JPS58124578A - Distillation - Google Patents

Distillation

Info

Publication number
JPS58124578A
JPS58124578A JP753882A JP753882A JPS58124578A JP S58124578 A JPS58124578 A JP S58124578A JP 753882 A JP753882 A JP 753882A JP 753882 A JP753882 A JP 753882A JP S58124578 A JPS58124578 A JP S58124578A
Authority
JP
Japan
Prior art keywords
column
distillation
distillation column
heat source
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP753882A
Other languages
Japanese (ja)
Inventor
Hiroshi Unno
洋 海野
Hiroshi Sagara
相良 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Japan Gasoline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Japan Gasoline Co Ltd filed Critical JGC Corp
Priority to JP753882A priority Critical patent/JPS58124578A/en
Publication of JPS58124578A publication Critical patent/JPS58124578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform energy-saving distillation, by withdrawing the concentrated vapor of low-boiling point components from the top of a concentration column, using it as a heat source for the reboiler of a distilling column, and then introducing it into the distilling column to obtain the fraction of the low-boiling point components from the top of the distilling column. CONSTITUTION:An aqueous ethanol solution F as a raw material for instance is made to flow through heat exchangers C, D, preheated by vapor obtained from the top of a distilling column B and a waste liquid obtained from the bottom of a thickening column A, respectively, supplied to the upper part of the column A, and brought into countercurrent contact with steam S introduced through the lower part of the column. Thereafter, the concentrated vapor of low-boiling point components is withdrawn from the top of the column A, used as a heat source for a reboiler R at the bottom of the column B and then supplied to the column B to obtain the fraction of the low- boiling point components from the top of the column B. The top vapor from the column B is introduced into the heat exchanger C, etc. and condensed therein, to recover a part of the vapor as a product P and to circulate the remainder to the upper part of the column B. Since a liquid contg. unrefined SAKE does not flow through the reboiler R at the bottom of the column B, throubles such as pollution and corrosion are eliminated.

Description

【発明の詳細な説明】 本発明は水より低沸点の成分を含有する水溶液から、蒸
留によって僅沸点成分を分離回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and recovering low-boiling components by distillation from an aqueous solution containing components with a lower boiling point than water.

従来普通に行われている蒸留方法は蒸留塔の中間段に原
料水溶液を供給し、塔頂から低沸点成分の蒸気?取り出
し、これを凝縮器で凝縮して、一部を留出物として系外
に取り出し残部全蒸留塔の上部に還流するとともに、塔
底から留出物の量に応じた廃液を取り出している。この
様な方法においては一般に蒸留塔の熱源として水蒸気が
用いられており、その消費量は多大である。これ全低減
させるために、塔頂から取シ出した蒸気や塔底から取り
出した廃液と原料水溶液を熱交換して原料水溶液を予熱
することが通常行われている。しかしながらこれによる
水蒸気の消費量の減少は催かであり、省エネルギー的蒸
留方法とは言えない。
The conventional distillation method is to feed an aqueous raw material solution to the middle stage of a distillation column, and then release steam of low-boiling components from the top of the column. This is taken out, condensed in a condenser, a part is taken out of the system as a distillate, and the rest is all refluxed to the top of the distillation column, and a waste liquid corresponding to the amount of distillate is taken out from the bottom of the column. In such methods, steam is generally used as a heat source for the distillation column, and its consumption is large. In order to completely reduce this, it is common practice to preheat the raw material aqueous solution by heat-exchanging the raw material aqueous solution with the steam taken out from the top of the tower or the waste liquid taken out from the bottom of the tower. However, this method does not reduce the amount of water vapor consumed, and cannot be said to be an energy-saving distillation method.

