JPS5812381Y2 - Catalyst for storage batteries - Google Patents

Catalyst for storage batteries

Info

Publication number
JPS5812381Y2
JPS5812381Y2 JP1976063673U JP6367376U JPS5812381Y2 JP S5812381 Y2 JPS5812381 Y2 JP S5812381Y2 JP 1976063673 U JP1976063673 U JP 1976063673U JP 6367376 U JP6367376 U JP 6367376U JP S5812381 Y2 JPS5812381 Y2 JP S5812381Y2
Authority
JP
Japan
Prior art keywords
catalyst
container
catalyst container
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976063673U
Other languages
Japanese (ja)
Other versions
JPS52153822U (en
Inventor
岡崎一郎
佐々木茂
村上立己
津村昭夫
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP1976063673U priority Critical patent/JPS5812381Y2/en
Priority to GB20430/77A priority patent/GB1569449A/en
Priority to DE19772722690 priority patent/DE2722690A1/en
Publication of JPS52153822U publication Critical patent/JPS52153822U/ja
Application granted granted Critical
Publication of JPS5812381Y2 publication Critical patent/JPS5812381Y2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 本考案は蓄電池用触媒せんの改良に関するもので、還水
効率の向上と安全性の向上を同時に達成せんとするもの
である。
[Detailed Description of the Invention] The present invention relates to an improvement of a catalyst cell for a storage battery, and aims to simultaneously improve water return efficiency and safety.

既に、据置用蓄電池には補水頻度を減らし、酸霧や爆発
性ガスの排出を防ぐ目的で水素ガス−酸素ガス結合触媒
を用いた触媒せんが用いられている。
Catalyst cells that use a hydrogen gas-oxygen gas combination catalyst are already being used in stationary storage batteries to reduce the frequency of water replenishment and to prevent the emission of acid mist and explosive gas.

しかし従来のものは還水効率を向上せんとすれば、安全
面(温度上昇)で問題が生じこれを防止するために遮蔽
物や逃げ道などで反応性を二次的にIIJSJJする形
となり、複雑な構造で大形化の傾向をもち、一方安全性
の面でも不十分な点が残されていた。
However, with conventional methods, if you try to improve the water return efficiency, there will be a safety problem (temperature rise), and to prevent this, you will have to use shields and escape routes to secondarily increase the reactivity, making it complicated. They tended to be larger in size and had a more traditional structure, but they also had some deficiencies in terms of safety.

本考案はこれらの欠点を解消し、還水効率も大きく、安
全性も高く、単純な構造で信頼性の高い触媒せんを得る
ことを目的とするものである。
The purpose of the present invention is to eliminate these drawbacks and to obtain a highly reliable catalyst cell with high water return efficiency, high safety, and simple structure.

この考案を達成するための本考案の要旨はつぎの通りで
ある。
The gist of the present invention for achieving this invention is as follows.

即ち、上、下に排気、還水口を有するぜん体内空間に、
内のりで高さを直径の0.3倍未満とした扁平形の多孔
性容器に触媒を収納することにより、前記多孔性容器、
即ち触媒容器自体に適切な反応制限能力を持たせたこと
にある。
That is, in the intracellular space that has exhaust and water return ports on the top and bottom,
By storing the catalyst in a flat porous container whose inner height is less than 0.3 times the diameter, the porous container,
That is, the catalyst container itself has an appropriate ability to limit the reaction.

つぎに本考案を詳細に説明する。Next, the present invention will be explained in detail.

本考案の一実施例を示す第1図において、1はぜん体、
2はガスの導入と還水を行なう流出入口、3は排気孔、
4は水素ガス−酸素ガス結合触媒、例えば、γアル□す
担体にパラジウムを付着させたもの、5は無機物質粒子
を焼結した狭隙防爆機能を有する円筒状の触媒容器で、
その形状は内のり寸法で高さを直径の0.3倍未満、例
えば、0.15倍にした扁平形のものである。
In FIG. 1 illustrating an embodiment of the present invention, 1 represents a body;
2 is an inlet and an inlet for introducing gas and returning water; 3 is an exhaust hole;
4 is a hydrogen gas-oxygen gas combination catalyst, for example, palladium is attached to a γ-Al□ carrier; 5 is a cylindrical catalyst container with a narrow gap explosion-proof function made of sintered inorganic particles;
Its shape is a flat one with an inner height that is less than 0.3 times, for example 0.15 times, the diameter.

6はこの触媒容器をぜん体内空間に設置する耐mの支持
台で、例えばエボナイトのような材料の成形品である。
Reference numeral 6 denotes a m-resistant support base for installing the catalyst container in the intracranial space, and is a molded product made of a material such as ebonite.

