JPS5812386A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPS5812386A
JPS5812386A JP56102125A JP10212581A JPS5812386A JP S5812386 A JPS5812386 A JP S5812386A JP 56102125 A JP56102125 A JP 56102125A JP 10212581 A JP10212581 A JP 10212581A JP S5812386 A JPS5812386 A JP S5812386A
Authority
JP
Japan
Prior art keywords
layer
substrate
liquid phase
thin plate
pbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56102125A
Other languages
Japanese (ja)
Other versions
JPS6246079B2 (en
Inventor
Kouji Shinohara
篠原 宏爾
Yoshito Nishijima
西嶋 由人
Hirokazu Fukuda
福田 広和
Yoshio Kawabata
川端 良雄
Kosaku Yamamoto
山本 功作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56102125A priority Critical patent/JPS5812386A/en
Publication of JPS5812386A publication Critical patent/JPS5812386A/en
Publication of JPS6246079B2 publication Critical patent/JPS6246079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0091Processes for devices with an active region comprising only IV-VI compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a laser element having double heterojunction structure according to the liquid phase epitaxial growth method by a method wherein crystal layers of an active layer and a top layer having the desired composition are enabled to be obtained by making SSe and S being the easily evaporable components are made to be molten in a liquid phase of Pb of the prescribed quantity. CONSTITUTION:A P type PbS substrate 2, a PbS1-XSeX thin plate 3 for dummy being the compound of easily evaporable selenium sulfide (SSe) and Pb, and a lead sulfide (PbS) thin plate 4 for dummy being the compound of sulfur (S) and Pb are buried in a supporting base plate 1 consisting of carbon, for example. While Pb is filled up in sliding members 5, 6, and 7 to transfer on the supporting base plate. After the liquid phase epitaxial growth device like this is inserted in a reaction tube in the hydrogen (H2) gas atmosphere, the reaction tube is heated at the temperature of 500 deg.C in a heating furnace, and the member 5 is transferred in the direction shown with an arrow mark A when Pb is molten. Accordingly the P type PbS1-XSeX crystal layer introduced with SSe is formed as the crystal layer of the active layer 11 of the first layer, and the P type PbS crystal layer is formed as the crystal layer of the top layer 12 of the second layer on the PbS substrate 2.

Description

【発明の詳細な説明】 本発明は半導体レーザ素子の製造方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a semiconductor laser device.

鉛(P’t))を含む化合物半導体例えばテルル化鉛(
、PI)Tθ)やテルル化鉛錫(Pb1−x5nzTe
 )や鉛−硫黄−セレン(pbsl−Xsex)等は、
そのエネルギーギャップが狭く赤外半導体レーザ素子の
材料として用いられている。
Compound semiconductors containing lead (P't), such as lead telluride (
, PI) Tθ) and lead tin telluride (Pb1-x5nzTe
) and lead-sulfur-selenium (pbsl-Xsex), etc.
Due to its narrow energy gap, it is used as a material for infrared semiconductor laser devices.

特にPb5l−XseXの材料を用いたレーザ素子は、
−酸化窒素(No)ガスや二酸化窒素(NOg )ガス
のような公害を発生するガスの吸収ピーク波長に合った
4〜8μm帯の発振をするのでそのよりなガスの分光分
析用赤外光源素子として用いられている。
In particular, a laser element using Pb5l-XseX material is
- Infrared light source element for spectroscopic analysis of gases that generate pollution, such as nitrogen oxide (No) gas and nitrogen dioxide (NOg) gas, because it oscillates in the 4-8 μm band that matches the absorption peak wavelength of those gases. It is used as.

ところで一般に前記PbS 1−zsez材料のうち硫
jll((S)やセレン(Se)は蒸気圧が高く易蒸発
性の成分であるので、7ライデング法を用いた液相エビ
タキシャ〃成長方法の適用が困難で、従来のこの種レー
ザ素子は相互拡散を利用した単一へテロ接合のダイオー
ドレーザとして構成されていた。
By the way, in general, sulfur (S) and selenium (Se) among the PbS 1-zsez materials have high vapor pressure and are easily evaporated components, so it is not possible to apply the liquid phase epitaxia growth method using the 7-riding method. This is difficult, and conventional laser devices of this type have been constructed as single heterojunction diode lasers that utilize interdiffusion.

