JPS58124199A - Method of controlling guidance of missile - Google Patents

Method of controlling guidance of missile

Info

Publication number
JPS58124199A
JPS58124199A JP790682A JP790682A JPS58124199A JP S58124199 A JPS58124199 A JP S58124199A JP 790682 A JP790682 A JP 790682A JP 790682 A JP790682 A JP 790682A JP S58124199 A JPS58124199 A JP S58124199A
Authority
JP
Japan
Prior art keywords
target
flying object
signal
line
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP790682A
Other languages
Japanese (ja)
Other versions
JPH0372913B2 (en
Inventor
今度 史昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP790682A priority Critical patent/JPS58124199A/en
Publication of JPS58124199A publication Critical patent/JPS58124199A/en
Publication of JPH0372913B2 publication Critical patent/JPH0372913B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はロケット、ミサイル等角しよう体の誘導制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for guiding and controlling a rocket or missile conformal body.

従来この種の誘導制御方法としては以下に説明する比例
航法(Proportional navigatio
n )が有名である。また数は少いが純粋追尾(Pur
e Pursuit )航法がある。目標の動きが速い
ときは前者がすぐれ、また比較的ゆっくりした目標に対
しては後者でも追尾可能で、この場合構成が簡単となる
利点がある。本発明はこれら両航法に応用できるが、特
にゆっくりした目標に対する場合の後者と組合せて用い
た場合に大きな効果を発揮する。
Conventionally, as a guidance control method of this type, there is a proportional navigation method described below.
n) is famous. In addition, although the number is small, pure tracking (Pur
e Pursuit) navigation. The former is better when the target is moving quickly, and the latter can also track a relatively slow target, which has the advantage of being simple in configuration. Although the present invention can be applied to both of these navigation methods, it is particularly effective when used in combination with the latter method when targeting slow targets.

簡単のために2次元の面内で説明する。第1図において
V−、Vtをそれぞれ飛しよう体1、目標2の速度ベク
トルとする。飛しよう体1と目II2を結ぶ線4を目視
線(Line of sight )とよぷ。慣性座標
系に固定されたある基準線3をとり、これから測った飛
しよう体1の経路角、目視線40角度をそれぞれr、δ
とする。飛しよう体1は空気力、推力等を用いて進行方
向に垂直な加速度aを発生し目標2を追尾するが、比例
航法においてはこの加速度を a = Ne Vcδ となるよう制御を行う。ここでVcは飛しよう体lと目
標2の接近速度、Neは実効航法係数とよばれるもので
ある。これにより飛しよう体1の経路角変化率rはδに
比例し、この関係を保つ限り必ず飛しよう体1は目標2
に衝突することになる。この方式をハードウェアで実現
するためには慣性座標系で測定したδを得るためにセン
サな2軸ジンバルの上に搭載するか、機軸固定のセンサ
を用いる場合は次の処理が必要となる。即ち第2図にお
いて基準線3と機軸線5のなす角θをピッチ角とし、機
軸線5と目視線4のなす角をりとする。機軸に固定した
センナで観測される信号はりであるから、これよりδを
得ようとすればレートジャイロ等を用いてピッチ角速度
θを測定し、これを積分してθを得e、に加えてδを求
める等の処理を施す必要がある。
For simplicity, explanation will be given in a two-dimensional plane. In FIG. 1, let V- and Vt be the velocity vectors of the flying object 1 and the target 2, respectively. Call the line 4 connecting the flying body 1 and the eye II 2 the line of sight. Taking a certain reference line 3 fixed in the inertial coordinate system, the path angle of the flying object 1 and the 40 angle of the line of sight measured from it are r and δ, respectively.
shall be. The flying object 1 uses aerodynamic force, thrust, etc. to generate an acceleration a perpendicular to the direction of travel to track the target 2, and in proportional navigation, this acceleration is controlled so that a = Ne Vcδ. Here, Vc is the approach speed of the flying object 1 and the target 2, and Ne is what is called an effective navigation coefficient. As a result, the path angle change rate r of the flying object 1 is proportional to δ, and as long as this relationship is maintained, the flying object 1 will always reach the target 2.
will collide with. In order to implement this method with hardware, the sensor must be mounted on a two-axis gimbal to obtain δ measured in an inertial coordinate system, or if a sensor fixed to the machine axis is used, the following processing is required. That is, in FIG. 2, the angle θ between the reference line 3 and the machine axis line 5 is defined as the pitch angle, and the angle between the machine axis line 5 and the line of sight 4 is defined as . Since this is a signal beam observed by a sensor fixed to the axis of the machine, if you want to obtain δ from this, measure the pitch angular velocity θ using a rate gyro, etc., and integrate this to obtain θ, in addition to e. It is necessary to perform processing such as calculating δ.

