JPS5812419A - Waveform equalizer - Google Patents

Waveform equalizer

Info

Publication number
JPS5812419A
JPS5812419A JP11116881A JP11116881A JPS5812419A JP S5812419 A JPS5812419 A JP S5812419A JP 11116881 A JP11116881 A JP 11116881A JP 11116881 A JP11116881 A JP 11116881A JP S5812419 A JPS5812419 A JP S5812419A
Authority
JP
Japan
Prior art keywords
delay
amplitude
circuit
equalization
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116881A
Other languages
Japanese (ja)
Inventor
Keiji Murakami
村上 圭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11116881A priority Critical patent/JPS5812419A/en
Publication of JPS5812419A publication Critical patent/JPS5812419A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/14Control of transmission; Equalising characterised by the equalising network used

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To improve the accuracy of equalization by inputting a delay-equalized signal to an amplitude equalizing circuit, and adjusting delay equalization and amplitude equalization independently. CONSTITUTION:An input signal from an input terminal 1 is supplied to the delay equalization part 11 composed of a delay circuit group 2, an amplitude adjusting circuit group 3 and an adder 4 to perform delay equalization. This delayed signal is branched by a branching circuit 30; one is supplied to a synthesizing circuit 16 through a variable delay circuit 31. The other branched signal is supplied to the amplitude equalization part 12 composed of a delay circuit group 13, an amplitude adjusting circuit group 14, and an adder 15 to perform amplitude equalization. This delay-equalized signal is sent to the synthesizing circuit 16, where the signal is synthesized with the delay-equalized signal. Thus, the delay equalization and amplitude equalization are adjusted independently, so accurate equalization is performed.

Description

【発明の詳細な説明】 この発明は信号波形を等化する波形等化器、特にその位
相量と振幅を共に等化する手段に関する本のである。
DETAILED DESCRIPTION OF THE INVENTION This invention is a book relating to a waveform equalizer that equalizes a signal waveform, and particularly to a means for equalizing both the phase amount and the amplitude.

第1図は従来の波形等化器の一例を示すブロック結線図
であり、(1)は入力端子、(2)はこの入力端子信号
を減衰させることなく一定時間だけ遅延させて出力する
複数のタップ付遅叛回路(21)・・・(2n)を直列
に接続した第1遅延回路群、(3)はこのタップ付遅麹
回路の入力又は出力信号の極性を反転させる手段と振幅
を調整する手段を備えたIl数の振幅調整回路(3a)
・・・(3n)から成る第1振幅調整回路群、(4)は
この第1振幅調整回路群の各出力を加算する加算器、(
5)は出力端子である。
FIG. 1 is a block wiring diagram showing an example of a conventional waveform equalizer, in which (1) is an input terminal, and (2) is a plurality of terminals that delay the input terminal signal by a certain period of time without attenuating it and output it. A first delay circuit group consisting of tapped delay circuits (21)...(2n) connected in series; (3) is a means for inverting the polarity of the input or output signal of this tapped delay circuit and adjusting the amplitude; Il number amplitude adjustment circuit (3a) equipped with means for
... (3n) is a first amplitude adjustment circuit group, (4) is an adder that adds each output of this first amplitude adjustment circuit group, (
5) is an output terminal.

上記のように構成された波形等化器においては、入力端
子(1)K入力した信号は、一部はタップ付遅延回路(
2a)K入力し、一定時間Tだけ遅延されて出力され、
一部は振幅調整回路(3a)に入力して適当な振幅に調
整されて出力される。次に一定時間Tだけ遅延された信
号は同様にして一部はタップ付遅延回路(2b)tc大
入力て合計時間2Tだけ遅延されて出力され、一部は振
幅調整回路(3b)K人カして適当な振幅に調整されて
時間Tだけ遅れた信号として出力される。このようKし
て時間0 、 T。
In the waveform equalizer configured as above, a part of the signal inputted to the input terminal (1) is sent to the tapped delay circuit (
2a) K input, delayed by a certain time T and output,
A portion is input to an amplitude adjustment circuit (3a), adjusted to an appropriate amplitude, and output. Next, the signal delayed by a certain period of time T is similarly partially inputted to the tapped delay circuit (2b), delayed by a total time of 2T, and outputted, and a portion is outputted to the amplitude adjustment circuit (3b). The signal is then adjusted to an appropriate amplitude and output as a signal delayed by a time T. Thus K and time 0, T.