つまり従来の技術では硫化鉛(pbs )の基板上に前
記P’l)S 1−zsezの結晶層を活性層として形
成し、その上に更K pbsの結晶層をFツブ層として
形成し、前記活性層で生じたレーザ光を活性層と基板お
よび活性層とトップ層とのへテロ界面に閉じこめるよう
にしたいわゆるレーザ発振を開始するし01/1値電流
の小さい高効率のダブルヘテロ型レーザ素子を得るのが
困難であった。
In other words, in the conventional technology, a crystal layer of P'l)S 1-zsez is formed as an active layer on a substrate of lead sulfide (pbs), and a crystal layer of K pbs is further formed as an F layer on top of the active layer. The laser beam generated in the active layer is confined in the hetero interface between the active layer and the substrate and the active layer and the top layer to initiate so-called laser oscillation, and is a highly efficient double hetero type laser with a small 01/1 value current. It was difficult to obtain the device.

本発明は上述した欠点を除去するような半導体レーザ素
子の製造方法の提供を目的とするものでToシ、さらに
具体的には易蒸発性の成分元素を含んだ半導体よりなる
ダブルへテロ接合構造のレーザ素子を液相エビタキVヤ
ル法で実現する方法を提案するものである。簡巣に述べ
ると本発明は蒸気圧の低いPbSまたはPbSSeのよ
うな化合物の形からS −? SSeをPbm謀中に溶
は込ませることによl)S、Beの消失を抑制して液相
エビタキシャμ成長を可能とするものである。そして本
発明の製法は、支持台に鉛を含む化合物半導体基板と該
基板上に積層して形成すべき結晶層を構成する成分のう
ち易蒸発性成分と鉛との化合物よりなるダミー用薄板を
形成すべき結晶層の数だけ埋設し、前記支持台上をスラ
イドして移動するスライド部材に前記基板上に形成すべ
き結晶層の数だけ鉛の液相が充填されている液だめを設
け、前記液だめをダミー用薄板上に移動されて、Itl
紀鉛の液相にダミー用薄板の易蒸発性成分を溶解させ、
しかる後該液だめを順次基板上に移動させて静置させ、
前記液相の温度を下降させて基板上に順次結晶層を積層
して形成する工程を含むことを特徴とするものである。
The present invention aims to provide a method for manufacturing a semiconductor laser device that eliminates the above-mentioned drawbacks. This paper proposes a method for realizing a laser device using the liquid phase evaporation method. Briefly stated, the present invention utilizes S-? By dissolving SSe into Pbm, the loss of S and Be is suppressed and liquid phase epitaxia μ growth is made possible. The manufacturing method of the present invention includes a lead-containing compound semiconductor substrate and a dummy thin plate made of a compound of lead and an easily evaporated component among the components constituting the crystal layer to be laminated on the substrate. Providing a liquid reservoir filled with a liquid phase of lead corresponding to the number of crystal layers to be formed on the substrate, embedded in the same number of crystal layers to be formed on the substrate, and provided on a slide member that slides and moves on the support base. The liquid reservoir is moved onto a dummy thin plate and
The easily evaporable components of the thin plate for the dummy are dissolved in the liquid phase of lead,
After that, the liquid reservoirs are sequentially moved onto the substrate and left standing,
The method is characterized in that it includes a step of lowering the temperature of the liquid phase and sequentially stacking crystal layers on the substrate.

以下図面を用いながら本発明の一実施例につき詳細に説
明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の半導体レーザ素子を形成するための装
置の概略図で、第2図は本発明の方法によって形成した
半導体レーザ素子の材料の断面図である。
FIG. 1 is a schematic diagram of an apparatus for forming a semiconductor laser device of the present invention, and FIG. 2 is a cross-sectional view of the material of the semiconductor laser device formed by the method of the present invention.