純粋追尾方式においては上述の機軸に固定したセンサを
用いることが多い。この場合ピッチ制御信号として例え
ばに、 t、 + Kl ;、のようなPD(比例十微
分)信号をフィードバックすることにより常に飛しよう
体1の機首を目標2の方向に向わしめンパル搭載センサ
を用いス、かつレートジャイロも必要としないが、飛し
よう体1のピッチ運動とセンサ信号がカップルするため
、制御がうま(行かなくなることが生じる。この欠点を
補うものとして機軸線5の代りに風軸線(V−の方向)
と目視線4との間の角度を測定して制御を行う方式があ
る。例えばテキサスインスツルメンツ社(TexasI
nstruments社)のバネウェイ(Panewa
y )においては機首に風向プローブを取付け、これに
取付けたセ/すにより上記角度を測定して純粋追尾方式
により誘導を行う。この場合は機体の姿勢が変化しても
嶌の方向は急激には変化しないからピッチ運動とセンサ
信号とのカップリングが除かれて精度の良い誘導制御が
行われる。
In the pure tracking method, a sensor fixed to the above-mentioned axis is often used. In this case, the nose of the flying body 1 is always directed in the direction of the target 2 by feeding back a PD (proportional and sufficient differential) signal such as t, + Kl;, as a pitch control signal. However, since the pitch motion of the flying object 1 and the sensor signal are coupled, the control may not work properly. Wind axis (V- direction)
There is a method that performs control by measuring the angle between the line of sight and the line of sight 4. For example, Texas Instruments
nstruments) Springway (Panewa)
In y), a wind direction probe is attached to the nose of the aircraft, and the above-mentioned angle is measured using the probe attached to this, and guidance is performed using a pure tracking method. In this case, even if the attitude of the aircraft changes, the direction of the jet does not change suddenly, so the coupling between the pitch motion and the sensor signal is eliminated, and accurate guidance control is performed.

以上に述べたように従来の方式はいずれもジンバル搭載
上ンサや風向プローブ搭載セ/すを用いる、あるいはレ
ートジャイロを用いる等ハードウェア的に複雑な構成を
必要とした。
As described above, all of the conventional systems require complicated hardware configurations, such as using a gimbal-mounted sensor, a wind direction probe-mounted sensor, or a rate gyro.

本発明は上記の欠点を除くため機軸固定センサを用いか
つレートジャイロ等を用いず簡単な信号処理のみで精度
の良い誘導が行われる装置を提供することを目的として
いる。
SUMMARY OF THE INVENTION In order to eliminate the above-mentioned drawbacks, the present invention aims to provide an apparatus that uses a fixed axis sensor and performs accurate guidance only by simple signal processing without using a rate gyro or the like.

本発明は飛しよう体に取り付けたセンサによって得られ
た目視線と機軸線との間の角度信号C1を処理回路で処
理して飛しよう体を誘導制御する方法において、前記処
理回路で処理する角度信号りをあらかじめ極低周波フィ
ルタで絞り、角度信号εlをノイズフィルタで平滑にし
た角度信号?、が所定の閾値上ε、を越えた場合は前記
処理回路のゲインKを所定の大きな値Kaに切換え、前
記角度信号?、が士(gya−Δε)〔ΔCは所定の微
小値〕の内部に入った場合はゲインKを元の小さな値K
nに戻して飛しよう体を誘導制御することを特徴とする
飛しよう体の誘導側、押力法を要旨とする。
The present invention provides a method for guiding and controlling a flying object by processing an angle signal C1 between a line of sight and an aircraft axis obtained by a sensor attached to a flying object in a processing circuit, the angle being processed by the processing circuit. Angle signal in which the signal is filtered in advance with an extremely low frequency filter, and the angle signal εl is smoothed with a noise filter? , exceeds a predetermined threshold ε, the gain K of the processing circuit is switched to a predetermined large value Ka, and the angle signal ? , if the gain K falls within the range (gya - Δε) [ΔC is a predetermined small value], the gain K is returned to the original small value K.
The gist of this paper is the pushing method on the guidance side of a flying object, which is characterized by guiding and controlling the flying object by returning it to n.

