JPS5812381A - Gan blue light emitting element - Google Patents

Gan blue light emitting element

Info

Publication number
JPS5812381A
JPS5812381A JP56111607A JP11160781A JPS5812381A JP S5812381 A JPS5812381 A JP S5812381A JP 56111607 A JP56111607 A JP 56111607A JP 11160781 A JP11160781 A JP 11160781A JP S5812381 A JPS5812381 A JP S5812381A
Authority
JP
Japan
Prior art keywords
gan
impurity
layer
gas
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56111607A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoneda
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56111607A priority Critical patent/JPS5812381A/en
Publication of JPS5812381A publication Critical patent/JPS5812381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To make a GaN blue light emitting element to have narrow half- width of emitting light making 440nm as the center of wave length while enhancing intensity of emitting light by a method wherein zinc phosphide is used as impurities to be doped in a GaN single crystal layer at the GaN blue light emitting element. CONSTITUTION:The GaN layer consisting of undoped GaN single crystal is formed on the main face of a sapphire (Al2O3) substrate having the (0001)C face as one main face, and a doped layer doped with acceptor impurities, zinc phosphide (ZnP2 or Zn2P3), for example, is formed on the GaN layer thereof. When zinc phosphide is used as impurities like this way, light having narrow half-width can be observed making 440nm as the peak value. Moreover intensity of emitting light at emitting light wave length of 440nm is extremely high.

Description

【発明の詳細な説明】 本発明はGap(窒化ガリウム)實色発元素子に関する
・ 現在、可視発覚素子は赤色、緑色、黄色及び橙色の発5
t、が可能なものが実用化されている・また最近では1
つの発元嵩子で赤から縁までの発覚色を順次可変可能な
多色発覚素子が開発され、実用化されつつある・ところ
が党の三原色の一つである青色を発する育色発元素子に
関しては古くから研究されてはいるが未だに実用化でき
る段階に到つていない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Gap (Gallium Nitride) color emitting element.Currently, visible sensing elements are capable of emitting red, green, yellow and orange colors.
t, has been put into practical use.Recently, 1
A multi-color developing element that can sequentially change the developing color from red to the edge has been developed and is being put into practical use.However, regarding the color developing element that emits blue, one of the three primary colors of the party, Although it has been studied for a long time, it has not yet reached the stage where it can be put into practical use.

上記青色発覚素子の材料として框、GaN、810、Z
n8e、Zn8等が挙げら几ている。
The materials for the blue detection element are frame, GaN, 810, and Z.
Examples include n8e and Zn8.

なかでもGaNはこれまでの研究段階でに発覚効率が最
も高く、有望視されている。
Among them, GaN has had the highest detection efficiency at the research stage so far and is seen as promising.

第1図は従来のGa1i’ff色発光素子を示し、+1
)に−土面が(0001)ellであるサファイヤ(4
420り基板、(2)は該基板(1)の−主面上に形成
されたアンドープGaH単結晶からなるGaN層、(3
)は[G!LM層(2)上にアクセプタ不純物をドーピ
ングしたドープ層、(4)は該ドープ層13)上に形成
された金属電極である。
Figure 1 shows a conventional Ga1i'ff color light emitting device, +1
) - sapphire (4) whose soil surface is (0001)ell
420 substrate, (2) is a GaN layer made of undoped GaH single crystal formed on the main surface of the substrate (1), (3
) is [G! A doped layer (4) is a metal electrode formed on the doped layer (13).

通常上記GaN層(2)は900〜1100’Cの高温
中でG&01− MH5(塩化ガリウム−アンモニア)
系の直接反応t−利用し罠気相成長により得られる。
Usually, the above GaN layer (2) is formed by G&01-MH5 (gallium chloride-ammonia) at a high temperature of 900 to 1100'C.
It is obtained by trap vapor phase growth using the direct reaction t-system.

このとき上記GILN層(2)はΦヤリア濃匿が101
s〜1Q ” ’ /dl” ト強いMa1伝導を示T
が、Cn、[()aNの成長温度が高温で一旦成長した
GaN結晶中から窒素が抜けて空孔子が発生するためで
ある。
At this time, the GILN layer (2) has a Φ Yaria concentration of 101
s~1Q ''/dl'' shows strong Ma1 conduction T
However, this is because when the growth temperature of Cn and [()aN is high, nitrogen is removed from the GaN crystal once grown and vacancies are generated.

