provides a rotor position detection device, and sends a position signal synchronized to the rotation of the rotor obtained from the rotor position detection device to a determination device together with a pulsating waveform signal from a magnetic flux detection element. The present invention is characterized in that only the wave corresponding to a predetermined rotor position among the five groups of the input pulsating waveform signal, that is, the position of the rotor winding where the presence or absence of an abnormality is to be determined is determined as valid. .

以下、本発明を図示の実施例に基づいて詳細に説明する
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第7図は本発明の一実施例に係る回転子巻線異常診断装
置の全体構成を示すブロック図である。
FIG. 7 is a block diagram showing the overall configuration of a rotor winding abnormality diagnosing device according to an embodiment of the present invention.

図において、回転電機部16には第4図に示した磁束検
出用素子18の他に、回転子800回転置を正確に検出
するための素子89、例えば反射形光電式ピックアップ
などを設置する。回転子には、目印し40、例えば反射
板などを付けておき、回転位置検出素子89が目印し4
0を検出したら、第8図に示すようなパルス状の位置信
号44を発するようになっている。この位置信号は信号
線41を通して判定装[18中の処理装置19へ送られ
、波形整形器42で予め決められた大きさと幅の)くル
ス信号に変換し、信号線48を通して比較判断器25に
送られる。
In the figure, in addition to the magnetic flux detection element 18 shown in FIG. 4, the rotating electrical machine section 16 is provided with an element 89, such as a reflective photoelectric pickup, for accurately detecting the position of the rotor 800 rotations. A mark 40, such as a reflector, is attached to the rotor, and the rotational position detection element 89 is attached to the mark 40.
When 0 is detected, a pulsed position signal 44 as shown in FIG. 8 is generated. This position signal is sent through a signal line 41 to a determination device (18, which is sent to a processing device 19, and is converted into a pulse signal of a predetermined size and width by a waveform shaper 42), and is transmitted through a signal line 48 to a comparison and determination device 25 sent to.

ところで、磁束検出用素子1Bに誘起する脈動波形とパ
ルス位置信号との時間的関係が第8図のような場合、比
較判断器25はパルス位置信号を入力してから時間間隔
45だけ待機した後、波高値保持器24に保持された、
脈動波形の波高値を順次入力する。
By the way, when the temporal relationship between the pulsating waveform induced in the magnetic flux detection element 1B and the pulse position signal is as shown in FIG. , held in the peak value holder 24,
Input the peak values of the pulsating waveform in sequence.

第8図に示すように、1回転を前半周期46と後半周期
47に分けるが、比較判断器25は、前半周期の1波高
値データを入力する毎に信号線28aを通して記録器2
7に記録する。前半周期の波高値データを全て入力し終
ったら、後半周期の波高値データを取り込む毎に、記録
器27に貯えられている、現在取り込んだ波高値と対称
位置の波高値データを信号線28bを通して取り入れ、
これらの対称位置同志の波高値データを順次比較して、
異常程度を算定し、その程度がある設定レベルを越えて
いるか否か調べ、異常有無の判定をする。もしも異常を
検出したら、信号線20a、  Bobを通して監視装
置21へ異常の程度や、異常発生箇所を知らせる信号を
伝送する。監視装置21の構成は第4図と同じである。
As shown in FIG. 8, one rotation is divided into a first half cycle 46 and a second half cycle 47, and each time the comparator 25 inputs one wave height value data of the first half cycle, it passes the signal line 28a to the recorder 2.
Record in 7. After inputting all the wave height data of the first half cycle, every time the wave height data of the second half cycle is taken in, the wave height data stored in the recorder 27 at the symmetrical position to the currently taken wave height value is input through the signal line 28b. Incorporate,
By sequentially comparing the wave height data of these symmetrical positions,
Calculate the degree of abnormality, check whether the degree exceeds a certain set level, and determine whether or not there is an abnormality. If an abnormality is detected, a signal informing the monitoring device 21 of the extent of the abnormality and the location where the abnormality has occurred is transmitted through the signal line 20a and Bob. The configuration of the monitoring device 21 is the same as that shown in FIG.