なお、第2図は従来形の耐過電流形の触媒せんの一例で
、その構造は第1図に示す本考案実施例と符号1〜6に
おいて同じであるが、Tが内カバ−とじて触媒へのガス
の流れを一定量以下に押える作用をしていることおよび
、容積が大きく飽和温度が高い点が犬ぎく相異している
In addition, FIG. 2 shows an example of a conventional overcurrent type catalyst cylinder, whose structure is the same as the embodiment of the present invention shown in FIG. 1 with reference numerals 1 to 6. They are very different in that they act to suppress the flow of gas to the catalyst below a certain amount, have a large volume, and have a high saturation temperature.

また、第1図の触媒容器の形状は円筒形であるが横断面
の形状を多角形の筒状としても効果は同じである。
Further, although the shape of the catalyst container in FIG. 1 is cylindrical, the same effect can be achieved even if the cross section is shaped like a polygonal cylinder.

このとき、直径りは、内のり横断面の面積Sと周囲りと
から D=43/Lによって求めた値とする。
At this time, the diameter is determined from the area S of the inner cross section and the circumference by D=43/L.

この触媒せんの作用機構はつぎの通りである。The mechanism of action of this catalyst is as follows.

まず、蓄電池から発生した水素ガスと飯素ガスとはせん
体1の下部2よりせん体1内に流入し触媒1菱容器5の
壁面を通過して触媒4と接触し、化学的な結合により水
蒸気となる。
First, hydrogen gas and hydrogen gas generated from the storage battery flow into the cylindrical body 1 from the lower part 2 of the cylindrical body 1, pass through the wall surface of the catalyst container 5, and come into contact with the catalyst 4, resulting in chemical bonding. It becomes water vapor.

つぎに、この水蒸気は触媒容器5の壁面を通過して外へ
移動し、ぜん体1の内壁面で冷却されて凝縮する。
Next, this water vapor passes through the wall surface of the catalyst container 5 and moves to the outside, and is cooled and condensed on the inner wall surface of the body 1.

液体となった水は、せん体1の下部2から電池内へ還流
される。
The liquid water flows back into the battery from the lower part 2 of the cylindrical body 1.

このようにガス結合の反応は触媒容器の壁面をガスが通
過してはじめて進行する。
In this way, the gas bonding reaction does not proceed until the gas passes through the wall of the catalyst container.

この反応状態を触媒容器の形状を変えて試験を行った結
果を第1表に示す。
Table 1 shows the results of tests conducted on this reaction state by changing the shape of the catalyst container.

また、それを図示したのを第3図に示す。Further, a diagram illustrating this is shown in FIG.

この試験は、第1図の触媒せんの構造で、触媒容器トし
て36メツシユのアルミナ粒子を焼結してなる厚さ5m
、通気抵抗5rIrrn・H2O(送風量1.3t/分
)、内容積約10 ccで形状を変えたものを用い、そ
れぞれの触媒容器内に7gの触媒を収納した場合におけ
る触媒容器の形状による反応電流の影響を求めたもので
ある。
In this test, the structure of the catalyst vessel shown in Fig. 1 was used, and the catalyst vessel was made by sintering 36 meshes of alumina particles to a thickness of 5 m.
, ventilation resistance 5 rIrrn H2O (blow rate 1.3 t/min), internal volume approximately 10 cc, and 7 g of catalyst stored in each catalyst container. Reaction depending on the shape of the catalyst container. This is a calculation of the influence of current.

なお、前記の触媒容器の厚さ、通気抵抗等は、触媒せん
において従来から通常に用いられている範囲のものであ
り、触媒量は蓄電池容量で決まる所定量である。
The thickness, ventilation resistance, etc. of the catalyst container are within the ranges conventionally used in catalyst containers, and the amount of catalyst is a predetermined amount determined by the capacity of the storage battery.

この表から明らかなように、触媒容器の形状を扁平化し
て行くことにより、最大反応電流および温度を低下させ
ることができることを示しており、特に高さ/直径の値
が0.3未満で、安定する傾向をもっており、触媒せん
として十分な還水効率を有すると共に温度上昇の少ない
安全性の高いものが得られた。
As is clear from this table, it is shown that the maximum reaction current and temperature can be lowered by flattening the shape of the catalyst container, especially when the height/diameter value is less than 0.3. It has a tendency to be stable, has sufficient water return efficiency as a catalyst, and is highly safe with little temperature rise.

またこの事実を確認するために、触媒容器の内容積が先
の試験に用いた触媒容器の内容積の約3倍のものについ
て試験した結果を第2表に示す。
Furthermore, in order to confirm this fact, Table 2 shows the results of tests conducted on catalyst containers whose internal volume was about three times that of the catalyst container used in the previous test.

この試験は、触媒容器の材質、物性等は先の試験に供し
たものと同一条件にし、触媒容器の内容積のみを約8倍
にして行なったものである。
In this test, the material, physical properties, etc. of the catalyst container were kept under the same conditions as those used in the previous test, but only the internal volume of the catalyst container was increased by about 8 times.

