JPS58123512A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS58123512A
JPS58123512A JP601482A JP601482A JPS58123512A JP S58123512 A JPS58123512 A JP S58123512A JP 601482 A JP601482 A JP 601482A JP 601482 A JP601482 A JP 601482A JP S58123512 A JPS58123512 A JP S58123512A
Authority
JP
Japan
Prior art keywords
core
optical fiber
tip
optical
optical coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP601482A
Other languages
Japanese (ja)
Inventor
Akira Ishii
石井 曉
Hideo Kondo
秀雄 近藤
Norio Takeuchi
竹内 則夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP601482A priority Critical patent/JPS58123512A/en
Publication of JPS58123512A publication Critical patent/JPS58123512A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features

Abstract

PURPOSE:To obtain optical fibers having high efficiency of optical coupling, by making the optical coupling end to a cone so as to be gradually finer at its end by forming as well a round top part having a larger diameter than a core diameter integrally with the same material as the core. CONSTITUTION:The top end part of optical fibers 8 is processed to a cone by a mechanical grinding and is processed to a round top so that the carvature (a)= about 5mum by heating intensively by a H2 burner 10 (or arc discharge). Quartz etc. of the same material as a core are stuck on the top end of the core 1 by melting to form a round top part 11 having the larger diameter than that of the core 1. The part 11 is heated by the burner 10 etc. to form a radius of carvature of the top end to about 7-12mum. By making the radius of carvature of the top end at the round top part 11 to 7-12mum, the light receiving surface is made to be larger than the core diameter, and therefore an efficiency of optical coupling is improved greatly by 35-40% as compared with 10-20% in the past.

Description

【発明の詳細な説明】 不発明は光ファイバ、特に光ファイバの光結合端の構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to an optical fiber, and more particularly to the structure of an optical coupling end of an optical fiber.

通信用長波長レーザーダイオードはシングルモードファ
イバ結合が有利であるが、光結合効率(単に結合効率と
も称す。)が悪く、製品化ができなかった。
Although single-mode fiber coupling is advantageous for long-wavelength laser diodes for communications, the optical coupling efficiency (also simply referred to as coupling efficiency) was poor, and commercialization was not possible.

例えば光通信等においてレーザーダイオード等の光源か
ら光を取り込んで伝達するために用いられる光ファイバ
は、第1図に示すように、通常透明な材料よりなる一様
の高い屈折率を有1−るコア部(コア)1とそれを覆う
コア部より小さい一様の低い屈折率を有するクラッドF
III(り2ツド)2とさらにその表面に設けたジャフ
ット(被覆)3とから構成される。そして、これまでの
光ファイバでは、図に示すように、光源と74面させる
コア部およびクラッド層を含むファイバ先端全体をゆる
やかな曲率なもつ球面に加工(先球加工)して、ここか
ら球面のレンズ効果による集光作用を利用して拡散した
レーザー光4をできるだけ多く取り入れるようにしてい
る。しかし、それにもかかわらずレーザーダイオードと
光ファイバとの間の結合効率は10%程度と低く、実用
上大きな問題となっていた。
For example, optical fibers used in optical communications to take in and transmit light from a light source such as a laser diode are usually made of a transparent material and have a uniform high refractive index, as shown in Figure 1. A core part (core) 1 and a cladding F that covers it and has a uniformly low refractive index smaller than the core part
It is composed of a steel plate 2 and a jacket 3 provided on its surface. In conventional optical fibers, as shown in the figure, the entire fiber tip, including the core and cladding layer that faces the light source, is processed into a spherical surface with a gentle curvature (spherical processing). It is designed to take in as much of the diffused laser light 4 as possible by utilizing the light condensing effect due to the lens effect. However, in spite of this, the coupling efficiency between the laser diode and the optical fiber is as low as about 10%, which has been a big problem in practice.