この実施例によれば、タービン発電機などにおける回転
子巻線の層間短絡の有無を正確にかつ自動的に判定でき
る。すなわち、タービン発電機などの回転電機の回転位
置を検出する素子を取り付け、この素子から得られる回
転位置信号を判定装置内に入力し、回転位置を正確にと
らえて回転子巻線溝の位置を正確に把握し、回転子表面
付近に設置した磁束検出用素子に誘起する脈動波形を入
力する。したがって1回転子に設置された磁極部溝によ
って生ずる脈動成分や、回転子巻線溝内に備え付けられ
た磁性楔によって生ずる脈動成分の消去などに影曽され
ることなく、波高値を正確に□取り込めるので、確災な
診断ができる。
According to this embodiment, it is possible to accurately and automatically determine whether there is an interlayer short circuit in a rotor winding in a turbine generator or the like. In other words, an element that detects the rotational position of a rotating electric machine such as a turbine generator is installed, and the rotational position signal obtained from this element is input into a determination device to accurately capture the rotational position and determine the position of the rotor winding groove. Accurately grasp and input the pulsating waveform induced into the magnetic flux detection element installed near the rotor surface. Therefore, the wave height value can be accurately determined without being affected by the pulsating component caused by the magnetic pole groove installed in the rotor or by the elimination of the pulsating component caused by the magnetic wedge installed in the rotor winding groove. Since it can be imported, a reliable diagnosis can be made.

第9図は、本発明の他の実施例を示すもので、この実施
例では、回転子に取り付ける位置検出用目印し40の位
置を調整し、磁束検出用素子18に誘起する脈動波形に
おい【第1番目の回転子巻線溝の波高値位置48で回転
位置検出素子89からパルス位置信号44が出るようK
なっている。したがって、この場合には、比較判断器2
5がパルス位置信号44を取り込んでから波高値データ
を取り込むまで、時機する必要がなくなり、確実に第1
番目の回転子巻線溝の波高値データを入力できる。
FIG. 9 shows another embodiment of the present invention. In this embodiment, the position of the position detection mark 40 attached to the rotor is adjusted to detect the pulsating waveform induced in the magnetic flux detection element 18. K so that the pulse position signal 44 is output from the rotational position detection element 89 at the peak value position 48 of the first rotor winding groove.
It has become. Therefore, in this case, the comparator 2
5 takes in the pulse position signal 44 until it takes in the peak value data.
You can input the peak value data of the th rotor winding groove.

また第10図は、位置検出用素子B9から複数のパルス
位置信号44が得られる実施例であり、特に、回転子巻
線溝の各波高値位置49に対応して各パルス位置信号4
4が出るように、複数の位置検出用目印し40が調整、
設置されている。したがって、この場合には、比較判断
器25はパルス位置信号を入力したら波高値データを取
り込めばよく、正確に各波高値データを取り込めるので
、装置の信頼性情非常に向上する。
FIG. 10 shows an embodiment in which a plurality of pulse position signals 44 are obtained from the position detection element B9, and in particular, each pulse position signal 44 corresponds to each peak value position 49 of the rotor winding groove.
The plurality of position detection marks 40 are adjusted so that 4 appears,
is set up. Therefore, in this case, the comparator 25 only needs to take in the peak value data after inputting the pulse position signal, and since it can accurately take in each piece of peak value data, the reliability of the device is greatly improved.