また例えば、アルコール発酵によって得られるもろみを
含む水溶液は一般に4〜12重量係のアルコールを含有
し、このような稀薄なアルコール溶液から90〜95.
6重量係゛のアルコールを前記の如く方法で得るには熱
源として多量の水蒸気が必要であり蒸留のために投入さ
れる熱エネルギーはかなり大きくなる。最近、エネルギ
ー節減のため塔頂蒸気を熱源として利用する蒸留方法が
提案された。その1つは、第2図に示すととき2塔式の
並流型多重効用蒸留法(バイオマスと新エネルギー開発
会議要旨集第2−5−1頁〜第2−5−15頁1981
年日本能率協会)で、2つの蒸留塔にそれぞれ原料全供
給して、それぞれの蒸留塔)を得る方法で第1塔の塔頂
からの蒸気を第2塔のIJ セイラー凡の熱源として使
用した後、一部を第1塔に還流し、残部tg品として取
り出すものである。しかしこの方法では、高温、高圧下
におけるもろみ成分の分解等に工ってl] ボイラーの
加熱管表面にスケールが付着するため、有効的な熱交換
は行われない。またリゼイラーの加熱管表面が腐蝕され
長期間の運転は不可能となる。他の1つは、第3図に示
すごとき塔頂蒸気自己圧縮式蒸留方法(発酵と工業39
 651. <1981 ))で、蒸留塔の塔頂蒸気を
圧縮材Oで加圧し、その凝縮熱21J zイラー凡の熱
源として利用するものであるが、この方法も+)Nイラ
ーがもろみによって汚染され、また大容量の圧縮機を必
要とするなどの問題点がある。さらに、特開昭56− 
”113717号公報では蒸留塔の塔頂蒸気を圧縮機で
加圧し。
For example, an aqueous solution containing mash obtained by alcoholic fermentation generally contains 4 to 12 parts by weight of alcohol, and such a dilute alcohol solution contains 90 to 95 parts by weight of alcohol.
In order to obtain 6 parts by weight of alcohol by the method described above, a large amount of steam is required as a heat source, and the thermal energy input for distillation is quite large. Recently, a distillation method using overhead steam as a heat source has been proposed to save energy. One of them is the two-column co-current multiple effect distillation method shown in Figure 2 (Biomass and New Energy Development Conference Abstracts, pages 2-5-1 to 2-5-15, 1981).
The Japan Management Association (Japan Management Association) introduced a method in which the steam from the top of the first column was used as a heat source for the IJ Thaler unit in the second column by supplying all the raw materials to each of the two distillation columns to obtain separate distillation columns. Afterwards, a portion is refluxed to the first column, and the remainder is taken out as a tg product. However, in this method, effective heat exchange is not performed because scale adheres to the surface of the heating tube of the boiler due to the decomposition of the mash components under high temperature and high pressure. Furthermore, the surface of the heating tube of the resailor corrodes, making long-term operation impossible. The other method is the overhead vapor self-compression distillation method (fermentation and industry 39) as shown in Figure 3.
651. <1981)), the top vapor of the distillation column is pressurized with a compression material O, and the condensation heat is used as a heat source for the 21Jz irrer, but this method also +)N iller is contaminated with mash, There are also other problems, such as the need for a large-capacity compressor. Furthermore, JP-A-56-
In ``113717, the top vapor of the distillation column is pressurized using a compressor.

これを塔内に吹込まれる水蒸気のうちの一部を発生させ
るための熱源として用いるものであるが。
This is used as a heat source to generate some of the steam that is blown into the tower.

この方法も大容量の圧縮機を必要とするので効果的な処
理コストの低減下は期待でき々い。
Since this method also requires a large-capacity compressor, it is difficult to expect an effective reduction in processing costs.

本発明の目的は、使用エネルギー及び処理コストの低減
が期待できる省エネルギー型でしかもスケール付着等に
よるリセイラーの汚染、腐食の心配のない水より低沸点
の成分を含有する水溶液の蒸留方法を提供することであ
る。
An object of the present invention is to provide an energy-saving method for distilling an aqueous solution containing a component having a boiling point lower than that of water, which is expected to reduce energy consumption and processing costs, and which is free from the risk of contamination or corrosion of the resailor due to scale adhesion, etc. It is.