2T、3T・・・nT(nけタップ付遅延回路の個数)
だけ遅延した( n+1 )個の信号が加算器(4)で
加算され出力端子(5)から出力される。
2T, 3T...nT (Number of delay circuits with n-digit taps)
(n+1) signals delayed by 1 are added by an adder (4) and output from an output terminal (5).

上記の波形等化量の動作をn=2の場合についてさらに
詳細に述べる。第2図は従来の波形等化器の他の一例を
示すブロック結線図であり、(1)〜(5)、(2g)
、(2b)=(3a) 〜(3e)は上記tJL1図の
同一符号と同−又は相当部分を示す本のである。
The operation of the above waveform equalization amount will be described in more detail for the case where n=2. FIG. 2 is a block wiring diagram showing another example of a conventional waveform equalizer, and (1) to (5), (2g)
, (2b)=(3a) to (3e) are books showing the same or equivalent parts as the same reference numerals in the above tJL1 diagram.

上記のように構成された波形等化器において入力端子(
1)に振幅1の極めて細いパルスが入力した場合を考え
る。振幅調整回路(3a)〜(3c)から出力された信
号の振幅値(タップ係数)を各々a−1゜1.11とす
る。第3図にこの時の時間応答を示す。
In the waveform equalizer configured as above, the input terminal (
Consider the case in which an extremely thin pulse with an amplitude of 1 is input in 1). The amplitude values (tap coefficients) of the signals output from the amplitude adjustment circuits (3a) to (3c) are each a-1°1.11. Figure 3 shows the time response at this time.

ここで第3図は第2図の波形等化器の振幅調整回路(3
&)〜(3c)の時間応答波形図である。
Here, Figure 3 shows the amplitude adjustment circuit (3) of the waveform equalizer in Figure 2.
&) - (3c) are time response waveform diagrams.

図においてタップ係数1の信号を主信号、タップ係数a
−1及び1□の信号を反響信号(エコー)と呼ぶ。この
時の周波数特性なF(Aとすると、F (f) = A
 (1+a−、e″″J * M f T+ 、1.j
 * M f t )=A(1+(a、+a−,)eo
s2g/T+j(at  l−1−1)d’fT)・・
・・・(1) となる、ここでAは定数である。振幅及び群遅延特性の
変動項を各々GV)、dB、τωsecとすると、(1
)l、 = am= k (k < 1)のとき(1)
a□=−a−、=k(k<1 )のときに応じて振幅特
性又は群遅延特性の一方が余弦形の賢動を行い、他方は
不変の一定値となる。この時の特性を第4図に示す。こ
とで第4図は時間応答波形図及び振幅と群遅蔦の周波数
特性図である。
In the figure, the signal with tap coefficient 1 is the main signal, and the tap coefficient a
The −1 and 1□ signals are called echo signals. If the frequency characteristic at this time is F(A, then F (f) = A
(1+a-, e″″J * M f T+ , 1.j
* M f t )=A(1+(a,+a−,)eo
s2g/T+j(at l-1-1)d'fT)...
...(1) where A is a constant. Letting the fluctuation terms of the amplitude and group delay characteristics be GV), dB, and τωsec, respectively, (1
)l, = am= k (1) when k < 1
When a□=-a-, =k (k<1), either the amplitude characteristic or the group delay characteristic exhibits a cosine-like movement, and the other remains an unchanging constant value. The characteristics at this time are shown in FIG. FIG. 4 is a time response waveform diagram and a frequency characteristic diagram of amplitude and group delay.

第4図のこれらの特性を用いて振幅又は群遅延の醇化を
行うことができる。
These characteristics shown in FIG. 4 can be used to soften the amplitude or group delay.

一般に信号波形の等化には振幅と群遅延の両方。Generally, both amplitude and group delay are used to equalize signal waveforms.

を等化する必要があるので通常は第5図に示すように第
2図に示した回路を2つ用いて振幅と群遅延を別々に醇
化する。第5図は従来の波形等化器の更に他の1つの例
を示すブロック結線図である。
Since it is necessary to equalize the amplitude and group delay, normally, as shown in FIG. 5, two of the circuits shown in FIG. 2 are used to separately equalize the amplitude and group delay. FIG. 5 is a block diagram showing yet another example of a conventional waveform equalizer.

(1)〜(5) −(2a)−(2b)、(3m) 〜
(3e)は上記tIIt1図の同一符号と同−又は相当
部分を示すものである。
(1) ~ (5) - (2a) - (2b), (3m) ~
(3e) indicates the same or equivalent parts as the same reference numerals in the above-mentioned figure tIIt1.