以上説明したように、本発明によれば、回転子位置検出
装置を設け、この回転子位置検出装置から得られる回転
子の回転に同期した位置信号を磁束検出素子からの脈動
波形信号とともに判定装置に入力し、脈動波形信号の各
派のうち所定の回転子位置、つまり異常の有無を判定す
べき回転子巻線の位置に対応する波のみを有効として判
定するようにしたので、異常の有無を判定すべき回転子
巻線に流れる電流によ−)″′C発生する磁束による脈
動波形成分のみを正確に取り込んで、正確で確実にかつ
速かに回転子巻線の異常の有無を判定することができる
As described above, according to the present invention, a rotor position detection device is provided, and a determination device uses a position signal synchronized with the rotation of the rotor obtained from the rotor position detection device together with a pulsating waveform signal from a magnetic flux detection element. , and out of each branch of the pulsating waveform signal, only the wave corresponding to the predetermined rotor position, that is, the position of the rotor winding where the presence or absence of an abnormality should be determined, is judged as valid. Accurately captures only the pulsating waveform component due to the magnetic flux generated by the current flowing through the rotor winding to determine the presence or absence of abnormalities in the rotor winding accurately, reliably, and quickly. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタービン発電機の概略構成を示す装部断面図、
第2図(a)〜(C)は回転子表面における磁束の流れ
を示す模式図、回転子表面の漏れ磁束の脈動波形図およ
びサーチコイルに発生する誘起電圧の脈動波形図、第8
図および第4図は従来の回転子巻線異常診断装置の概略
ブロック図および詳細ブロック図、第5図(a)、Φ)
および第6図(a)〜(C)は回転子表面の磁束の流れ
とサーチコイルに発生する誘起電圧の各側を示す脈動波
形図、第7図は本発明の一実施例に係る回転子巻線異常
診断装置のブロック図、第8図ないし第10図はサーチ
コイルに発生する誘起電圧の脈動波形と位置−信号との
時間的関係の各側を示すタイムチャートである。 l・・・・・・・・・固定子、2・・・・・・・・・空
隙、8・・・・・・・・・回転子、18・・・・・・・
・・磁束検出素子、16・・・・・・・・・回転電機部
、18・・曲・・・判定装置、19・・・・・・・・・
処理装置、81・・・・・・・・・監視装置、22・・
・・・・・・・増幅器、24・・・・・・・・・波高値
保持器、25・・・・・・・・・比、 才1図 す20 f3λ 74EEt 、Z ?’5E2T オ6聞 (a) ′77図 才a 図 2食 才9 閲
Figure 1 is a sectional view of the equipment showing the schematic configuration of the turbine generator;
Figures 2 (a) to (C) are schematic diagrams showing the flow of magnetic flux on the rotor surface, a pulsating waveform diagram of leakage magnetic flux on the rotor surface, a pulsating waveform diagram of the induced voltage generated in the search coil, and Figure 8
4 and 4 are a schematic block diagram and a detailed block diagram of a conventional rotor winding abnormality diagnosis device, and FIG. 5 (a), Φ)
6(a) to (C) are pulsation waveform diagrams showing the flow of magnetic flux on the rotor surface and the induced voltage generated in the search coil on each side, and FIG. 7 is a rotor according to an embodiment of the present invention. The block diagram of the winding abnormality diagnosing device, FIGS. 8 to 10, are time charts showing each side of the temporal relationship between the pulsating waveform of the induced voltage generated in the search coil and the position-signal. l...Stator, 2...Gap, 8...Rotor, 18...
...Magnetic flux detection element, 16...Rotating electric machine section, 18...Song...judgment device, 19...
Processing device, 81...Monitoring device, 22...
......Amplifier, 24...... Peak value holder, 25......Ratio, 20 f3λ 74EEt, Z? '5E2T O6 (a) '77 Figure 2 a Figure 2 Meals 9 Review

Claims (1)