本願発明者等は、この目的全達成するため鋭意研究の結
果、1または複数個の濃縮塔及びこれと同数の蒸留塔か
ら成り、水より低沸点の成分を含有する水溶液を濃縮塔
の上部に導入し、濃縮塔の下部より導入した水蒸気と向
流接触させて、濃縮塔の塔頂から低沸点成分の濃縮蒸気
を抜き出し。
In order to achieve all of these objectives, the inventors of the present application have conducted intensive research and found that the invention consists of one or more concentration columns and the same number of distillation columns, and an aqueous solution containing components with a lower boiling point than water is placed in the upper part of the concentration column. It is brought into countercurrent contact with the water vapor introduced from the bottom of the concentrating column, and the concentrated vapor of low-boiling components is extracted from the top of the concentrating column.

これ1他の濃縮塔の吹込用水蒸気音発生させるための熱
源として及び/または蒸留塔のりボイラー熱源として用
いた後、蒸留塔に導入し蒸留塔の塔頂より低沸点成分留
分を得ることを特徴とする蒸留方法を発明するに至った
1. After being used as a heat source to generate steam sound for blowing into other concentrating columns and/or as a heat source for a distillation column boiler, it is introduced into a distillation column and a low-boiling point fraction is obtained from the top of the distillation column. This led to the invention of a distinctive distillation method.

次に1本発明の方法を、原料としてアルコール含有水溶
液を用いた場合全1例として1図面について具体的に説
明する。
Next, the method of the present invention will be specifically explained with reference to one drawing as an example in which an alcohol-containing aqueous solution is used as a raw material.

第4図は本発明の方法における順流型多重効用(2塔)
の場合のフローシートである。原料エタノール水溶液F
を熱交換器C,Dに通しそれぞれ第2塔(蒸留塔)Bの
塔頂から得られる蒸気や。
Figure 4 shows downstream multiple effect (two towers) in the method of the present invention.
This is a flow sheet for the case. Raw material ethanol aqueous solution F
The vapors are passed through heat exchangers C and D and obtained from the top of the second column (distillation column) B, respectively.

第1塔(濃縮塔〕Aの塔底から得られる廃液によって予
熱した後、第1塔(!!縮塔)Aの上部に供給し、塔下
部より導入された水蒸気Sと向流接触させる。第1塔(
濃縮塔〕Aの塔頂からエタノ−”’f f 5 (lω
t%程度含む塔頂蒸気を取り出し、こ/ の塔頂蒸気を第2塔(蒸留塔)Bの塔底の+1 yfイ
ラー凡の熱源として用いた後、第2塔(蒸留塔)Bに供
給し所望濃度まで濃縮する。第2塔(蒸留塔)Bからの
塔頂蒸気を熱交換器C等に導いて凝縮し、一部は製品エ
タノールPとして回収し、残部は第2塔(蒸留塔)Bの
上部に還流する。第2塔(蒸留塔)Bの還流比は2.4
程度である。第2塔(蒸留塔)Bの塔底のII zイラ
ーRにばもろみ?含んだ液が流れないため、汚染、腐食
の心配はない。
After being preheated by the waste liquid obtained from the bottom of the first column (concentration column) A, it is supplied to the upper part of the first column (condensation column) A, and brought into countercurrent contact with the steam S introduced from the bottom of the column. 1st Tower (
Concentration tower] Ethanol from the top of A
The top vapor containing approximately t% is taken out, and this top vapor is used as a heat source for the +1yf error at the bottom of the second column (distillation column) B, and then supplied to the second column (distillation column) B. and concentrate to desired concentration. The top vapor from the second column (distillation column) B is guided to a heat exchanger C etc. and condensed, a part of which is recovered as product ethanol P, and the remainder is refluxed to the upper part of the second column (distillation column) B. . The reflux ratio of the second column (distillation column) B is 2.4
That's about it. II ziller R on the bottom of the second column (distillation column) B? There is no need to worry about contamination or corrosion because the liquid it contains does not flow out.