また上記ドープ層蓄3)においてドーピングされたアク
セプタ不純物がGa原子の位置に置換してアクセプタと
して働くと共に上記空孔子を補償するために斯るドープ
層13)は半絶縁性の裏門抗層となる・ 従つ工GaM青色発覚素子は金属電極14)、ビー51
層(3)及びGa11層12)からなる1lI8!lI
構造を有し、金属電4K(41−G a M層(21間
vcll[パ(7スを印加すれば實色発党を得ることが
できる。
In addition, the acceptor impurity doped in the doped layer 3) substitutes at the position of the Ga atom and acts as an acceptor, and the doped layer 13) serves as a semi-insulating back gate layer to compensate for the vacancies.・The GaM blue detection element is a metal electrode 14), B51
1lI8! consisting of layer (3) and Ga11 layer 12). lI
It has a structure of 4K (41-G a M layer) of metal electrodes, and by applying 7 passes between 21 and 21 layers, it is possible to obtain true color development.

@2aillは装置的なGaNの気相成長装置を示し、
]1は一側11iにj[1〜第3ガス導入口(13〜α
−を、上記側面と対向する面にガス排出口−を夫々設け
た石英製の成長炉、 USは上記第1のガス導入0惺り
に装着され次第1のガス導入管、aηは上記第2のガス
導入口0を貫通し、その一端が成長炉饅」内の略中夫に
達する112のガス導入管であり、該導入管鰭の成長炉
11υ中の端部はガリウム載置部−となっている。19
[上記第3のガス導入口a番を貫通し。
@2aill shows a GaN vapor phase growth device,
] 1 is connected to one side 11i with j [1 to 3rd gas inlet (13 to α
- is a quartz growth furnace provided with a gas outlet on the surface opposite to the side surface, US is the first gas inlet pipe installed in the first gas inlet, and aη is the second gas inlet pipe. 112 gas introduction tubes that pass through the gas introduction port 0 of the growth furnace 11υ and one end of which reaches approximately the inside of the growth furnace 11υ, and the end of the introduction tube fin inside the growth furnace 11υ is connected to the gallium mounting part. It has become. 19
[Penetrate through the third gas inlet port a.]

その一端が成長炉値υの略中夫に達する第3のガス導入
管であり、該第3のガス導入管部の成長炉I外に:は不
純物ボード■が配されている・@は上記ガス排出口QS
に装着さfしたガス排出管、@框上記ガリウム載置部α
l内に配さfしたガリウムボート。
One end of it is the third gas introduction pipe that reaches approximately the middle of the growth furnace value υ, and outside of the growth furnace I in the third gas introduction pipe part, an impurity board ■ is placed. Gas outlet QS
Gas exhaust pipe attached to the gallium mounting part α above the stile
A gallium boat placed within l.

@は成長炉−内に載置され、上記ガリウム載置部舖端付
近よりガス排出口a9側に延在する基板載置台である・
■は成長炉■の周囲に配設さrt、成長炉1円及びガス
導入口付近を加熱制御する加熱装置であり、Vk加熱装
置−に主に基板載置合一付近を加熱するlI1ヒータ(
24表)%王にガリウムボート(2)付近を加熱するl
I2ヒータ(24!I)及び王に不純物ボート(1)付
近を加熱する第3ヒータ(240)からなる。
@ is a substrate mounting table placed in the growth furnace and extending from near the end of the gallium mounting part to the gas exhaust port a9 side.
(2) is a heating device installed around the growth furnace (2) that controls the heating of the rt, growth furnace (1), and gas inlet areas;
Table 24) Heat the vicinity of the gallium boat (2) in %
It consists of an I2 heater (24!I) and a third heater (240) that heats the vicinity of the impurity boat (1).

以下に上記気相成長装置を用いた一般的なG&N気相成
長方法を説明する・ まず最初にアンドープGaM単結晶つまり第1図のGa
1層(2)の成長方法について説明する。
A general G&N vapor phase growth method using the above-mentioned vapor phase growth apparatus will be explained below.
The method for growing the first layer (2) will be explained.