以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図は従来の純粋追尾方式の信号処理についての一例
を示した。即ち図においてε、は機軸固定センサから得
られる目標20機軸からの角度信号、τHは近似微分回
路の時定数、K1. K、はそれぞれり。
FIG. 4 shows an example of signal processing in a conventional pure tracking system. That is, in the figure, ε is the angle signal from the target 20 machine axes obtained from the machine axis fixed sensor, τH is the time constant of the approximate differentiation circuit, and K1. K.

i、に対するゲインで8.は得られたアクチュレータの
駆動信号である。本例においてはりが飛しよう体1のピ
ッチ運動θとカップルするため制御が5まく行われない
場合が生じることは既に述べた。
The gain for i is 8. is the obtained actuator drive signal. It has already been mentioned that in this example, since the beam is coupled to the pitch motion θ of the flying body 1, there may be cases where the control is not performed.

第5図においてはセンサ信号をまず帯域を極く低周波に
絞るよ5に時定数−τを大きくとった低域フィルタ7を
通し、この信号を第4図の場合と同様に処理する。飛し
よう体1の機体の姿勢運動の周波数は比較的速いから、
この処理により七〇影醤を小さくしてしまうことができ
る。しかし一方では目標2の速い動きに対しては追随で
きず、目標2がセンサの視野−をはずれてしまう恐れが
ある。
In FIG. 5, the sensor signal is first passed through a low-pass filter 7 with a large time constant -τ to narrow the band to an extremely low frequency, and this signal is processed in the same manner as in FIG. Since the frequency of the attitude motion of flying body 1 is relatively fast,
This process makes it possible to reduce the size of the 70-kage sauce. However, on the other hand, it is not possible to follow the fast movement of the target 2, and there is a possibility that the target 2 may be out of the field of view of the sensor.

そこで図に示すようにε、の信号をノイズフィルタ8で
平滑した信号?、がある閾値±C−を越えたらばゲイン
切換素子10を切換えてゲインKを大きな値Kaに切換
える。信号?、が士(トーΔε)の内部に入ったら再た
びKを元の小さな値に4に戻す。ゆっくりした動きの目
標の場合、目視線角δは衝突の直前までは変化率が小さ
いので、上記のような信号処理装置を用いることkより
、複雑なノ−−ドウエアを要せず、かつ従来の純粋追尾
方式よりも精度良く目標を追尾することができる。
Therefore, as shown in the figure, the signal ε is smoothed by the noise filter 8. exceeds a certain threshold value ±C-, the gain switching element 10 is switched to switch the gain K to a large value Ka. signal? , returns K to its original small value, 4, once it enters the inside of Δε. In the case of a slow-moving target, the rate of change in the visual line angle δ is small until just before the collision, so using the signal processing device described above does not require complicated hardware and is The target can be tracked more accurately than the pure tracking method.

上記実施例においては純粋追尾方式と組合わせた場合に
ついて述べたが、これを比例航法と組合わせて用いるこ
ともできる。また本追尾方式は飛行機が目標に接近する
場合の航法にも応用できる。
In the above embodiment, a case was described in which the pure tracking method was used in combination, but this can also be used in combination with proportional navigation. This tracking method can also be applied to navigation when an airplane approaches a target.

なお第5図において極低域フィルタとしてL/(1+τ
5)20例を示したが、これは帯域な極く低く絞る適当
なフィルタであってよい。
In addition, in Fig. 5, L/(1+τ
5) Although 20 examples are shown, this may be an appropriate filter that narrows down the band to a very low level.

以上のようにこの発明によれば機軸固定のセンサを用い
かつ信号処理のみによって機体姿勢運動のカップリング
の影響を除くよう構成したので、v−)ジャイロ等を必
要とせず装置が安価にできるか、または精度の高い誘導
制御系が得られる効果がある。
As described above, according to the present invention, a sensor fixed to the aircraft axis is used and the coupling effect of the aircraft attitude movement is removed only by signal processing. , or there is an effect that a highly accurate guidance control system can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比例航法により目標を追尾する場合の飛しよう
体および目標の関係図、第2図は純粋追尾航法による場
合の飛しよう体および目標の関係図、第3図はセンサ画
面における目標の像を示す。 第4図は従来の純粋追尾航法を用いた場合における信号
処理系ブロック図の一例、第5図は本発明の一実施例に
おける信号処理系ブロック図である。 なお図中同一符号は同一、又は相当部分、を示す。 (1)飛しよう体、(2)目標、(3)基準線、(4)
目視線。 (5)機軸線、(6)センサ画面、(7)極低帯域フィ
ルタ。 (8)ノイズフィルタ? (9)ヒステリシス付パンパ
ン素子、(L1ゲイン切換素子。 代理人  葛 野 信 − 系1図 第2図 第3図 第4図 第5区
Figure 1 is a diagram of the relationship between the flying object and the target when tracking the target using proportional navigation, Figure 2 is a diagram of the relationship between the flying object and the target when tracking the target using pure tracking navigation, and Figure 3 is a diagram of the relationship between the flying object and the target when tracking the target using proportional navigation. Show the image. FIG. 4 is an example of a signal processing system block diagram when conventional pure tracking navigation is used, and FIG. 5 is a signal processing system block diagram according to an embodiment of the present invention. Note that the same reference numerals in the figures indicate the same or equivalent parts. (1) Flying body, (2) Target, (3) Reference line, (4)
Eye line of sight. (5) Machine axis line, (6) sensor screen, (7) extremely low band filter. (8) Noise filter? (9) Pan-pan element with hysteresis, (L1 gain switching element. Agent Shin Kuzuno - System 1 Figure 2 Figure 3 Figure 4 Figure 5 section