第5図は本発明の方法における順流並流併用型(4塔〕
の場合の70−シートである。原料のエタノール水溶液
Fを熱交換器C及びそれぞれ(熱交換器) DI及び(
熱交換器) B2に通し、蒸留塔の塔頂蒸気や塔底から
の廃液と熱交換させて予熱した後、第1塔(濃縮塔) 
A1及び第2塔(濃縮塔) Axのいづれも上部に供給
し、塔下部より導入される水蒸気と向流接触させる。エ
タノールを50ωt%程度含み、もろみ全完全に除去塔
れた第1塔(濃縮塔) A+及び第2塔(濃縮塔) A
2の塔頂蒸気はそれぞれ第3塔B、及び第4塔B2の2
本の蒸留塔に供給される1この時、第1塔(濃縮塔) 
A+の塔頂蒸気は第3塔(蒸留塔) Btに供給される
前に水蒸気発生器E[導入し、第2塔(濃縮塔) A2
に吹込む水蒸気全発生させるための熱源として用いる。
Figure 5 shows a combination of forward flow and parallel flow type (4 towers) in the method of the present invention.
70-sheets in case of . The raw material ethanol aqueous solution F is transferred to the heat exchanger C and the respective (heat exchangers) DI and (
After passing through B2 (heat exchanger) and preheating by exchanging heat with the top vapor of the distillation column and the waste liquid from the bottom of the column, the first column (concentrating column)
Both A1 and the second column (concentration column) Ax are supplied to the upper part and brought into countercurrent contact with the steam introduced from the lower part of the column. The first column (concentration column) A+ and the second column (concentration column) A+ contain about 50ωt% of ethanol and completely remove all mash.
The top vapor of No. 2 is transferred to No. 2 of the third tower B and fourth tower B2, respectively.
At this time, the first column (concentration column) is fed to the main distillation column.
The top vapor of A+ is introduced into steam generator E [introduced into the second column (concentration column) A2 before being supplied to the third column (distillation column) Bt.
It is used as a heat source to generate all the steam that is blown into the water.

水蒸気源としては系内から得られるもろみを含まない塔
底液1例えば第4塔(蒸留塔) B2  などの塔底液
を用いれば省エネルギー効果がさらに期待できる。第2
塔(濃縮塔)A2の塔頂蒸気は第4塔(蒸留塔) B2
  に供給される前に第3塔(蒸留塔) BIのリゼイ
ラーR8で熱源トして用いる。第3塔(蒸留塔〕B1 
 の塔頂より得られた蒸気は第4塔(蒸留塔)B2  
のIJ NイラーR2の熱源として用いた後、一部を製
品エタノールP1として取シ出し、残部を該塔B、に還
流する。
If a column bottom liquid 1 which does not contain mash and is obtained from within the system is used as the steam source, for example, a column bottom liquid such as the fourth column (distillation column) B2, a further energy saving effect can be expected. Second
The top vapor of column (concentration column) A2 is transferred to fourth column (distillation column) B2
Before being supplied to the third column (distillation column), it is used as a heat source in the BI resiler R8. Third column (distillation column) B1
The vapor obtained from the top of the column is transferred to the fourth column (distillation column) B2.
After using it as a heat source for the IJ Niller R2, a portion is taken out as product ethanol P1, and the remainder is refluxed to the column B.

第4塔(蒸留塔) B2  の塔頂蒸気は適当な熱交換
器に通した後、一部を製品エタノールP2  として系
外に取り出し、残部を該塔B2に還流する。R1及びR
2は図に示すごとくサイドリボイラーでもよい。また蒸
留塔の熱源が不足°する場合は、蒸留塔の塔頂蒸気、を
圧縮機で加圧して、その蒸気の潜熱全塔底液の加熱蒸発
に利用して補うことができる。具体的には順流型多重効
用(2塔)の場合には第6図に示す如く、第2塔(蒸留
塔)Bの塔頂蒸気の一部または全部を圧縮機GKより加
圧し。
After passing the top vapor of the fourth column (distillation column) B2 through a suitable heat exchanger, a portion is taken out of the system as product ethanol P2, and the remainder is refluxed to the column B2. R1 and R
2 may be a side reboiler as shown in the figure. Furthermore, if the heat source of the distillation column is insufficient, the vapor at the top of the distillation column can be pressurized by a compressor, and the latent heat of the vapor can all be used to heat and evaporate the bottom liquid to compensate. Specifically, in the case of a downflow type multiple effect (two columns), as shown in FIG. 6, part or all of the top vapor of the second column (distillation column) B is pressurized by a compressor GK.