図において(イ)け入力端子(1)からの入力信号を遅
爾等化部Q力と振輻郷化部@に分配する分岐回路、(2
)はこの分岐回路からの信号を減衰させることなく一定
時間だけ遅延させて出力する複数のタップ付遅延回路(
13m)、(13b)を直列に接続した第2遅砥回路群
、a◆はこのタップ付遅延回路の入力文Fiω力信号の
極性を反転させる手段と振幅を調整する手段を備えた複
数の振幅調整回路(14m)、(14b)から成る第2
振幅調整回路群、(ハ)はこの第2振幅調整回路群の各
出力を加算する加算器、α→はこの加算器出力と上記加
算器(4)の出力を合成゛する合成回路である。
In the figure, (A) is a branch circuit that distributes the input signal from the input terminal (1) to the delay equalizer Q force and the convergence converter @;
) is a multiple tapped delay circuit (
13m) and (13b) are connected in series, a◆ is a plurality of amplitudes equipped with a means for inverting the polarity of the input signal Fiω force signal of this tapped delay circuit and a means for adjusting the amplitude. The second circuit consists of adjustment circuits (14m) and (14b).
In the amplitude adjustment circuit group, (c) is an adder that adds each output of the second amplitude adjustment circuit group, and α→ is a synthesis circuit that combines the output of this adder with the output of the adder (4).

上記のように構成された波形等化器において、振。幅調
整回路(3m) ”” (3e)、(14a)、(14
b)のタップ係数を順K a−1e1m@ +lkl 
+1)−1+1)1  とする。更K &、=&−1′
=k e a@ =1 * bl =b−1== k、
  とすれば&l、と11により1遅延の等化が可能で
あり、b8とb−1によ゛り振幅の等化が可能であ□る
。この時の入力信号と出力信号のベクトル図を第6図に
示す。
In the waveform equalizer configured as above, vibration. Width adjustment circuit (3m) ”” (3e), (14a), (14
b) tap coefficient in order K a-1e1m@+lkl
+1)-1+1)1. Further K &, =&-1'
=ke a@ =1 * bl =b-1== k,
Then, equalization of one delay is possible by &l, and 11, and amplitude equalization is possible by b8 and b-1. A vector diagram of the input signal and output signal at this time is shown in FIG.

第6図(1)は遅延等化部出力の出力信号ベクトルが分
岐回路00出力信号ベクトルと位相差θ1を持っている
ことを示している。又第6図(It)から明らかなよう
に振幅尋化部(ロ)の出力信号ベクトルは分岐回路(至
)出力信号と同一方向を向いているか合成回路a6で振
幅と遅延を等化した後の最終出力信号は入力信号ベクト
ルと位相差θ8を持つことになる。す々わち遅延等化部
6])で遅延等化した後に振幅等化を行った場合再び遅
延歪が発生し、振幅等化部(ロ)で振幅等化を行った後
に遅延等化を行った場合は再び振幅歪が発生する。
FIG. 6(1) shows that the output signal vector of the delay equalizer output has a phase difference θ1 from the branch circuit 00 output signal vector. Also, as is clear from Fig. 6 (It), is the output signal vector of the amplitude equalization section (b) pointing in the same direction as the output signal of the branch circuit (to)? The final output signal has a phase difference θ8 from the input signal vector. If amplitude equalization is performed after delay equalization in the delay equalization section (6), delay distortion will occur again. If this is done, amplitude distortion will occur again.

従来の波形等化量は上記のように構成されているので波
形歪が小さい場合には、波形等化器のタップ係数が十分
小さくてすみ、振幅と群遅延がほぼ独立に調整できるが
、波形歪の大きい場合K1l−1(3)式の近似式が成
り立たないために群遅延の等化が振幅歪を発生し、又振
幅等化が遅延歪を発生することとなり、振幅と群遅延の
独立性が保たれず調整時の収束性が悪いという欠点があ
った。
The conventional waveform equalization amount is configured as described above, so if the waveform distortion is small, the tap coefficient of the waveform equalizer can be small enough, and the amplitude and group delay can be adjusted almost independently. When the distortion is large, the approximation formula of K1l-1 (3) does not hold, so equalization of group delay generates amplitude distortion, and amplitude equalization generates delay distortion, and the independence of amplitude and group delay This method has the drawback that the accuracy is not maintained and the convergence during adjustment is poor.