【特許請求の範囲】 1、固定子鉄心に固定子巻線を巻装してなる固定子と、
この固定子に空隙を介して対向配置されかつ回転子鉄心
に回転子巻線を巻装してなる回転子と、この回転子の表
面近傍に配設されかつ前記回転子巻線に流れる電流によ
って回転子表面近傍に発生する磁束を検出する磁束検出
素子と、この磁束検出素子から得られる脈動波形信号を
入力して回転子巻線の異常の有無を判定する判定装置と
を備えたものにおいて、回転子位置を検出する位置検出
装置を設け、この位置検出装置から得られる回転子の回
転に同期した位置信号を前記判定装置に入力員、前記脈
動波形信号の6波のうち所定の回転子位置に対応する波
のみを有効として判定するようにしたことを特徴とする
回転電機の回転子巻線異常診断装置。 2、特許請求の範囲第1項において、前記判定装置は、
前記脈動波形信号における、回転子の第1の磁極に対応
する脈動波形成分の6波の波高値と、回転子の第1の磁
極とは別の第2の磁極に対応する脈動波形成分の6波の
波高値を比較して回転子巻線の異常の有無を判定するも
のであることを特徴とする回転電機の回転子巻線異常診
断装置。 8、特許請求の範囲第2項において、前記判定装置は、
前記脈動波形信号における比較すべき脈動波形成分の6
波の波高値を順次入力して所定時間保持する波高値保持
手段と、この波高値保持手段から前記位置信号と所定の
時間的関係で前記脈動波形成分の6波の波高値を順次入
力して記憶する記憶手段と、前記波高値保持手段にあら
たに保持された脈動波形成分の6波の波高値を前記位置
信号と所定の時間的関係で順次入力して前記記憶手段で
記憶された前記脈動波形成分の6波の波高値と比較しそ
の差が所定値以上のとき異常信号を出力する比較判断手
段とを備えたことを特徴とする回転電機の回転子巻線異
常診断装置。 4、特許請求の範囲第2項において、前記位置検出装置
は、前記脈動波形信号の所定の波の波高値位置に対して
所定位相ずれた回転子位置で前記位置信号を発生するも
のであることを特徴とする回転電機の回転子巻線異常診
断装置。 5、特許請求の範囲第2項において、前記位置検出装置
は、前記脈動波形信号の所定の波の波高値位置に対応す
る回転子位置で前記位置信号を発生するものであること
を特徴とする回転電機の回転子巻線異常診断装置。 6、特許請求の範囲第2項において、前記位置検出装置
は、前記脈動波形信号の有効とすべきすべての波の波高
値位置にそれぞれ対応する各回転子位置で前記位置信号
を発生するものであることを特徴とする回転電機の回転
子巻線異常診断装置。
[Claims] 1. A stator formed by winding a stator winding around a stator core;
A rotor is arranged to face the stator with an air gap in between and has a rotor winding wound around a rotor core, and a rotor is arranged near the surface of the rotor and has a current flowing through the rotor winding. A magnetic flux detection element that detects magnetic flux generated near the rotor surface, and a determination device that inputs a pulsating waveform signal obtained from the magnetic flux detection element to determine whether there is an abnormality in the rotor winding, A position detection device for detecting the rotor position is provided, and a position signal synchronized with the rotation of the rotor obtained from the position detection device is inputted to the determination device, and a predetermined rotor position is determined from among the six waves of the pulsating waveform signal. A rotor winding abnormality diagnostic device for a rotating electrical machine, characterized in that only waves corresponding to the above are determined to be valid. 2. In claim 1, the determination device comprises:
In the pulsating waveform signal, the peak values of six waves of the pulsating waveform component corresponding to the first magnetic pole of the rotor, and the six waves of the pulsating waveform component corresponding to the second magnetic pole different from the first magnetic pole of the rotor. A rotor winding abnormality diagnosing device for a rotating electric machine, characterized in that the apparatus compares peak values of waves to determine the presence or absence of an abnormality in the rotor winding. 8. In claim 2, the determination device comprises:
6 of the pulsating waveform components to be compared in the pulsating waveform signal
A wave height holding means for sequentially inputting wave height values and holding them for a predetermined time; and a wave height holding means for sequentially inputting wave height values of six waves of the pulsating waveform component in a predetermined temporal relationship with the position signal from the wave height holding means; a storage means for storing, and the wave height values of the six waves of the pulsating waveform component newly held in the wave height value holding means are sequentially input in a predetermined temporal relationship with the position signal, and the pulsation is stored in the storage means; A rotor winding abnormality diagnostic device for a rotating electric machine, comprising a comparison judgment means for comparing the wave height values of six waves of a waveform component and outputting an abnormality signal when the difference is greater than a predetermined value. 4. In claim 2, the position detection device generates the position signal at a rotor position that is shifted by a predetermined phase with respect to a peak value position of a predetermined wave of the pulsating waveform signal. A rotor winding abnormality diagnostic device for a rotating electric machine, which is characterized by: 5. In claim 2, the position detection device generates the position signal at a rotor position corresponding to a peak value position of a predetermined wave of the pulsating waveform signal. Rotor winding abnormality diagnosis device for rotating electric machines. 6. In claim 2, the position detection device generates the position signal at each rotor position corresponding to the peak value position of all waves to be made valid in the pulsating waveform signal. A rotor winding abnormality diagnostic device for a rotating electric machine, characterized in that:
JP56108180A 1981-07-13 1981-07-13 Rotor coil defect diagnosing device for rotary electric machine Granted JPS5812555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108180A JPS5812555A (en) 1981-07-13 1981-07-13 Rotor coil defect diagnosing device for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108180A JPS5812555A (en) 1981-07-13 1981-07-13 Rotor coil defect diagnosing device for rotary electric machine