この蒸気を該塔のIJ yiイラーR3に通して塔底液
の加熱源として用いた後、凝縮した液を更に熱交換器に
通して冷却し、一部を製品エタノールPとして回収し残
部を該塔に還流する。またリボイラー形式の代わりに水
蒸気を吹込む形式ケ採用することも可能である。この場
合前述の如く加圧した塔頂蒸気を水蒸気発生器に導入し
て水を加熱し。
This vapor is passed through the IJ yi Ilar R3 of the column and used as a heating source for the bottom liquid, and then the condensed liquid is further cooled by passing through a heat exchanger, a part of which is recovered as product ethanol P, and the remainder is Reflux to the tower. Also, instead of the reboiler type, it is also possible to adopt a type that blows steam. In this case, as described above, pressurized overhead steam is introduced into a steam generator to heat water.

得られた水蒸気全蒸留塔に直接供給すれば工い。This can be done by directly feeding the obtained steam to the total distillation column.

順流並流併用型の場合も同様に第7図の如く蒸留塔の塔
頂蒸気を圧縮機Gで加圧し、この熱を塔底液の加熱蒸発
に利用する。また第6図及び第7図では圧縮機で加圧し
た塔頂蒸気を当該蒸留塔の塔底液の加熱源として用いる
例を示すが、これに限らず他の蒸留塔や濃縮塔の熱源と
して用いることも可能である。
In the case of the forward flow/cocurrent flow type, the vapor at the top of the distillation column is similarly pressurized by the compressor G, as shown in FIG. 7, and this heat is used for heating and evaporation of the bottom liquid. In addition, although Figures 6 and 7 show an example in which the top vapor pressurized by a compressor is used as a heat source for the bottom liquid of the distillation column, it is not limited to this and can be used as a heat source for other distillation columns or concentration columns. It is also possible to use

しかし当該蒸留塔に比べてより高圧々前段の塔への圧縮
蒸気の利用は圧縮機の所要動力及び設備費が大となるの
で%あまり圧力差のある塔への利用は好ましくない。
However, when compressed steam is used in a column at a higher pressure than the distillation column, the power required for the compressor and the cost of equipment are large, so it is not preferable to use it in a column with a large pressure difference.

また本発明での濃縮塔及び蒸留塔は必ずしも別々の塔で
ある必要はない。濃縮塔の上部に蒸留塔全設置して一体
化し複合1塔式としてもよい。この場合には装置建設に
要するスペース及び設備コストの低減化が期待できる。
Further, the concentration column and the distillation column in the present invention do not necessarily need to be separate columns. The entire distillation column may be installed above the concentration column and integrated to form a composite single-column type. In this case, it can be expected that the space and equipment costs required for device construction will be reduced.

実施例1.2 第4図、第5図に示す装置をそれぞれ用い、エタノール
濃v11.9 #t%  のエタノール水溶液17−6
 ton / Hr  を原料として、エタノール濃度
93wt% の製品エタノールを得た。このときの操作
条件及びユーティリティー使用量を第1表に示す。
Example 1.2 An aqueous ethanol solution 17-6 with an ethanol concentration of 11.9 #t% was prepared using the apparatuses shown in FIGS. 4 and 5, respectively.
Product ethanol with an ethanol concentration of 93 wt% was obtained using 100 ton/Hr as a raw material. Table 1 shows the operating conditions and utility usage at this time.