この発明は上記のような従来装置の欠点を除去するため
Kなされたもので群遅延等化した信号を振幅等化回路に
入力することによって振幅と群遅延の独立に調整できる
波形等化器を得ることを目的とするものである。
This invention was made in order to eliminate the drawbacks of the conventional device as described above, and it provides a waveform equalizer that can adjust the amplitude and group delay independently by inputting the group delay equalized signal to the amplitude equalization circuit. The purpose is to obtain.

第7図はこの発明の一実施例を示すブロック結線図であ
り、(1)〜(5) 、(2m)、(2b)−(3a)
、(3b)、61〜tx 、 (13a)、(13b)
、(14m)、(14b) Id第5図の同一符号と同
−又は相当部分を示すものである。図において曽は等化
量(4)の出力を2分岐する分岐回路、(31)はこの
分岐回路出力の1つをある時間遅延させる可変遅延回路
である。
FIG. 7 is a block diagram showing one embodiment of the present invention, and shows (1) to (5), (2m), (2b) to (3a).
, (3b), 61~tx, (13a), (13b)
, (14m), (14b) Id The same reference numerals as in FIG. 5 indicate the same or equivalent parts. In the figure, Zeng is a branch circuit that branches the output of the equalization amount (4) into two, and (31) is a variable delay circuit that delays one of the outputs of this branch circuit for a certain period of time.

上記のように構成された波形等化器に任意の信号波形を
入力した場合を考えると、任意の信号波形は極めて細い
パルスの和信号と考えることができるので以下において
は細いパルス信号の入力信号の場合について説明する。
Considering the case where an arbitrary signal waveform is input to the waveform equalizer configured as above, the arbitrary signal waveform can be considered as a sum signal of extremely thin pulses, so in the following, the input signal of the thin pulse signal The case will be explained below.

第8図は第7図の波形等化器に細いパルスの信号波形を
入力した時の各部の時間応答波形図であって、第8図の
(1)〜(イ)の波形は第7図の同一符号の各部の波形
を示している。
FIG. 8 is a time response waveform diagram of each part when a thin pulse signal waveform is input to the waveform equalizer shown in FIG. 7, and the waveforms (1) to (a) in FIG. The waveforms of the parts with the same reference numerals are shown.

入力端子(1)K入力した振幅1の入力信号は、一部は
遅延時間Tを持つタップ付遅延回路(2a)に入や、他
の一部は振幅調整回路(3a)K入力する。タップ付遅
延回路(2a)の出力のうち一部は、遅延時間Tを持つ
タップ付遅延回路(2b)K:入力し、他の一部はその
まま加算器(4)K入力する。タップ付遅延回路(2b
)の出力は極性反転機能を持つ振幅調整回路(3b)に
入力する。いま上記の構成で群遅延の等化を行うとする
。タップ付遅延回路(2a)の出方振幅は1であり、極
性反転機能を持つ振幅調整回路(3m)、(3b)の出
力振幅を1−1eJ  としa 、 =−L。
Part of the input signal of amplitude 1 inputted to the input terminal (1) K enters the tapped delay circuit (2a) having a delay time T, and the other part is inputted to the amplitude adjustment circuit (3a). A part of the output of the tapped delay circuit (2a) is input to the tapped delay circuit (2b) K having a delay time T, and the other part is input to the adder (4) K as is. Delay circuit with tap (2b
) is input to an amplitude adjustment circuit (3b) having a polarity inversion function. Let us now assume that group delay equalization is performed using the above configuration. The output amplitude of the tapped delay circuit (2a) is 1, and the output amplitude of the amplitude adjustment circuits (3m) and (3b) having a polarity inversion function is 1-1eJ, and a = -L.

=に、とする。この時の時間応答波形図は第8図(I)
= . The time response waveform diagram at this time is shown in Figure 8 (I).
.

(II)のとおりである。(1)は入力端子(1)K時
刻1=0で極めて細いパルスが入力したことを示し、ω
)は加算器(4)の出力時間応答を示している。タップ
係数klの大きさによって、群遅延特性が第4図(II
)のように遅延量の変動振幅2に、T で余弦形に変化
する。この時振幅特性はほぼ平担であるが、加算器(4
)の出力信号ベクトルと入力信号ベクトルの方向は一致
、せず、第9図(1) K示すように位相角θのへ\、 だたりがある。ここで第9図は第7図の装置の信号ベク
トル図である。第7図値)K示したパルス列は分岐回路
OIKよって2つに分けられて、一部は可変遅延回路(
31)に入力し、一部は振幅等化部(2)K入力する。
(II). (1) indicates that an extremely thin pulse was input to input terminal (1) at K time 1 = 0, and ω
) shows the output time response of the adder (4). Depending on the magnitude of the tap coefficient kl, the group delay characteristic changes as shown in Figure 4 (II
), the delay amount changes with an amplitude of 2 and changes in a cosine shape at T. At this time, the amplitude characteristics are almost flat, but the adder (4
) The directions of the output signal vector and the input signal vector may or may not match, and there is a deviation in the phase angle θ as shown in FIG. 9 (1) K. Here, FIG. 9 is a signal vector diagram of the apparatus of FIG. 7. The pulse train shown in FIG.
31), and a portion is input to the amplitude equalizer (2) K.