一方、第2図に示すように、サブマウント5上に固定さ
れたレーサーダイオードチップ6かも発振されたレーザ
ー光4を20μmΦの円柱レンズ7によって10μm 
のコア1に案内する構造も検討されているが、結合効率
は20%と低い。また、この構造は新に円柱レンズ7が
加わることから温度特性が悪い。すなわち、レーブーダ
イオードチツブ6のレーザー光4を出射する高さに光フ
ァイバ8の光結合端を位置させても、−0者を支える各
部材の熱膨彊係数の違いによって、温度が変化すると光
結合にずれが生じるようになる。このため、さらに円柱
レンズ7が用いられるため、温度が変化するとより光結
合性は悪くなる傾向となる。
On the other hand, as shown in FIG.
A structure in which the fibers are guided to the core 1 is also being considered, but the coupling efficiency is as low as 20%. Furthermore, this structure has poor temperature characteristics because the cylindrical lens 7 is newly added. In other words, even if the optical coupling end of the optical fiber 8 is located at the height where the laser beam 4 of the Lebo diode chip 6 is emitted, the temperature will change due to the difference in the coefficient of thermal expansion of each member supporting the -0 element. This causes a shift in optical coupling. For this reason, since the cylindrical lens 7 is further used, the optical coupling property tends to worsen as the temperature changes.

したがって、本発明の目的は光結合効率の高い光ファイ
バを提供することにある。
Therefore, an object of the present invention is to provide an optical fiber with high optical coupling efficiency.

このような目的を達成するために本発明は、コアと、こ
のコアを取り囲むコアよりも低屈折率のクラッドとから
なる光ファイバにおいて、光ファイバの光結合端は先端
が徐々に細くなる円錐形とするとともに、その先端にコ
アと同材質でコア径よりも大きな先球部を一体的に形作
ってなるものであって、以下実施例により本発明を説明
する。
In order to achieve such an object, the present invention provides an optical fiber consisting of a core and a cladding surrounding the core having a refractive index lower than that of the core, in which the optical coupling end of the optical fiber has a conical shape whose tip gradually tapers. At the same time, the tip of the tip is integrally formed with a bulbous end made of the same material as the core and larger in diameter than the core.The present invention will be explained below with reference to Examples.

第3図(al〜(clおよび第4図tal 、 (bl
は本発明の一実施例による光ファイバを製造する方法を
示す断面図および斜視図である。  □ ます、光ファイバ8として、例えば単一モード形の石英
糸ファイバを用意する。すなわち、第3図(alに示す
ような、直径r、=10μmで屈折率n、のコア部1と
、外径r、=125μmでコア部覆うように形成された
屈折率n!(nl > nw )のクラッド層2とから
なる光ファイバ8を用意する。
Figure 3 (al ~ (cl) and Figure 4 tal, (bl
1A and 1B are a cross-sectional view and a perspective view showing a method of manufacturing an optical fiber according to an embodiment of the present invention. □ First, as the optical fiber 8, for example, a single mode quartz fiber is prepared. That is, as shown in FIG. 3 (al), a core part 1 with a diameter r = 10 μm and a refractive index n, and a core part 1 with an outer diameter r = 125 μm and a refractive index n! (nl > An optical fiber 8 consisting of a cladding layer 2 (nw) is prepared.

コア91とクラッド層2はいずれも主として石英。Both the core 91 and the cladding layer 2 are mainly made of quartz.

S10.かもなり、クラッド層2にはその屈折率を小さ
くするために不純物として例えはB、01等が添加され
ている。また、光源に対向する先端(光結合端)は、平
面に切断された状態になっている。
S10. The cladding layer 2 is doped with impurities such as B, 01, etc. in order to reduce its refractive index. Further, the tip (optical coupling end) facing the light source is cut into a plane.

なお、3は光ファイバを覆う例えばナイロン等からなる
ファイバ・ジャケット(被膜)である。
Note that 3 is a fiber jacket (film) made of, for example, nylon, which covers the optical fiber.

このような光ファイバ8の先端部を、第3図(blに示
すように、頂角θ=20〜80″′の円錐形となるよう
に機械研摩により加工する。具体的には、第4図+al
に示1−ように、回転する砥石9の平坦な面に光ファイ
バ8を回転させながら所定角度で接触させて研摩する。
As shown in FIG. Figure + al
As shown in 1-, the optical fiber 8 is brought into contact with the flat surface of the rotating grindstone 9 at a predetermined angle while rotating, and polished.

どのように光ファイバの先端を先球加工前に一坦円錐形
に加工することによって、コアs1がクラッド層2から
突出するような状態とする。
The state in which the core s1 protrudes from the cladding layer 2 is determined by processing the tip of the optical fiber into a flat conical shape before processing the tip.