比較例1 第1図に示す装置を用い、実施例1と同じ原料かう、エ
タノール濃度93vt%の製品エタノールを得るよう運
転した。このときの操作条件及びユーティリティー使用
量を第1表に示す。
Comparative Example 1 Using the apparatus shown in FIG. 1, it was operated using the same raw materials as in Example 1 to obtain product ethanol with an ethanol concentration of 93 vt%. The operating conditions and amount of utilities used at this time are shown in Table 1.

実施例3 第6図に示す装置を用い、実施例1と同じ原料カラエタ
ノール濃度93ωt%の製品エタノールを得るよう運転
した。但し、第2塔の塔頂蒸気のうち+1.7 Ton
 / Hr  k圧縮機で0.5 Kf / i ()
から5−2Kg/cJGに昇圧して第2塔のIJ zイ
ラー熱源として用いた。このときのストリンピングスチ
ーム量およびユーティリティー使用量を第2表に示す。
Example 3 Using the apparatus shown in FIG. 6, it was operated to obtain product ethanol with the raw material empty ethanol concentration of 93 ωt% as in Example 1. However, +1.7 Ton of the top steam of the second tower
/ Hr k compressor with 0.5 Kf/i ()
The pressure was increased to 5-2 Kg/cJG and used as the IJz iller heat source for the second column. Table 2 shows the amount of stripping steam and the amount of utility used at this time.

家施例4 第7図に示す装置を戸い、実施例1と同じ原料カラエタ
ノール濃度93ωt%の製品エタノールを得るよう運転
した。但し、第4塔の塔頂蒸りのうち1.5はton 
/ Hrを圧縮機で22 +1NxlI ?から115
0txxHtに昇圧し第4塔のIJ ygイラー熱源と
して用いた。このときのストリッピングスチーム量およ
びユーティリティー使用量全第2表に示す。
Example 4 The apparatus shown in FIG. 7 was operated to obtain product ethanol having the same raw material empty ethanol concentration of 93 ωt% as in Example 1. However, 1.5 of the steam at the top of the fourth tower is ton
/ Hr with compressor 22 +1NxlI? From 115
The pressure was increased to 0txxHt and used as the IJyg heater heat source for the fourth column. The total amounts of stripping steam and utilities used at this time are shown in Table 2.

前記各実施例および比較例における使用エネルギーに要
するコスト、設備に要するコスト、更にそれらを組み合
わせた製品エタノール単位童画たシの処理コストについ
て算出した結果、比較例1の場合を1とすると第3表の
通りであった。なお設備は4年で償却するものとした。
The results of calculations regarding the cost required for energy used, the cost required for equipment, and the processing cost for the product ethanol unit Dogata Shi in each of the above Examples and Comparative Examples, as well as the processing cost for the product ethanol unit, are shown in Table 3, assuming Comparative Example 1 as 1. It was as follows. It was assumed that the equipment would be depreciated over four years.

以上の如く、本発明方法は従来の方法に比較して設備に
費用がかかるもの′の、使用するエネルギーV大幅に節
減でき、且つ製品単位童画たりの処理コストヲも大幅に
低減できる。又リゼイラーのもろみによる熱伝導の低下
や腐食をもたらすことがないので、エネルギーを更に有
効に利用でき。
As described above, although the method of the present invention requires more expensive equipment than the conventional method, it can significantly reduce the energy used and the processing cost for each child's picture product. In addition, there is no reduction in heat conduction or corrosion caused by the resailor's mash, so energy can be used more effectively.

装置もより長期間使用することができる等の効果もある
The device also has the advantage of being able to be used for a longer period of time.