振幅等化部(2)K入力した信号(パルス列)は、極性
反転機能を持つ振幅調整回路(14!L)で振幅調整さ
れて、加算器(2)の入力となる。他の一部は遅延時間
Tを持つタップ付遅延回路(13m)。
The signal (pulse train) inputted to the amplitude equalization unit (2) is amplitude-adjusted by an amplitude adjustment circuit (14!L) having a polarity inversion function, and is input to the adder (2). The other part is a tapped delay circuit (13m) with a delay time T.

(13b)を経て、極性反転機能を持つ振幅調整回路(
14b)で振序調整されて加算器(ハ)の入力となる。
(13b), the amplitude adjustment circuit (
The order is adjusted in step 14b) and becomes the input to the adder (c).

この時の振幅調整回路(14a)、(14b)のタップ
係数をb−□rb1とすると振幅等化の場合けb−1=
 b、=に、となり、その周波数特性Fi第4図(1)
で示したようK、振幅が大きさ2に、で余弦形の変動を
し、群遅延は平担であるからに、の値を変えることによ
って振幅等化ができる。この時の時間応答波形は第8図
a)〜(至)の通りである。第8図(匍は振幅調整回路
(14a)の出力波形を示し、(財)は振幅調整回路(
14b)の出力波形を示し、(ト)は加算器α9の出力
波形を示している。
If the tap coefficients of the amplitude adjustment circuits (14a) and (14b) at this time are b-□rb1, then in the case of amplitude equalization, b-1=
b, = , and its frequency characteristic Fi Fig. 4 (1)
As shown in , the amplitude of K fluctuates in a cosine shape with magnitude 2, and the group delay is flat, so amplitude equalization can be achieved by changing the value of . The time response waveforms at this time are as shown in FIG. 8a) to (to). FIG. 8 (The figure shows the output waveform of the amplitude adjustment circuit (14a), and the figure shows the output waveform of the amplitude adjustment circuit (14a).
14b) shows the output waveform, and (g) shows the output waveform of the adder α9.

分岐回路(至)の一方の出力は可変遅延回路(31)に
入力し、時間Tだけ遅延されて合成回路0峰に入る。
One output of the branch circuit (to) is input to the variable delay circuit (31), is delayed by time T, and enters the synthesis circuit 0 peak.

It!8rgI(V[)、■はこの時の時間応答波形を
示している。すなわち@は可変遅延回路(31)の出力
の時間応答波形であり、(至)け出力端子(5)の時間
応答波形である。
It! 8rgI(V[), ■ indicates the time response waveform at this time. That is, @ is the time response waveform of the output of the variable delay circuit (31), and is the time response waveform of the output terminal (5).

第9図値)はこの時のベクトル図を示している。Figure 9 shows the vector diagram at this time.

すなわち振幅等化した後の出力信号ベクトルは振幅等化
部(6)での入力ベクトルと同じ方向を向いているが、
これは遅延等化部α力からの出力信号ベクトルと同一方
向を向いているため、振幅等化が遅延歪を生ずることが
表く振幅及び群遅延の等化が独立にできることを示して
いる。
In other words, the output signal vector after amplitude equalization is oriented in the same direction as the input vector in the amplitude equalization section (6),
Since this is oriented in the same direction as the output signal vector from the delay equalizer α force, it is clear that amplitude equalization causes delay distortion.This indicates that equalization of amplitude and group delay can be performed independently.