図示するように液相エピタキシャル成長装置を構成する
カーボンよりなる支持台1には例えばP型のPbSの基
板2と易蒸発性の成分の硫化セレン(SSe )とpb
の化合物のPb5l−xSθXのダミー用薄板8と硫黄
(S)とpbの化合物の硫化鉛(pbs >のダミー用
薄板4とが埋設されている。ここで前記薄板8および4
にはPmのドーパントのタリウム(T#)が添加されて
いる。一方前記液相エビタキシャル成長装置を構成し、
前記支持台上を移動するスライド部材6には、PbO液
相を収容する液だめ6.7が設けられておシ該液だめ中
にはPbが充填されている。
As shown in the figure, a support base 1 made of carbon, which constitutes a liquid phase epitaxial growth apparatus, includes a substrate 2 of, for example, P-type PbS, selenium sulfide (SSe), an easily evaporable component, and Pb.
A dummy thin plate 8 of a compound of Pb5l-xSθX and a dummy thin plate 4 of lead sulfide (pbs) of a compound of sulfur (S) and pb are buried.
Thallium (T#), which is a Pm dopant, is added to the Pm dopant. Meanwhile, the liquid phase epitaxial growth apparatus is configured,
The slide member 6 that moves on the support table is provided with a liquid reservoir 6.7 containing a PbO liquid phase, and the liquid reservoir is filled with Pb.

ここで前11i3pbssθのダミー用薄板8とPbS
のダミー用薄板4とは、ブリッジマン法等を用いて前記
易蒸発性の成分のSおよびSeの成分が蒸発しないよう
Kして形成される。
Here, the dummy thin plate 8 of the front 11i3pbssθ and PbS
The dummy thin plate 4 is formed by using the Bridgman method or the like to prevent the easily evaporable components S and Se from evaporating.

ヒのような液相エビタキシャA/成長装置を水素(H8
)ガス雰囲気中の反応管中へ挿入したのち、咳反応管を
600℃の温度に加熱炉にて加熱する。
Hydrogen (H8)
) After being inserted into a reaction tube in a gas atmosphere, the cough reaction tube is heated to a temperature of 600° C. in a heating furnace.

このようにしてスライド部材の液だめ内のpbが溶解し
た時点で前記スライド部材を矢印A方向に移動させる。
In this way, when the PB in the liquid reservoir of the slide member is dissolved, the slide member is moved in the direction of arrow A.

その漬液だめ6をダミー用薄板8上に移動させ、該液だ
め6内のpbの液相にpbsseの薄板8の硫化セレン
(SSe )の成分を飽和させる。tたこのとき液だめ
7内のPbの液相がダミー用薄板4上に移動するように
しておき前記液だめ7内のpbの液相にPI)Sの薄板
4のSの成分を飽和させる。
The soaking liquid reservoir 6 is moved onto a dummy thin plate 8, and the liquid phase of PB in the liquid reservoir 6 is saturated with the selenium sulfide (SSe) component of the PBSSE thin plate 8. At this time, the Pb liquid phase in the liquid reservoir 7 is moved onto the dummy thin plate 4, and the S component of the PI)S thin plate 4 is saturated with the Pb liquid phase in the liquid reservoir 7. .

その後スフイド部材を矢印A方向に更に移動させ液だめ
6をPbSの基板2上に静置させ更に加熱炉の温度を所
定の温度勾配にて下降させながら基和 板2上に過飽−状態となつ九PbSSeの成分を第1層
の活性層として析出させPmのPbS 1−xsθXの
結晶を形成する。
Thereafter, the sulphide member is further moved in the direction of arrow A, and the liquid reservoir 6 is left still on the PbS substrate 2, and the temperature of the heating furnace is further lowered at a predetermined temperature gradient to create a supersaturated state on the substrate 2. A component of PbSSe is precipitated as a first active layer to form Pm PbS 1-xsθX crystals.

その後加熱炉の温度を所定の温度勾配で降下させつつス
ライド部材を更に矢印A方向に移動させ、液だめ7を基
板2上に静置させ基板2上に過飽和状頗となったPbS
の成分を第2層のトップ層として析出させP型のp’b
sの結晶を形成する。
Thereafter, the slide member was further moved in the direction of arrow A while lowering the temperature of the heating furnace at a predetermined temperature gradient, and the liquid reservoir 7 was left still on the substrate 2, so that the PbS which became a supersaturated state on the substrate 2
The components of P-type p'b are precipitated as the top layer of the second layer.
form a crystal of s.