次に、コア部を曲率a = 5μm前後となるように先
球加工1−る。具体的には第4図tb+に示すように光
ファイバを垂直方向に保持し、下からH,バーナー10
(又はアーク族1ll)によりコア部の先端を強く加熱
することにより行なう。このようにすることによって、
光7アイバの先端はコア部lのみが半球状に加工され、
一方クラッド部はほぼ研摩されたときの状態のままであ
7.)、、なお、この先球加工時の加熱により研摩時に
研摩面にできた凹凸、特に特性に影響するコア出、の凹
凸は滑らかになり、その影響を除去できる。
Next, the tip of the core portion is processed so that the curvature a is approximately 5 μm. Specifically, as shown in FIG. 4 tb+, the optical fiber is held vertically and the burner 10 is
This is done by strongly heating the tip of the core portion using an arc group 1ll. By doing this,
At the tip of Hikari 7 Eyeva, only the core part l is processed into a hemispherical shape,
On the other hand, the cladding part remains almost in the same state as when it was polished7. ),,Note that due to the heating during processing of the tip ball, the unevenness created on the polished surface during polishing, especially the unevenness of the core protrusion that affects the characteristics, is smoothed out and its influence can be removed.

このようにして形成されるコア品先端の先球部の曲率a
は、前述の頂角θの大きさとH,バーナの加熱の度合(
時間、温度)とによ−て決定される。加熱温度は光ファ
イバの材質により制約される。
Curvature a of the tip of the core product formed in this way
is the size of the apex angle θ mentioned above, H, and the degree of heating of the burner (
(time, temperature). The heating temperature is limited by the material of the optical fiber.

つぎに、コアlの先端にコアと同じ材質の石英等を溶矯
によって付着させるとともに、コア1の直径よりも大き
な先球部11を形成する。この先球部11は、第4図f
l)Iで示すようなH,バーナ等によって加熱され、第
3図(C1に示すようにその先端の曲率半径を7〜12
μm程度に形成される。
Next, quartz or the like made of the same material as the core is adhered to the tip of the core 1 by melting, and a tip ball portion 11 larger than the diameter of the core 1 is formed. This tip ball portion 11 is shown in FIG.
l) It is heated by an H, burner, etc. as shown in I, and the radius of curvature of the tip is 7 to 12 as shown in Figure 3 (C1).
It is formed on the order of μm.

つぎに、このような光結合端を有する光ファイバを用い
た光ファイバ付の発光半導体装置の一例として、光フア
イバー付レーザーダイオード装置を第5図〜第7図に示
す。第5図はその全体平面図、第6図は第5図のVl 
−Vl線に沿う断面図である。両図において、12はス
テム、5はサブマウントでこれらは導電性材質からなる
。6はレーザーダイオードチップ、13はステム12と
電気的に絶縁されたリードで金ワイヤ14を介してレー
ザーダイオードテップ6の上面電極に接続している。一
方、15はG N D IJ−ドであって、導電性のス
テム12およびサブマウント5を介してレーサーチップ
6の下s’*極に結合する。8は第3図(clに示され
る光ファイバと同一の光ファイバであり、3はそのIP
ji(ファイバジャケット)を示し、光ファイバ8はレ
ーザーダイオードチップ6と対面している。16はレー
ザーチップ6を中にして光ファイバ8と反対側に設けた
モニタファイバである。
Next, as an example of a light emitting semiconductor device with an optical fiber using an optical fiber having such an optical coupling end, a laser diode device with an optical fiber is shown in FIGS. 5 to 7. Figure 5 is the overall plan view, Figure 6 is the Vl of Figure 5.
It is a sectional view along the -Vl line. In both figures, 12 is a stem, and 5 is a submount, which are made of conductive material. 6 is a laser diode chip, and 13 is a lead electrically insulated from the stem 12, which is connected to the top electrode of the laser diode tip 6 via a gold wire 14. On the other hand, 15 is a GND IJ-de, which is coupled to the lower s'* pole of the racer chip 6 via the conductive stem 12 and the submount 5. 8 is the same optical fiber as shown in FIG. 3 (cl), and 3 is its IP
ji (fiber jacket), the optical fiber 8 faces the laser diode chip 6. A monitor fiber 16 is provided on the opposite side of the optical fiber 8 with the laser chip 6 inside.