なお上記実施例では、遅延等化部(11)及び振幅等化
部(ロ)として主信号の前後各1個の反響信号を用いた
場合について示したが、これは複数個の反響信号を用い
て等化しても良い。又遅延等化部では、主信号の前又は
後の反響信号のみを用いて遅延等化を行い、これによっ
て生ずる振幅歪を含めて振幅等化部で振幅等化を行って
も同様の効果が斯待できる。更に遅延等化部及び振幅等
化部では、タップ付遅延回路群による遅延をシフトレジ
スタ等による遅延素子で置き換えて本所期の目的を達成
しうることはいうまで本ない。
In the above embodiment, the delay equalizer (11) and the amplitude equalizer (b) each use one echo signal before and after the main signal, but this example uses a plurality of echo signals. You can also equalize it. Furthermore, the same effect can be obtained even if the delay equalization section performs delay equalization using only the echo signal before or after the main signal, and the amplitude equalization section performs amplitude equalization including the amplitude distortion caused by this. I can wait. Furthermore, it goes without saying that in the delay equalization section and the amplitude equalization section, the delay caused by the group of tapped delay circuits can be replaced with a delay element such as a shift register to achieve the intended purpose.

この発明は以上説明し六とおり遅延等化した信号を振幅
等化回路の入力信号とすることによって遅延等化と振幅
等化を独立に調整することができるので、正確な等化が
できるばか9でなく調整にシける収束性が早いという効
果がある。
In this invention, as described above, delay equalization and amplitude equalization can be adjusted independently by using the signal delayed and equalized in six ways as the input signal of the amplitude equalization circuit, so that accurate equalization can be performed. This has the effect of fast convergence in adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の波形等化量の一例を示すブロック結線図
、第2図は従来の波形等化器の他の一例を示すブロック
結線図、第3図は第2じの波形等化器の振幅調整回路の
時間応答波形図、第4図は時間応答波形図及び振幅と群
遅延の周波数特性図、第5図は従来の波形等化器の更圧
他の一例を示すブロック結線図、第6図は入力信号と出
力信号のベクトル図、tJ17図はこの発明の一実施例
を示すブロック結線図、第8図は第7図の波形等化器の
時間応答波形図、第9図は第7図の波形等化器の信号ベ
クトル図である。 図において(1)は入力端子、(2)は第1遅延回路群
、(2a)、(2b) ldタップ付遅延回路、(3)
は第1振幅調整回路群、(3a)、(3b)は振幅調整
回路、(4)は加算器、(5)は出力端子、(至)は第
2遅延回路群、(13a)。 (13b)t−jタップ付遅延回路、α◆は第2振幅調
整回路群、09は加算器、0→は合成回路、■け分岐回
路、(31)は可変遅延回路である。 なお各図中同一符号は同−又は相当部分を示す本のとす
る。 代理人 葛 野 信 − 第6図 第7図 第8図 第9図 手続補正書(自発)   5・ 説1 特許庁長官殿               6゜鴫 に 訂 訂。 「 ( 3、補正をする者                 
       。。 と1 ( ( 波プ ( 補正の対象 明細書の発明の詳細な説明の欄、図面の簡単な明の欄及
び図面 補正の内容 11)明細書第4頁第8行目乃至第9行目の式(1)中
[a−、、−j2wfT Jとあるを「&−1@+jl
!ffT」と正し「、1゜j−πfT 」とあるを「、
1゜−j意πft 、と旧しr + j (&*−a−
1) sin 2rfT Jとあるを−j (al−a
−1) sin 2rfT Jと訂正する。 2)同書第4頁第13行目式(2)の上段にr 8.6
86 ks (2rfT) Jとあるをr 8.686
 X 2keos (2rfT) J訂正する。 3)同書第6頁第8行目乃至第9行目「町=−a−8k
」とあるをr a1=−a−1=kIJと訂正する。 4)同書第7頁第7行目「波形歪の」とあるを「杉歪が
」と訂正する。 5)同書第8ft第1行目「等止器(4)」とあるを「
ス信号の入力信号の場合」とあるを[細いパルス信号を
入力信号とした場合]と訂正する。 (7)同書第8頁第15行目「振幅調整」とあるを「極
性反転機能を持つ振幅調整」と訂正する。 (8)同書第9頁第14行目「第7図(1) K示した
」とあるを「第7図(1) Kおける」と訂正する。 (9)同書第9頁第16行目「可変遅延回路01 Jと
あるを「遅延回路0ヤ」と訂正する。 (ト)同書第10頁第13行目「一方の出力は可変遅延
回路」とあるを「一方の出力は遅延回路」と訂正する。 Ql)同書第10頁第16行目r (VDは可変遅延回
路」とあるを「(資)は遅延回路」と訂正する。 (2)同書第校頁第加行目「01は可変遅延回路」とあ
るを「0力は遅延回路」と訂正する。 (至)図面第1図を添付図面のとおり訂正する。 Q44図面第6を添付図面のとおり訂正する。 (ト)図面第7図を添付図面のとおり訂正する。 αQ図面第9図を添付図面のとおり訂正する。 7・ 添付書類 (1)訂正した図面第1図      1通(2)訂正
した図面第6図      1通(3)訂正した図面第
7図      1通(4)訂正した図面第9図   
   1通(以上)