Publications (2)

Publication Number Publication Date
JPS5812555A true JPS5812555A (en) 1983-01-24
JPS6314573B2 JPS6314573B2 (en) 1988-03-31

Family

ID=14478015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108180A Granted JPS5812555A (en) 1981-07-13 1981-07-13 Rotor coil defect diagnosing device for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS5812555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348372U (en) * 1986-09-17 1988-04-01
US4851766A (en) * 1986-12-15 1989-07-25 Hitachi, Ltd. Fault diagnosis system for rotor winding of rotary electric machine
JP2010529477A (en) * 2007-06-12 2010-08-26 サブシー アクチボラゲット Method and apparatus for off-line test of electric motor
JP2015021852A (en) * 2013-07-19 2015-02-02 中国電力株式会社 Soundness inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666137A (en) * 1979-11-02 1981-06-04 Tokyo Shibaura Electric Co Synchronizer stability monitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666137A (en) * 1979-11-02 1981-06-04 Tokyo Shibaura Electric Co Synchronizer stability monitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348372U (en) * 1986-09-17 1988-04-01
US4851766A (en) * 1986-12-15 1989-07-25 Hitachi, Ltd. Fault diagnosis system for rotor winding of rotary electric machine
JP2010529477A (en) * 2007-06-12 2010-08-26 サブシー アクチボラゲット Method and apparatus for off-line test of electric motor
JP2015021852A (en) * 2013-07-19 2015-02-02 中国電力株式会社 Soundness inspection device

Also Published As

Publication number Publication date
JPS6314573B2 (en) 1988-03-31

Similar Documents

Publication Publication Date Title
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
JPH0332028B2 (en)
EP0274691B1 (en) Fault diagnosis system for rotor winding of rotary electric machine
Albright Interturn short-circuit detector for turbine-generator rotor windings
US8536839B2 (en) Device and method for monitoring and/or analyzing rotors of electric machines in operation
JP2005538371A (en) Apparatus and method for monitoring and / or analyzing an electrical machine during operation
EP1464974B1 (en) Online detection of shorted turns in a generator field winding
US6903556B2 (en) Method and apparatus for testing laminated cores of electrical machines
KR100847931B1 (en) Speed sensitive field ground detection mode for a generator field winding
CN111308346B (en) Method and system for detecting a fault in a field winding of a stator of a polyphase brushless exciter
Sadeghi et al. Online condition monitoring of large synchronous generator under short circuit fault—A review
Tian et al. A review of fault diagnosis for traction induction motor
Nandi et al. Novel frequency domain based technique to detect incipient stator inter-turn faults in induction machines
Deeb et al. Three-phase induction motor short circuits fault diagnosis using MCSA and NSC
JPS5812555A (en) Rotor coil defect diagnosing device for rotary electric machine
CN111983452B (en) Method and system for detecting armature winding faults in a multiphase brushless exciter
EP0078852A1 (en) Monitoring unit for the shaft-voltage of a rotary electric machine
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis
Pandarakone et al. Online slight inter-turn short-circuit fault diagnosis using the distortion ratio of load current in a low-voltage induction motor
JPS585682A (en) Detecting device for abnormality of rotor winding of rotary electric machine
Prahesti et al. Three-phase induction motor short circuit stator detection using an external flux sensor
Park et al. Detection and classification of damper bar and field winding faults in salient pole synchronous motors
Goktas et al. Discriminating of rotor fault and low frequency load torque oscillation using motor square current signature analysis
JPH0158746B2 (en)
Liu et al. Stator inter-turn fault detection for the converter-fed induction motor based on the adjacent-current phase-shift