ガリウムボート@にGa(ガリウム>四に、M板載置合
一上に表面が(0001)0面となるようにサファイヤ
基板−を夫々載置し1次−で加熱装置−の第1および第
2ヒータ(24ム)、(24B)を夫々−閣してサファ
イ實基[(至)te a Hの成長温度である900〜
1100’Cに、GEL(至)をG&の溶融温贋である
700〜900’Cに夫々保持する。
Place the sapphire substrates on the gallium boat so that the surface becomes the (0001) 0 plane on the Ga (Gallium>4, M plate), and 2 heaters (24mm) and (24B) were heated to 900~ which is the growth temperature of sapphire base [(to) tea H]
GEL is held at 1100'C and GEL at 700-900'C, which is the melting temperature of G&, respectively.

このような杖態で第2のガス導入管(171よりN2(
窒素)ガスをキャリアガスとしてHal(塩酸)ガスを
成長炉qv内に送り込むと上記Ficl ガスはガリウ
ムボート翰上のG&に)と Ga+HoJ−*Gacl+%H2 の反応を起こしGacl(塩化ガリウム)が生成され、
成長炉+1υrcEIkG a c lが送出される。
In this state, N2 (
When Hal (hydrochloric acid) gas is sent into the growth reactor qv using Nitrogen (nitrogen) gas as a carrier gas, the above Ficl gas reacts with Ga+HoJ-*Gacl+%H2 on the gallium boat, producing GaCl (gallium chloride). is,
Growth reactor +1υrcEIkG a c l is delivered.

成長炉復υ内で上記eacJ[11!1のガス導入管C
I8より送出されたN2ガスをキャリアガスとするNH
&(7ンモエア)ガスと GaeJI÷NBA−eGaN+Ho/+H2の反応を
生じGaNt−生成する。該Ga翼はサファイヤ基板(
ホ)が900〜1100’Cに保持されているので、す
7アイヤ基板(至)上に単結晶成長する・尚1反応終了
後のGa1l以外のN2ガス、Hopガス、■2 ガス
にガス排出管(ハ)を通して成長炉■外に排出される・ 次に了り七プタ不純物をドーピングした高抵抗層つまり
第1図におけるドープ層(3)の成長方法について説明
する。
Inside the growth reactor, the gas inlet pipe C of eacJ[11!1
NH using N2 gas sent from I8 as carrier gas
A reaction of &(7 mm air) gas and GaeJI÷NBA-eGaN+Ho/+H2 occurs to generate GaNt-. The Ga wing is made of a sapphire substrate (
Since E) is maintained at 900 to 1100'C, a single crystal is grown on the 7-Iyer substrate (to). After the completion of 1 reaction, N2 gas other than Ga11, Hop gas, and ■2 gas are discharged. Next, a method for growing the high resistance layer doped with a 7-ptamer impurity, that is, the doped layer (3) in FIG. 1, will be explained.

不純物ボー)(イ)に不純物@を載置し、次いで加熱装
置−の第3ヒータ(24c)を制御して上記不純物−を
溶融温tc保持すると共[5I3のガス導入管(L9よ
り成長炉tiυ内にキャリアガスとしてのN2ガスを送
り込む。尚、上記成長装置においてgl、I!2のガス
導入管Qet1Mに送り込まれる各ガス及び第1、g2
ヒータ(24&)(24B)の温度側ガス導入管a9よ
り蒸気となった不純物(2)がM!ガスにより成長炉a
υ内に送出され、斯る不純物−がサファイヤ基板(至)
上に5E長するGaM単結晶の偽と置換して不純物ドー
プ層131 #成長する0従来、上記ドープ層131に
ドーピングする不純物としてにZn(亜鉛)t−用いて
−た。
The impurity is placed on the impurity board (A), and then the third heater (24c) of the heating device is controlled to maintain the melting temperature tc of the impurity, and the gas introduction pipe of 5I3 (L9 is connected to the growth furnace). N2 gas is fed into the tiυ as a carrier gas.In addition, in the above growth apparatus, each gas fed into the gas introduction pipe Qet1M of gl, I!2 and the first, g2
The impurity (2) that has become steam from the temperature side gas inlet pipe a9 of the heater (24 &) (24B) is M! Growth furnace a by gas
These impurities are sent to the sapphire substrate (towards).
An impurity doped layer 131 # is grown by replacing the pseudo GaM single crystal having a length of 5E above. Conventionally, Zn (zinc) t- was used as an impurity to be doped into the doped layer 131.