Fig. 1 is a block wiring diagram showing an example of a conventional waveform equalization amount, Fig. 2 is a block wiring diagram showing another example of a conventional waveform equalizer, and Fig. 3 is a second waveform equalizer. 4 is a time response waveform diagram and a frequency characteristic diagram of amplitude and group delay, and FIG. 5 is a block wiring diagram showing another example of the conventional waveform equalizer. Figure 6 is a vector diagram of input signals and output signals, Figure tJ17 is a block wiring diagram showing an embodiment of the present invention, Figure 8 is a time response waveform diagram of the waveform equalizer of Figure 7, and Figure 9 is 8 is a signal vector diagram of the waveform equalizer of FIG. 7. FIG. In the figure, (1) is the input terminal, (2) is the first delay circuit group, (2a), (2b) is the delay circuit with LD tap, and (3) is the first delay circuit group.
(3a), (3b) are amplitude adjustment circuits, (4) is an adder, (5) is an output terminal, (to) is a second delay circuit group, (13a). (13b) a delay circuit with t-j taps, α♦ is a second amplitude adjustment circuit group, 09 is an adder, 0→ is a combining circuit, a branch circuit for {circle around (31)}, and (31) is a variable delay circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 6 Figure 7 Figure 8 Figure 9 Procedural amendment (spontaneous) 5. Commentary 1 Revised by the Commissioner of the Japan Patent Office 6 degrees. (3. Person who makes corrections
. . and 1. In formula (1), [a-,,-j2wfT J is replaced with "&-1@+jl
! ffT” and correct “,1゜j−πfT” as “,
1゜−j means πft, which is old as r + j (&*−a−
1) sin 2rfT J and aru wo -j (al-a
-1) Correct as sin 2rfT J. 2) r 8.6 in the upper row of formula (2) on page 4, line 13 of the same book
86 ks (2rfT) J toarwo r 8.686
X 2keos (2rfT) J Correct. 3) Page 6 of the same book, lines 8 and 9, “Machi=-a-8k
" is corrected to read ra1=-a-1=kIJ. 4) In the 7th line of page 7 of the same book, the words ``waveform distortion'' are corrected to ``cedar distortion.'' 5) In the 8th ft. 1st line of the same book, replace the phrase “equal stopper (4)” with “
Correct the statement "When the input signal is a thin pulse signal" to "When the input signal is a thin pulse signal". (7) On page 8, line 15 of the same book, the phrase ``amplitude adjustment'' is corrected to ``amplitude adjustment with polarity reversal function.'' (8) In the same book, page 9, line 14, ``Figure 7 (1) K is shown'' is corrected to ``Figure 7 (1) K is shown''. (9) On page 9, line 16 of the same book, ``Variable delay circuit 01 J'' is corrected to ``delay circuit 0 Y''. (G) On page 10, line 13 of the same book, the phrase "one output is a variable delay circuit" is corrected to "one output is a delay circuit." Ql) Same book, page 10, line 16 r (Correct the phrase "VD is a variable delay circuit" to "(capital) is a delay circuit.") (2) Added line, page 10 of the same book, "01 is a variable delay circuit."" is corrected to "0 power is a delay circuit." (To) Correct drawing No. 1 of the drawing as shown in the attached drawing. Q44 Drawing No. 6 is corrected as shown in the attached drawing. Correct as shown in the attached drawing. Correct αQ drawing Figure 9 as shown in the attached drawing. 7. Attachments (1) Corrected drawing Figure 1 1 copy (2) Corrected drawing Figure 6 1 copy (3) Correction Revised drawing Figure 7 1 copy (4) Corrected drawing Figure 9
1 letter (or more)

Claims (1)