第7図はレーザータイオードチップ6と光ファイバ8の
対面する形態を拡大図示したものである。
FIG. 7 is an enlarged view of the configuration in which the laser diode chip 6 and the optical fiber 8 face each other.

レーザーダイオードテップ6はサブマウント5上に導電
性のソルダ17を介して固着されている。
The laser diode tip 6 is fixed onto the submount 5 via a conductive solder 17.

さらにこのサブマウント5はステム12上に導電性のソ
ルダ18を介して固定されている。また、レーザーダイ
オードチップ6の出射面と光ファイバ8の先球f!11
1,11の先端との距l!li4はたとえば25μmと
する。
Furthermore, this submount 5 is fixed onto the stem 12 via a conductive solder 18. In addition, the output surface of the laser diode chip 6 and the tip of the optical fiber 8 f! 11
Distance l from the tip of 1, 11! For example, li4 is 25 μm.

このような実施例によれば、先球部11の先端の曲率半
径を7〜12μmとすることによって、コア径よりも受
光面を大きくできるため、光結合効率は、第8図で示す
実験によるグラフで示すように、従来の10〜20%に
比較して、35〜40%大幅に向上した。これは、実用
的域に達する結合効率とも云える。なお、結合効率、は
、レーサーダイオードの出力(・W)を既知アヨ達損失
率を有する一定長の光ファイバを介して充電変換素子で
受光1.て電気311 (mW )に変換して求めた。
According to such an embodiment, by setting the radius of curvature of the tip of the spherical tip portion 11 to 7 to 12 μm, the light-receiving surface can be made larger than the core diameter, so that the optical coupling efficiency is determined by the experiment shown in FIG. As shown in the graph, this is a significant improvement of 35-40% compared to the conventional 10-20%. This can also be said to be a coupling efficiency that reaches a practical level. Note that the coupling efficiency is defined as the output (W) of a racer diode received by a charging conversion element through a fixed length of optical fiber having a known loss rate. It was calculated by converting it into electricity 311 (mW).

また、この実施例によれば、先球部11の先端を7〜1
2μmの曲率半径とすることによって、先球s11での
レーザー光の反射光が再びレーザーダイオードチップ6
に向かうことは著しく少なくなることから、ノイズの発
生を従来に比較して極めて少なくできる効果もある。
Further, according to this embodiment, the tip of the tip ball portion 11 is set at 7 to 1
By setting the radius of curvature to 2 μm, the reflected light of the laser beam from the tip ball s11 returns to the laser diode chip 6.
Since there is a marked decrease in the number of noises that occur, there is also the effect that noise generation can be significantly reduced compared to conventional methods.

なお、本発明は前記実施例に限定されるものではなく、
本発明の技術思想に基いてその変形が可能である。また
、本発明はコア径が50μmφのステップ形、グレーテ
ッド形等の多モード形通信用の光ファイバにも適用でき
る。
Note that the present invention is not limited to the above embodiments,
Modifications are possible based on the technical idea of the present invention. Further, the present invention can also be applied to multi-mode communication optical fibers such as stepped type and graded type having a core diameter of 50 μmφ.

以上のように、本発明によれば、光結合効率の高い光フ
ァイバを提供することができることから、単一モードに
よる光通信も可能となる。
As described above, according to the present invention, since it is possible to provide an optical fiber with high optical coupling efficiency, single mode optical communication is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

多1〜1図は従来の光ファイバの断面図、第2図は従来
の光ファイバ付し−Ill:、ザーダイオードの要部を
示す断面図、第3図1a+〜(clおよび第4図fat
 、 fbl&1本発明の一実施例による光ファイバの
製造方法を示す断面図および斜視図、第5図は同じく本
発明の光ファイバを組み込んだレーザーダイオードの平
面図、第6図は第5図のVl−Vl梅に沿う断面図。 第7図は同じく要部拡大断面図、第8図は同じ(光結合
効率を示すグラフである。 1・・・コア、2・・・クラッド、4・・・レーザ光、
5・・・サブマウント、6・・・レーザーダイオードチ
ップ、8・・・光ファイバ、11・・・先球部、12・
・・ステム、16・・・モニタファイバ。 (9) 65 第  5 図 第  6  図 66− 第  7 図 第  8 図 切 −rギ 省4 (ptnt)
Figures 1 to 1 are cross-sectional views of conventional optical fibers, Figure 2 is a cross-sectional view showing the main parts of conventional optical fibers, and Figure 3 is a cross-sectional view showing the main parts of a laser diode.
, fbl&1 A cross-sectional view and a perspective view showing a method of manufacturing an optical fiber according to an embodiment of the present invention, FIG. 5 is a plan view of a laser diode incorporating the optical fiber of the present invention, and FIG. - A cross-sectional view along the Vl plum. FIG. 7 is an enlarged sectional view of the main part, and FIG. 8 is the same (a graph showing optical coupling efficiency). 1...core, 2...cladding, 4...laser light,
5... Submount, 6... Laser diode chip, 8... Optical fiber, 11... Tip bulb, 12...
...Stem, 16...Monitor fiber. (9) 65 Fig. 5 Fig. 6 Fig. 66- Fig. 7 Fig. 8 Fig. 8 -r Gi Ministry 4 (ptnt)