ところが断るZnを不純物として用いる場合。However, the case where Zn is used as an impurity is refused.

ドーピング量が多過ぎると発覚レベルが背色以外の緑色
、橙色、赤色等になる危惧があり、tた発光レベルを青
色レベルにするためドーピングtt控えるとGa11層
12)が上述した如く強いBlであるためドープ層13
)が高抵抗とならないとhう問題が生じた。
If the amount of doping is too large, there is a risk that the detected level will become green, orange, red, etc. other than the background color, and if doping is refrained to bring the luminescence level to the blue level, the Ga11 layer 12) will become a strong Bl as described above. Because there is a doped layer 13
) had to have a high resistance.

本発明は上記の点に鑑みてなされた鳴のである・本発明
の特徴は上記不純物として、リン化亜鉛(ZnP2、又
t!Zn2PB)化合物を用いたことである。
The present invention has been made in view of the above points.A feature of the present invention is that a zinc phosphide (ZnP2, or t!Zn2PB) compound is used as the impurity.

*sWAは第1図に示したGaN青色発光素子にお−て
ドープ層(3)のドーピング不純物をZn及びリン化亜
鉛としたときの夫々の発光波長と発光強度との@係を示
す一実験結果で69.グラフ中実いた場合の特性を示す
*sWA is an experiment that shows the relationship between the emission wavelength and emission intensity when Zn and zinc phosphide are used as doping impurities in the doped layer (3) in the GaN blue light-emitting device shown in Figure 1. The result is 69. The graph shows the characteristics when the graph is solid.

尚、このときのeaN単結晶の成長条件に。Furthermore, the growth conditions for the eaN single crystal at this time.

リサ7アイヤ基板温駅・・・960℃〜980’CTa
cit)#l量   −10〜20 Cc/ winl
ll o51量   ・・・1.3〜2.0 l/wi
nrial のキャリアガ スとしてのN2の流量・−1,0〜1.51 / m1
n1■のキャリアガス としてのN2の流量・=3.5〜5.7 l/winG
aの温II     −850℃tso’cであり、斯
る条件下で成長したGaMのキャリア濃fは約10  
/(IIであった。
Lisa 7 Aiya substrate temperature station...960℃~980'CTa
cit)#l amount -10~20 Cc/winl
ll o51 amount...1.3~2.0 l/wi
Flow rate of N2 as carrier gas for nreal -1,0 to 1,51/m1
Flow rate of N2 as carrier gas for n1■ = 3.5 to 5.7 l/winG
The temperature of a is -850℃tso'c, and the carrier concentration f of GaM grown under such conditions is about 10
/(It was II.

また、不純物のドーピング条件は。Also, what are the doping conditions for impurities?

不純物置l  ・・・425℃ 不純物を送出するN2の流量・・・11/winとした
。斯る条件den及びりン化亜鉛のどちらを不純物とし
て用いた場合でもGa11発元素子の発光レベルは背と
なる条件である。
Impurity storage l...425°C Flow rate of N2 for sending out impurities...11/win. Regardless of whether den or zinc phosphide is used as an impurity under these conditions, the luminescence level of the Ga11-emitting element is a critical condition.

り19不純物温度が425℃以上#Cなると発光波長が
440nm以上となり育色発光が得難く。
19 When the impurity temperature is 425° C. or higher #C, the emission wavelength becomes 440 nm or higher, making it difficult to obtain colored luminescence.