【特許請求の範囲】[Claims] 入力信号をある一定時間遅延させて出力する遅延回路を
複ll[Il直列に接続した第1遅延回路群、この第1
遅延回路群の各遅延回路の入力又は出力信号をうけその
信号の位相を反転させる手段と振幅を可変する手段を備
えた複数個の振幅調整回路からなる第1調整回路群、こ
の第1調整回路群の各出力信号を受けて加算する第1加
算器、仁の第1加算器の出力を受け2分岐して出力する
分岐回路、この分岐回路の第1の分岐出力を一定時間遅
延させて出力する遅延回路、上記分岐回路の第2の分岐
出力をある一定時間遅延させて出力する遅延回路を複数
個直列に接続した第2遅延回路群、この第2遅延回路群
の各遅延回路の入力又は出力信号をうけその信号の位相
を反転させる手段と振幅を可変する手段を備えた複数個
の振幅調整回路からなる第2調整回路群、仁の第2調整
回路群の各出力信号を受けて加算する第2加算器、この
第2加算器の出力と上記遅延回路の出力を合成する合成
回路を備えた波形等化器。
A first delay circuit group in which a plurality of delay circuits that delay an input signal for a certain period of time and output the delayed signal are connected in series.
A first adjustment circuit group comprising a plurality of amplitude adjustment circuits each having means for receiving an input or output signal of each delay circuit of the delay circuit group and inverting the phase of the signal and means for varying the amplitude; A first adder that receives and adds each output signal of the group, a branch circuit that receives the output of the first adder and branches it into two outputs, and outputs the first branch output of this branch circuit with a certain period of delay. a second delay circuit group in which a plurality of delay circuits are connected in series to delay the second branch output of the branch circuit for a certain period of time, and an input of each delay circuit in the second delay circuit group; A second adjustment circuit group consisting of a plurality of amplitude adjustment circuits each having a means for receiving an output signal and inverting the phase of the signal and a means for varying the amplitude; receiving and adding each output signal of the second adjustment circuit group; A waveform equalizer comprising: a second adder for adding a second adder; and a synthesizing circuit for synthesizing an output of the second adder and an output of the delay circuit.
JP11116881A 1981-07-14 1981-07-14 Waveform equalizer Pending JPS5812419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116881A JPS5812419A (en) 1981-07-14 1981-07-14 Waveform equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116881A JPS5812419A (en) 1981-07-14 1981-07-14 Waveform equalizer

Publications (1)

Publication Number Publication Date
JPS5812419A true JPS5812419A (en) 1983-01-24

Family

ID=14554196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116881A Pending JPS5812419A (en) 1981-07-14 1981-07-14 Waveform equalizer

Country Status (1)

Country Link
JP (1) JPS5812419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730342A (en) * 1983-02-25 1988-03-08 Mitsubishi Denki Kabushiki Kaisha Equalizer circuit for use in communication unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730342A (en) * 1983-02-25 1988-03-08 Mitsubishi Denki Kabushiki Kaisha Equalizer circuit for use in communication unit

Similar Documents

Publication Publication Date Title
JPH03502634A (en) Adaptive digital filter with non-recursive and recursive parts
EP0021317A2 (en) Adaptive filter with TAP coefficient leakage
US4520489A (en) Decision feedback equalizing apparatus
US3758881A (en) Transversal equalizer controlled by pilot tones
US3764914A (en) High speed line equalizer
EP0122637A2 (en) Automatic adaptive equalizer
US10560199B2 (en) Signal processing circuit and optical receiving device
JPS5812419A (en) Waveform equalizer
US4352954A (en) Artificial reverberation apparatus for audio frequency signals
US4347615A (en) Transversal equalizers
JPH0117289B2 (en)
US2165838A (en) Electric signal transmission system
US3268836A (en) Transversal filter for correcting or synthesizing echoes accompanying unidirectionalprincipal pulse, including automatic means preventing unidirectional bias of output transformer core
US4607241A (en) Transversal filter equalizer with minimally interactive adjustments
US20100177911A1 (en) Method of constructing a multiway loudspeaker system with improved phase response to pass a square wave
US4430527A (en) Loudspeaker crossover delay equalization
JPS5850814A (en) Waveform equalizer
JPS58129839A (en) Delay line phase and amplitude equalizer
US20090086809A1 (en) Method and System for On-Line Data-Pattern Compensated Adaptive Equalizer Control
US11381317B2 (en) Optical receiving apparatus and waveform distortion compensation method
US7937429B2 (en) Taylor series-based transmission line equalization scheme
JP7320255B2 (en) Crosstalk cancellation circuit, transmitter and transmission/reception system
JPH0624397B2 (en) DC compensation circuit
US5027370A (en) Circuit arrangement for the equalization of digital signals received in analog form
JPS5950625A (en) Automatic equalizer