Claims (1)

【特許請求の範囲】 飛しよう体に取り付けたセンサによって得られた目視線
と機軸線との間の角度信号りを処理回路で処理して飛し
よう体を誘導制御する方法において、前記処理回路で処
理する角度信号すなあらかじめ極低周波フィルタで絞り
、角度信号りをノイズフィルタで平滑にした角度信号ち
が所定の閾値上らを越えた場合は前記処理回路のゲイン
Kを所定の大きな値ぬに切換え、前記角度信号?、が士
(ε爪−Δε)〔Δεは所定の微小値〕の内部に入った
場合はゲインKを元の小さな値に4に戻して飛しよう体
を誘導制御することを特徴とする飛しよう体の誘導制御
方法。
[Claims] A method for guiding and controlling a flying object by processing an angle signal between a line of sight and an aircraft axis obtained by a sensor attached to the flying object in a processing circuit, wherein the processing circuit If the angle signal to be processed exceeds a predetermined threshold, the gain K of the processing circuit is adjusted to a predetermined large value. Switch to the angle signal? , when the object enters the range of (ε claw - Δε) [Δε is a predetermined small value], the gain K is returned to its original small value of 4 to guide and control the flying object. How to guide and control the body.
JP790682A 1982-01-21 1982-01-21 Method of controlling guidance of missile Granted JPS58124199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP790682A JPS58124199A (en) 1982-01-21 1982-01-21 Method of controlling guidance of missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP790682A JPS58124199A (en) 1982-01-21 1982-01-21 Method of controlling guidance of missile

Publications (2)

Publication Number Publication Date
JPS58124199A true JPS58124199A (en) 1983-07-23
JPH0372913B2 JPH0372913B2 (en) 1991-11-20

Family

ID=11678597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP790682A Granted JPS58124199A (en) 1982-01-21 1982-01-21 Method of controlling guidance of missile

Country Status (1)

Country Link
JP (1) JPS58124199A (en)

Also Published As

Publication number Publication date
JPH0372913B2 (en) 1991-11-20

Similar Documents

Publication Publication Date Title
US6181988B1 (en) Guidance system having a body fixed seeker with an adjustable look angle
CN110764523B (en) Proportional-integral pre-pilot attack target method based on anti-saturation smooth transformation
US5647560A (en) Steering loop for missiles
GB2208017A (en) Guidance systems
US3530465A (en) Obstacle clearance system for aircraft
US4142695A (en) Vehicle guidance system
Yang et al. Transfer alignment design and evaluation
US4318515A (en) Guidance systems
JPS58124199A (en) Method of controlling guidance of missile
US3034116A (en) Fire control system
US4645994A (en) Space-referenced, rate-stabilized multiple-gimbal-platform system
US3287724A (en) Obstacle clearance system for aircraft
US5064285A (en) Position-controlled electromagnetic assembly
GB2279444A (en) Missile guidance system
JPS58186808A (en) Guidance system of airframe
JP2641783B2 (en) Guidance control device
JPS5981710A (en) Guidance controller of flying object
US3219294A (en) Homing system for guided missiles
GB1601829A (en) Vehicle guidance apparatus
JPS62168206A (en) Controller for guidance of flying object
JPS6156527B2 (en)
JP3899803B2 (en) Guidance control device
JPS59231614A (en) Guidance controller for airframe
Barniv Error analysis of combined optical-flow and stereo passive ranging
JPH1183399A (en) Guide controller for flying body