また本発明方法の対象はアルコール含有水溶液シ・、 −)限る訳ではなく、水より低沸点の成分?含有すクイ
lる水溶液ならは良<、%に目的とする低沸点成分の稀
薄水溶液を濃縮する場合に有効である。場らにリセイラ
ーの加熱管表面にスケールが付着して有効な加熱1妨げ
たり、腐食をもたらすような物質を含む前記水溶液を扱
う場合に適している。
In addition, the target of the method of the present invention is not limited to alcohol-containing aqueous solutions, but also components with a lower boiling point than water. It is effective when concentrating a dilute aqueous solution of a target low-boiling point component to a low-boiling point component of less than 1%. This method is suitable for handling the aqueous solution containing substances that may cause scale to adhere to the surface of the heating tube of the resailor, hindering effective heating, or causing corrosion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から普通に用いられている蒸留方法のフロ
ーシート、第2図及び第、3図はいづれもエネルギー節
減のため最近提案された蒸留方法のフローシートである
。 第4図は本発明の1実施態様である順流型多重効用(2
塔)の場合のフローシート、第6図はその自己圧縮型の
フローシートである。第5図は本発明の他の実施態様で
ある順流並流併用型(4塔)の場合のフローシート、第
7図はその自己圧縮型で、第4塔のみを示すフローシー
トである。 特許出願人   日揮株式会社 幕1図 奉2図 基3図 本5 図
FIG. 1 is a flow sheet of a conventional distillation method, and FIGS. 2, 3, and 3 are flow sheets of a distillation method recently proposed for energy saving. Figure 4 shows a forward flow type multiple effect system (2
Figure 6 shows the flow sheet for the self-compressing type. FIG. 5 is a flow sheet for a forward flow parallel flow type (four columns), which is another embodiment of the present invention, and FIG. 7 is a flow sheet for the self-compression type, showing only the fourth column. Patent Applicant: JGC Corporation

Claims (1)

【特許請求の範囲】 (1)l’′!たけ複数個の濃縮塔及び同数の蒸留塔か
ら成る系において、水より低沸点の成分全含有する水溶
液全濃縮塔の上部に導入し、濃縮塔の下部エリ導入した
水蒸気と向流接触させて、濃縮塔の塔頂から低沸点成分
の濃縮蒸気1抜き出し、他の濃縮塔の吹込用水蒸気を発
生させるための熱源として及び/または蒸留塔のIJ 
iイラーの熱源として用いた後、蒸留塔に導入し蒸留塔
の塔頂より低沸点成分留分を回収することを特徴とする
蒸留方法。 ・(2)複数個の濃縮塔及び同数の蒸留塔から成る系の
蒸留塔の塔頂から得られる低沸点成分留分1他のより低
圧の蒸留塔のIJ yyイラーの熱源として用いた後、
該留分の1部を該蒸留塔の上部に還流し、残部を低沸点
成分の製品として回収する第1項の方法。 (3)濃縮塔及び蒸留塔がそれぞれ2塔である第1項の
方法。 (4)蒸留塔の塔底液の少くとも1部全蒸発させて濃縮
塔の吹込用−水蒸気として用いる第1項の方法。 (5)  系内の蒸留塔のうちの1個の蒸留塔の塔頂蒸
気の1部または全部を加圧した後、該蒸留塔のりセイラ
ーの熱源及び/または該蒸留塔に吹込まれる水蒸気を発
生させるための熱源として用いる第1項の方法。
[Claims] (1) l''! In a system consisting of several concentration columns and the same number of distillation columns, an aqueous solution containing all components with a lower boiling point than water is introduced into the upper part of the concentration column and brought into countercurrent contact with the water vapor introduced into the lower part of the concentration column, One concentrated vapor of low-boiling components is extracted from the top of the concentrating column and used as a heat source for generating steam for blowing into other concentrating columns and/or as a heat source for the IJ of the distillation column.
A distillation method characterized in that after being used as a heat source for an iller, it is introduced into a distillation column and a low boiling point component fraction is recovered from the top of the distillation column.・(2) After using the low-boiling point component fraction 1 obtained from the top of the distillation column in a system consisting of a plurality of concentrating columns and the same number of distillation columns as a heat source for the IJ yy iller of another lower pressure distillation column,
1. The method of claim 1, wherein a part of the fraction is refluxed to the upper part of the distillation column and the remainder is recovered as a product of low-boiling components. (3) The method of item 1, wherein each of the concentration column and the distillation column is two columns. (4) The method of item 1, in which at least a portion of the bottom liquid of the distillation column is completely evaporated and used as steam for blowing into the concentration column. (5) After pressurizing a part or all of the steam at the top of one of the distillation columns in the system, the heat source of the sailor of the distillation column and/or the steam blown into the distillation column is The method of item 1, which is used as a heat source for generating electricity.
JP753882A 1982-01-22 1982-01-22 Distillation Pending JPS58124578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP753882A JPS58124578A (en) 1982-01-22 1982-01-22 Distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP753882A JPS58124578A (en) 1982-01-22 1982-01-22 Distillation