Claims (1)

【特許請求の範囲】[Claims] 1、 コアと、このコアを取り囲むコアよりも低屈折率
のクラッドとからなる光ファイバにおいて、光ファイバ
の光結合端は先端が徐々に細(なる円錐形とするととも
に、その先端にコアと同材質でコア径よりも大きな先球
部を一体的に形作ってなることを特徴とする光ファイバ
1. In an optical fiber consisting of a core and a cladding that surrounds the core and has a refractive index lower than that of the core, the optical coupling end of the optical fiber has a conical shape with a tip that gradually becomes narrower, and the tip has the same shape as the core. An optical fiber that is made of a material that is integrally formed with a tip bulb that is larger than the core diameter.
JP601482A 1982-01-20 1982-01-20 Optical fiber Pending JPS58123512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP601482A JPS58123512A (en) 1982-01-20 1982-01-20 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP601482A JPS58123512A (en) 1982-01-20 1982-01-20 Optical fiber

Publications (1)

Publication Number Publication Date
JPS58123512A true JPS58123512A (en) 1983-07-22

Family

ID=11626846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP601482A Pending JPS58123512A (en) 1982-01-20 1982-01-20 Optical fiber

Country Status (1)

Country Link
JP (1) JPS58123512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795228A (en) * 1985-12-13 1989-01-03 Siemens Aktiengesellschaft Fiber taper particularly useful for coupling a monomode fiber to a semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760016A (en) * 1980-09-30 1982-04-10 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed compustion heating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760016A (en) * 1980-09-30 1982-04-10 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed compustion heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795228A (en) * 1985-12-13 1989-01-03 Siemens Aktiengesellschaft Fiber taper particularly useful for coupling a monomode fiber to a semiconductor laser

Similar Documents

Publication Publication Date Title
US6558048B2 (en) LD module
US5600744A (en) Optical fiber light coupling interface and method for making same
JPH0749432A (en) Optical fiber with lens
JP3820958B2 (en) Optical fiber coupling system
CN109073822A (en) Optical fiber and photo-coupler with lens
JPS58123512A (en) Optical fiber
JPS58158620A (en) Optical communication device and optical fiber used for it, and working method of optical fiber
US5001722A (en) Dynamic single-mode laser transmitter
KR20050092126A (en) Lensed fiber having small form factor and method of making same
JPH0638128B2 (en) Optical coupling lens
JPS585410B2 (en) Hikari Life Aibasouchi
JPH07270642A (en) Optical fiber end with reflecting type lens integrated in one body
JPH10104474A (en) Optical transmission device
JPH05273444A (en) Photodetection module
Izadpanah et al. Microlens fabrication technique for an efficient laser/single-mode fiber coupling
JPS58124288A (en) Laser diode with optical fiber
JPS6322564B2 (en)
JPS5833210A (en) Optical fiber, optical communication device using it, and working method of optical fiber
JP2003501690A (en) Method for collectively manufacturing microlenses on a set of optical fiber ends of a ribbon type fiber
JPH03263006A (en) Light receiving device
CN212009033U (en) Lens optical fiber for packaging silicon optical chip and silicon optical chip packaging structure
JPH05224098A (en) Optical coupling circuit and manufacture thereof
JP2713892B2 (en) Light emitting module
JPS5879210A (en) Production of pseudo-hyperboloidal body
JPS6169008A (en) Production for optical coupler