不純物温度が450℃以下では発光レベルに青色レベル
となるが、この場合Znを不純物とすると高抵抗のドー
プ層が得られないので比較集験のため不純物温度を上記
温度とした0更は光色発光レベルを得るためにに成長炉
al内にお行るZn4しくバリン化亜鉛の分圧Pが成長
炉内の気圧t−1気圧とすると10〜10  atmK
あることが好着しく、不純物温度が450℃では上記N
2の流量が約1e/mtn  のとき上記分圧を満足す
る。
When the impurity temperature is below 450°C, the luminescence level becomes blue, but in this case, if Zn is used as an impurity, a high-resistance doped layer cannot be obtained. If the partial pressure P of zinc valine in the growth reactor Al to obtain the luminescence level is 10 to 10 atmK, assuming that the pressure inside the growth reactor is t-1 atm.
When the impurity temperature is 450°C, the above N
The above partial pressure is satisfied when the flow rate of No. 2 is approximately 1 e/mtn.

上記@3図力・らも明らかなようにZnを不純物として
用いた場合440nmの青色発光波長を中心として、4
50nm〜480nmrcかけてブロードなピークを有
する元が1!測さ几るが、リン化亜鉛を不純物として用
いた場合は440nmをビーク置として半値中のせまい
党が観測さft、た。ま**440nmの発光波長にお
ける発覚強Jfは、リン化亜鉛を不純物として用いた万
が強いという結果を得た・ この理由は、不純物としてリン化亜鉛を用いるとGaN
中でリンは窒素位置#/c置換さi′Lyi1累空孔子
のIl&を減少させると共に有効なアイソエレクト冒ニ
ックトラップとし7て働くためであり、かつ。
As is clear from the @3 figure et al. above, when Zn is used as an impurity, the blue emission wavelength is centered around 440 nm,
The element that has a broad peak from 50nm to 480nmrc is 1! However, when zinc phosphide was used as an impurity, a narrow band around half the maximum was observed with the peak set at 440 nm. We obtained the result that the detected strong Jf at the emission wavelength of 440 nm is stronger when zinc phosphide is used as an impurity.The reason for this is that when zinc phosphide is used as an impurity, GaN
This is because phosphorus reduces the Il& of the nitrogen position #/c substituted i'Lyi1 and acts as an effective isoelectronic trap.

Znは従来と同様にガリウムと置換して有効なアクセプ
ターとして働くためである。
This is because Zn replaces gallium and works as an effective acceptor, as in the past.

[も上記リン化亜鉛を用いた場合、リンが窒素位1It
FIcR換され窒孔子濃駅が減少するのでZn単独のド
ーピング時より少量のZnで半絶縁性の高抵抗層を得る
ことができる。
[If the above zinc phosphide is used, phosphorus is at the nitrogen position 1It
Since the FIcR is converted and the concentration of nitrate and ions is reduced, a semi-insulating high resistance layer can be obtained with a smaller amount of Zn than when doping only Zn.

つまり本発明者の実験によれば、リン化亜鉛を不純物と
した場合、不純物温度が400℃〜425’Cで、青色
発光レベルを有した高抵抗層を得ることができる。従っ
て、Znl不純物として用いる場合に比べて不純物温度
の制卸が厳しくない。
In other words, according to the inventor's experiments, when zinc phosphide is used as an impurity, a high resistance layer having a blue light emission level can be obtained at an impurity temperature of 400° C. to 425° C. Therefore, the impurity temperature is not strictly controlled compared to when Znl is used as an impurity.

以上の説明から明らかな如く1本発明によれば440n
mを中心波長として狭い半値中を有する
As is clear from the above explanation, according to the present invention, 440n
Has a narrow half-maximum center wavelength with m as the center wavelength

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に従来のGaN青色発光素子を示す断面図、菓2
図に典型的なGaN気相成長装置を示す断面図、第3図
に従来のGILN育色発光色発光素子明によるGaN青
色発光素子との発光特性を示す特性グラフであるe
Figure 1 is a cross-sectional view of a conventional GaN blue light emitting device.
Figure 3 is a cross-sectional view showing a typical GaN vapor phase growth apparatus, and Figure 3 is a characteristic graph showing the light emitting characteristics of the conventional GILN color-producing color light-emitting element and a GaN blue light-emitting element.