このようにすれば第2図に示すようにPbSの基板2上
に易蒸発性成分のSSeが導入されたpai!のpbs
 1−2sezの結晶層が第1層の活性層11の結晶層
として形成され更にその上には易蒸発性成分のSが導入
されたPfJのp’bsの結晶層が第2層のトップ層1
2の結晶層として形成され死生導体レーザ素子用材料が
得られる。
In this way, as shown in FIG. 2, the easily evaporable component SSe is introduced onto the PbS substrate 2! pbs
A crystal layer of 1-2 sez is formed as the crystal layer of the first active layer 11, and on top of that, a PfJ p'bs crystal layer into which S, an easily evaporable component, is introduced is the top layer of the second layer. 1
A material for a dead conductor laser element is obtained.

また本発明の方法によれば活性層のPb5l−7s61
Xの結晶層におけるSとSθ組成比(X値)を変化させ
ゐには前述したPb5l−zSezダミー用薄板に含有
されるSSeの含有量をあらかじめ所定の値に定めてお
けばよい。
Furthermore, according to the method of the present invention, Pb5l-7s61 in the active layer
In order to change the S and Sθ composition ratio (X value) in the X crystal layer, the content of SSe contained in the Pb5l-zSez dummy thin plate described above may be determined in advance to a predetermined value.

を九前記基板にN型のPbS基板を用い活性層およびト
ップ層にNmの伝導型を付与するには、前記ダミー用薄
板8.4にN5の伝導型を付与するビスマス(B1)の
不純物をあらかじめ添加しておけば容易に前記不純物が
添加できる。このようにP型、N型の不純物が所定の濃
度で容易に添加できる。
(9) In order to use an N-type PbS substrate as the substrate and impart a Nm conductivity type to the active layer and top layer, bismuth (B1) impurity to impart an N5 conductivity type to the dummy thin plate 8.4 is added. The impurity can be easily added if it is added in advance. In this way, P-type and N-type impurities can be easily added at a predetermined concentration.

以上述べたように本発明の方法によれば易蒸発性成分の
SSeやSが所定量pbO液相中に溶けこむことになり
、所望の組成の活性層およびトップ層の結晶層が得られ
ることになり、所望の特性を有する半導体レーザ素子が
得られる利点を生じる。
As described above, according to the method of the present invention, easily vaporizable components such as SSe and S are dissolved in a predetermined amount into the pbO liquid phase, and an active layer and a top layer crystal layer having a desired composition can be obtained. This brings about the advantage that a semiconductor laser device having desired characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するために用いる装置の概
略図、第2図は本発明の方法によって形成されたレーザ
素子用材料の断面図である。 図において1は支持台、2は基板、8はPb5l−XS
eXのダミー用薄板、4はPt)Sのダミー用薄板、6
はスライド部材、6.7は液だめ、ttは活性層、12
はトップ層、Aはスライド方向を示す矢印である。
FIG. 1 is a schematic diagram of an apparatus used to carry out the method of the present invention, and FIG. 2 is a cross-sectional view of a material for a laser element formed by the method of the present invention. In the figure, 1 is a support stand, 2 is a substrate, and 8 is Pb5l-XS
eX dummy thin plate, 4 Pt)S dummy thin plate, 6
is a slide member, 6.7 is a liquid reservoir, tt is an active layer, 12
is the top layer, and A is an arrow indicating the sliding direction.

Claims (1)

【特許請求の範囲】[Claims] 支持台に鉛を含む化合物半導体基板と該基板上に積層し
て形成すべき結晶層を構成する成分のうち易蒸発性成分
と鉛との化合物よりなるダミー用薄板を形成すべき結晶
層の数だけ埋設し、前記支持台上をスライドして移動す
るスライド部材に、前記基板上に形成すべき結晶層の数
だけ鉛の液相が充填されている液だめを設け、前記液だ
めをダミー用薄板上に移動させて前記鉛の液相中にダミ
ー用薄板の易蒸発性成分を溶解させ、しかる後該液だめ
を順次基板上に移動させて静置させ、前記液相の温度を
下降させて基板上に順次結晶層を積層して形成する工程
を含むことを特徴とする半導体レーザ素子の製造方法。
A compound semiconductor substrate containing lead on a support base, and the number of crystal layers to form a dummy thin plate made of a compound of lead and an easily evaporated component among the components constituting the crystal layer to be laminated on the substrate. A slide member that slides and moves on the support base is provided with a liquid reservoir filled with lead liquid phase equal to the number of crystal layers to be formed on the substrate, and the liquid reservoir is used as a dummy. The easily evaporable components of the dummy thin plate are dissolved in the lead liquid phase by moving the liquid onto the thin plate, and then the liquid reservoirs are sequentially moved onto the substrate and left standing to lower the temperature of the liquid phase. 1. A method of manufacturing a semiconductor laser device, comprising the step of sequentially stacking crystal layers on a substrate.
JP56102125A 1981-06-29 1981-06-29 Manufacture of semiconductor laser element Granted JPS5812386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102125A JPS5812386A (en) 1981-06-29 1981-06-29 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102125A JPS5812386A (en) 1981-06-29 1981-06-29 Manufacture of semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS5812386A true JPS5812386A (en) 1983-01-24
JPS6246079B2 JPS6246079B2 (en) 1987-09-30