この表より明らかなように、触媒容器の内容積が増加し
た場合においても高さ/直径が0.3 未満のものは、
0.3以上のものに比べ、先の試験と同様の結果が得ら
れた。
As is clear from this table, even when the internal volume of the catalyst container increases, the height/diameter is less than 0.3.
Compared to those with a value of 0.3 or more, results similar to those in the previous test were obtained.

ただし、反応速度と温度の絶対値は先の試験結果に比べ
大きくなった。
However, the absolute values of reaction rate and temperature were larger than the previous test results.

前記した如き結果となった理由は、未反応ガスおよび反
応による水蒸気は、例えば触媒容器の下面から入って上
面へ抜けるのではなく、触媒容器の側壁で出入りしてお
り、側壁の面積の大小が反応速度に大きな影響をおよぼ
したものと考えられ従って触媒容器を扁平形にすると側
壁の面積が小さくなるため、反応速度を減少できたもの
と考えられる。
The reason for the above results is that unreacted gases and water vapor from the reaction do not enter from the bottom of the catalyst container and exit to the top, but instead enter and exit through the sidewalls of the catalyst container, and the area of the sidewalls is This is thought to have had a large effect on the reaction rate, and it is therefore thought that if the catalyst container was made flat, the area of the side wall would become smaller, thereby reducing the reaction rate.

また触媒容器を扁平化していくと、触媒容器の全体の表
面積、特に上、下の表面積が増加し、その結果、放熱が
良好に行なわれ、温度の上昇が制限されたものと考えら
れる。
It is also believed that as the catalyst container was made flat, the overall surface area of the catalyst container, especially the upper and lower surface areas, increased, and as a result, heat dissipation was performed well and the rise in temperature was restricted.

またアルミナ粒子に変えて他の無機質粒子を焼結して作
製した触媒容器を用いても同様の結果が得られた。
Similar results were also obtained using a catalyst container made by sintering other inorganic particles instead of alumina particles.

なお、最大反応電流を減少させるためには触媒量を減少
させても可能であるが、触媒量を減じると触媒の寿命が
低下する傾向を有しているため好ぞましくない。
Note that in order to reduce the maximum reaction current, it is possible to reduce the amount of catalyst, but this is not preferable because reducing the amount of catalyst tends to shorten the life of the catalyst.

また触媒容器の厚さ、通気抵抗等の物性を変化させるこ
とによっても可能であるが、狭隙防爆機能を損う危険性
があるので好ましくない。
It is also possible to change the physical properties such as the thickness and ventilation resistance of the catalyst container, but this is not preferable since there is a risk of impairing the narrow gap explosion-proof function.

そこで本考案は触媒量を寿命を考慮して所定量収納して
寿命問題への対応をし、かつ触媒容器を従来から用いら
れている材質、厚さ、物性で構成して狭隙防爆機能を持
たせてなる触媒せんにおいて、触媒容器を内のりで高さ
を直径の0.3倍未満とした扁平形の形状にすることに
より、触媒容器自体に最大反応電流を制限させる能力を
持たせ、二次的な遮弊物などを使う必要が:ないように
し、小形で安全性が高く、反応容量の大きい触媒せんと
したものである。
Therefore, the present invention solves the problem of lifetime by storing a predetermined amount of catalyst in consideration of the lifetime, and also constructs the catalyst container with conventionally used materials, thickness, and physical properties to provide a narrow gap explosion-proof function. By making the catalyst container into a flat shape with an inner height of less than 0.3 times the diameter, the catalyst container itself has the ability to limit the maximum reaction current. The catalyst is small, highly safe, and has a large reaction capacity, eliminating the need for secondary barriers.

従って、触媒量および触媒容器内容積がほぼ同じ触媒せ
んで性能を比較した場合、本考案による触媒せんの方が
小形で安全性が高く、しかも十分な反応容量も備えてい
るといったすぐれた利点がある。
Therefore, when comparing the performance of catalyst vessels with approximately the same amount of catalyst and catalyst container internal volume, the catalyst vessel according to the present invention has the superior advantages of being smaller and safer, as well as having sufficient reaction capacity. be.

本考案の具体例の試験結果を従来品と比較して第3表に
示す。
Test results for specific examples of the present invention are shown in Table 3 in comparison with conventional products.

なお、触媒容器の材質、厚さ、物性は同じとした。Note that the material, thickness, and physical properties of the catalyst container were the same.

この表より本考案品が小形で安全性の高いものであるこ
とが明らかである。
From this table, it is clear that the product of the present invention is small and highly safe.