Claims (1)

【特許請求の範囲】 11)  単結晶サファイヤ(iJ2os)基板と、該
基板上に堆積したGaN単結晶層と、該結晶層表面に不
純物をドーピングして形成されたドープ層と。 該ドープ層表−#C形成された金属電極とからなるGa
llfi発元素子において上記不純物として間化亜鉛を
用いたことを特徴とするGaM’l1色発元嵩子・
[Claims] 11) A single crystal sapphire (iJ2os) substrate, a GaN single crystal layer deposited on the substrate, and a doped layer formed by doping the surface of the crystal layer with an impurity. Ga consisting of the doped layer surface and the #C formed metal electrode.
A GaM'l1 color generating element characterized in that zinc intercalation is used as the impurity in the llfi generating element.
JP56111607A 1981-07-16 1981-07-16 Gan blue light emitting element Pending JPS5812381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56111607A JPS5812381A (en) 1981-07-16 1981-07-16 Gan blue light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56111607A JPS5812381A (en) 1981-07-16 1981-07-16 Gan blue light emitting element

Publications (1)

Publication Number Publication Date
JPS5812381A true JPS5812381A (en) 1983-01-24

Family

ID=14565622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56111607A Pending JPS5812381A (en) 1981-07-16 1981-07-16 Gan blue light emitting element

Country Status (1)

Country Link
JP (1) JPS5812381A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278433A (en) * 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
US5408120A (en) * 1992-07-23 1995-04-18 Toyoda Gosei Co., Ltd. Light-emitting device of gallium nitride compound semiconductor
US5733796A (en) * 1990-02-28 1998-03-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6362017B1 (en) 1990-02-28 2002-03-26 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278433A (en) * 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
US5733796A (en) * 1990-02-28 1998-03-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6362017B1 (en) 1990-02-28 2002-03-26 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US6472689B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Light emitting device
US6472690B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor
US6593599B1 (en) 1990-02-28 2003-07-15 Japan Science And Technology Corporation Light-emitting semiconductor device using gallium nitride group compound
US6607595B1 (en) 1990-02-28 2003-08-19 Toyoda Gosei Co., Ltd. Method for producing a light-emitting semiconductor device
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US6984536B2 (en) 1990-02-28 2006-01-10 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US5408120A (en) * 1992-07-23 1995-04-18 Toyoda Gosei Co., Ltd. Light-emitting device of gallium nitride compound semiconductor
USRE36747E (en) * 1992-07-23 2000-06-27 Toyoda Gosei Co., Ltd Light-emitting device of gallium nitride compound semiconductor

Similar Documents

Publication Publication Date Title
Maruska et al. Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence
US5962875A (en) Light emitting device, wafer for light emitting device, and method of preparing the same
JPH0573252B2 (en)
Birey et al. Radiative transitions induced in gallium arsenide by modest heat treatment
JPH03203388A (en) Semiconductor light emitting element and its manufacture
Juršėnas et al. Decay of stimulated and spontaneous emission in highly excited homoepitaxial GaN
JPS5812381A (en) Gan blue light emitting element
JP2897821B2 (en) Method for growing semiconductor crystalline film
US3964940A (en) Methods of producing gallium phosphide yellow light emitting diodes
CN1219614A (en) Method and installation for GaN growth by light radiation-heated metallic organic chemical gas-state deposition
JPH0940490A (en) Production of gallium nitride crystal
Collins et al. Preparation and Photoluminescence of Thulium‐Activated Zinc Sulfide Films
JPH0797300A (en) Heat-treatment of gallium nitride crystal
JPH0553759B2 (en)
Ilegems Vapor epitaxy of gallium nitride
Mimila et al. Sublimation and chemical vapor transport, a new method for the growth of bulk ZnSe crystals
JP4065055B2 (en) Method for growing gallium nitride compound semiconductor single crystal
Briot et al. Growth kinetics and structural quality in GaN epitaxy by low pressure MOVPE
Karas et al. Luminescent photoelectrochemical cells. 5. Multiple emission from tellurium-doped cadmium sulfide photoelectrodes and implications regarding excited-state communication
JP2563342B2 (en) Method for growing compound semiconductor crystal
Wang et al. Photoluminescent properties of Er‐doped GaP deposited on Si
Red'kin et al. Chemical vapor deposition of GaN from gallium and ammonium chloride
JPH0613438B2 (en) Method for producing zinc sulfide film
JP2000273450A (en) Luminous material consisting essentially of silicon and nitrogen, its production and luminous element using the same luminous material
JPS5939798A (en) Production of thin film of znse single crystal