Publications (1)

Publication Number Publication Date
JPS58124578A true JPS58124578A (en) 1983-07-25

Family

ID=11668561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP753882A Pending JPS58124578A (en) 1982-01-22 1982-01-22 Distillation

Country Status (1)

Country Link
JP (1) JPS58124578A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125201A (en) * 1983-12-09 1985-07-04 Ebara Corp Heat recovery method and apparatus in rectification tower
CN100391862C (en) * 2004-12-21 2008-06-04 哈尔滨工程大学 Recovery of alcohol diisopropylamine from waste liquid of pharmaceutical industry
JP2012522047A (en) * 2008-04-04 2012-09-20 ラムス テクノロジー インク Systems and processes for producing linear alpha olefins
WO2016199800A1 (en) * 2015-06-08 2016-12-15 株式会社ササクラ Tritium water distillation device and tritium water distillation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125201A (en) * 1983-12-09 1985-07-04 Ebara Corp Heat recovery method and apparatus in rectification tower
CN100391862C (en) * 2004-12-21 2008-06-04 哈尔滨工程大学 Recovery of alcohol diisopropylamine from waste liquid of pharmaceutical industry
JP2012522047A (en) * 2008-04-04 2012-09-20 ラムス テクノロジー インク Systems and processes for producing linear alpha olefins
WO2016199800A1 (en) * 2015-06-08 2016-12-15 株式会社ササクラ Tritium water distillation device and tritium water distillation method

Similar Documents

Publication Publication Date Title
CN105669377B (en) A kind of process separating mixed alcohol
US4327184A (en) Inert-gas stripping and distillation apparatus
Modla Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer
FI73737B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETANOL.
US3303106A (en) Falling film evaporator
US4328074A (en) Production of concentrated alcohol and distillery slop
EP0043023A1 (en) Hydrous alcohol distillation method and apparatus
TW360636B (en) Method and apparatus for recovering acetic acid from aqueous streams
KR102484021B1 (en) System and method for rapid extraction and purification of ethyl acetate after pressurized esterification synthesis
CN108218756A (en) A kind of NMP waste water low temperature recovery system and its method
US4222997A (en) Method of recovering hydrochloric acid from spent hydrochloric acid pickle waste
US4428799A (en) Production of concentrated alcohol and distillery slop
US4362601A (en) Method for distilling ethyl alcohol by adding salt or salts
US4381220A (en) Production of concentrated alcohol and distillery slop
JPS58124578A (en) Distillation
CN109320417A (en) Utilize the device and method of partition tower purification Ergol
CN206304382U (en) A kind of solvent DMAC vacuum recovering apparatus of aramid fiber production
NO169885B (en) PROCEDURE FOR THE PREPARATION OF MONOCALIUM PHOSPHATE
KR101330035B1 (en) Refine alcohol distillation system
CN107265539A (en) A kind of processing method of high saliferous methanol waste water
US3691020A (en) Styrene plant waste heat utilization in a water desalination process
CN113813625A (en) Device and method for recovering light alcohol by combining MVR with recovery tower
JP2571743B2 (en) Manufacturing method of absolute ethanol
CN110002960A (en) A kind of device and method of separation ABE fermentation infiltration evaporation liquid
US2400370A (en) Process and apparatus for producing in the pure state, butyl alcohol, acetone, and ethyl alcohol from watery solutions