以上述べたように、本考案によれば触媒容器を扁平形(
H/Dが0.3未満)に選び、それ自体で低い反応電流
に制限する能力を持たせ1.それを単純な構造のせん体
内に収納するだけで、小形で安全性が高く、反応容量の
大きい触媒せんを得ることができ、その工業的価値は大
ぎい。
As described above, according to the present invention, the catalyst container can be made into a flat shape (
H/D is less than 0.3) and has the ability to limit itself to a low reaction current.1. By simply housing it in a cylinder with a simple structure, a small, highly safe catalyst cell with a large reaction capacity can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案蓄電池用触媒せんの一実施例を示す縦断
面図、第2図は従来の触媒せんの一例を示す縦断面図、
第3図は触媒容器の高さ/直径の比と最大反応電流の関
係を示す特性図である。 1・・・・・・ぜん体、4・・・・・・触媒、5・・・
・・・触媒容器、6・・・・・・支持台。
FIG. 1 is a longitudinal cross-sectional view showing an example of the catalyst cell for storage batteries of the present invention, and FIG. 2 is a longitudinal cross-sectional view showing an example of a conventional catalyst cell.
FIG. 3 is a characteristic diagram showing the relationship between the height/diameter ratio of the catalyst container and the maximum reaction current. 1... whole body, 4... catalyst, 5...
...Catalyst container, 6... Support stand.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下方に電池内で発生したガスの導入と凝縮水の還流のた
めの経路をもち、上方に未反応ガスの排出経路を有する
せん体内空間に内のりで高さを直径の0.3倍未満とし
た無機物質粒子を焼結した狭隙防爆機能を有する多孔性
容器内に水素ガス−酸素ガス結合触媒を収納した容器を
配置してなる構造の蓄電池用触媒せん。
The height is less than 0.3 times the diameter of the cylinder, which has a path for introducing gas generated within the battery and refluxing condensed water at the bottom, and an exhaust path for unreacted gas at the top. A catalyst cell for a storage battery has a structure in which a container containing a hydrogen gas-oxygen gas bonding catalyst is arranged in a porous container having a narrow gap explosion-proof function made of sintered inorganic material particles.
JP1976063673U 1976-05-18 1976-05-18 Catalyst for storage batteries Expired JPS5812381Y2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1976063673U JPS5812381Y2 (en) 1976-05-18 1976-05-18 Catalyst for storage batteries
GB20430/77A GB1569449A (en) 1976-05-18 1977-05-16 Catalytic storage battery cap
DE19772722690 DE2722690A1 (en) 1976-05-18 1977-05-18 CATALYTIC ACCUMULATOR STOPPER PLUG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976063673U JPS5812381Y2 (en) 1976-05-18 1976-05-18 Catalyst for storage batteries

Publications (2)

Publication Number Publication Date
JPS52153822U JPS52153822U (en) 1977-11-22
JPS5812381Y2 true JPS5812381Y2 (en) 1983-03-09

Family

ID=28527135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976063673U Expired JPS5812381Y2 (en) 1976-05-18 1976-05-18 Catalyst for storage batteries

Country Status (1)

Country Link
JP (1) JPS5812381Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051122U (en) * 1973-09-07 1975-05-17

Also Published As

Publication number Publication date
JPS52153822U (en) 1977-11-22

Similar Documents

Publication Publication Date Title
US3893870A (en) Hydrogen absorbing material for electrochemical cells
US6742650B2 (en) Metal hydride storage canister design and its manufacture
US2938064A (en) Air-depolarized cell
US4910105A (en) Electrochemical cell
US3038954A (en) Battery cap
US2465202A (en) Hermetically-sealed storage battery with gas recombining means
US4219612A (en) Vented filling plugs for electric storage cells
JPS5812381Y2 (en) Catalyst for storage batteries
US3102059A (en) Catalytic device for electric accumulators
US4004067A (en) Rechargeable electrochemical cell
US3287174A (en) Prevention of pressure build-up in electrochemical cells
US3817717A (en) Apparatus for recombining hydrogen and oxygen and protectively returning water of recombination to the battery electrolyte
US2927951A (en) Hermetically closed storage cell and a method in the manufacture of such cell
JPS5812382Y2 (en) Catalyst for storage batteries
US3929422A (en) Means for recombining hydrogen and oxygen in a sealed battery and controlling recombination at catalyst surfaces
US3497396A (en) Moisture conserving pressure control unit for electrochemical cells
JPS5910542B2 (en) Catalyst for storage batteries
JPS5841644Y2 (en) Catalyst plug for storage battery
CA1119783A (en) Modular hydride container
JPS5814537Y2 (en) Catalyst plug for storage battery
GB923807A (en) Electrolytic cell for carrying out electro-chemical reactions
US3981490A (en) Apparatus for decomposing alkali metal amalgams
JPS5678401A (en) Utilization of metallic hydride and storage tank for hydrogen
JP7187697B2 (en) Catalytic device for lead-acid battery and lead-acid battery
JPS5738570A (en) Storage battery