Family

ID=14319060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102125A Granted JPS5812386A (en) 1981-06-29 1981-06-29 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS5812386A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132633A (en) * 1983-12-22 1985-07-15 Sumitomo Chem Co Ltd Metering and solution-preparing apparatus
JPH01213466A (en) * 1988-02-17 1989-08-28 Kanebo Ltd Power-metering system in dyeing solution preparation machine
JPH01213468A (en) * 1988-02-18 1989-08-28 Kanebo Ltd Charging of chemical and system therefor
JPH0810599A (en) * 1995-06-26 1996-01-16 Sumitomo Chem Co Ltd Liquid adjusting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132633A (en) * 1983-12-22 1985-07-15 Sumitomo Chem Co Ltd Metering and solution-preparing apparatus
JPH0518622B2 (en) * 1983-12-22 1993-03-12 Sumitomo Chemical Co
JPH01213466A (en) * 1988-02-17 1989-08-28 Kanebo Ltd Power-metering system in dyeing solution preparation machine
JPH0461105B2 (en) * 1988-02-17 1992-09-29 Kanebo Ltd
JPH01213468A (en) * 1988-02-18 1989-08-28 Kanebo Ltd Charging of chemical and system therefor
JPH0810599A (en) * 1995-06-26 1996-01-16 Sumitomo Chem Co Ltd Liquid adjusting method

Also Published As

Publication number Publication date
JPS6246079B2 (en) 1987-09-30

Similar Documents

Publication Publication Date Title
Turkevych et al. Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics
Dang et al. Recent progress in the synthesis of hybrid halide perovskite single crystals
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
US3093517A (en) Intermetallic semiconductor body formation
JP2017526821A (en) Perovskite film based on low pressure chemical vapor deposition, its manufacturing system, manufacturing method, solar cell and LED.
JPS56135969A (en) Manufacture of semiconductor device
JPS5889874A (en) Thin film solar photocell and method of producing same
US4095011A (en) Electroluminescent semiconductor device with passivation layer
Lan et al. Revealing Electrical‐Poling‐Induced Polarization Potential in Hybrid Perovskite Photodetectors
Harman Slider LPE of Hg 1-x Cd x Te using mercury pressure controlled growth solutions
Li et al. Controllable Heterogeneous Nucleation for Patterning High‐Quality Vertical and Horizontal ZnO Microstructures toward Photodetectors
US3873341A (en) Rapid conversion of an iron oxide film
JPS5812386A (en) Manufacture of semiconductor laser element
US4126732A (en) Surface passivation of IV-VI semiconductors with As2 S3
JPH0525839B2 (en)
JPS6230693B2 (en)
US3642529A (en) Method for making an infrared sensor
JPS5913697A (en) Liquid phase epitaxial growth device
US4287848A (en) Apparatus for the manufacture of epitaxial Ga1-x Alx As:Si film
JPS56126914A (en) Manufacture of semiconductor device
JPS5856378A (en) Manufacture of semiconductor laser element
JPH0249278B2 (en) EPITAKISHARUKETSUSHOSEICHOSOCHI
JPS6250066B2 (en)
JPS6011801B2 (en) Thermal diffusion method of impurities into semiconductor materials
CN115440838A (en) Photoelectric detector based on bismuth selenide/indium selenide heterojunction and preparation method and application thereof