JPS58123488A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS58123488A
JPS58123488A JP57006333A JP633382A JPS58123488A JP S58123488 A JPS58123488 A JP S58123488A JP 57006333 A JP57006333 A JP 57006333A JP 633382 A JP633382 A JP 633382A JP S58123488 A JPS58123488 A JP S58123488A
Authority
JP
Japan
Prior art keywords
groove
scintillator
detector
scintillator element
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57006333A
Other languages
Japanese (ja)
Inventor
Masatoshi Hanawa
政利 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57006333A priority Critical patent/JPS58123488A/en
Publication of JPS58123488A publication Critical patent/JPS58123488A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations

Abstract

PURPOSE:To achieve a higher spatial resolution along with a higher assembly accuracy by integrating a plurality of scintillator elements for converting incident radiation into phosphor outside the incident range thereof. CONSTITUTION:A number of grooves 11a piercing a multi-segment scintillator element 11 from the top to the bottom are cut through parallel with the shorter side l thereof 11 in such a manner that the length of the grooves 11a corresponds to the width of an X ray fan beam irradiated from an X ray tube and hence, the part between the groove 11a and the groove 11a serves as a scintillator element in the conventional equipment. The width l of the groove 11a is determined to enable the insertion of a collimeter plate 13. The groove 11a is formed, for example, with a diamond cutter or a wire saw. The interval between one groove 11a of the element 11 and the adjacent one thereof 11a can be made smaller than 2mm. to allow a higher resolution of a detector 10. The dimensional accuracy of the element 11 in the detector 10 only depends on the working accuracy in forming the groove 11a. The working accuracy is extremely high.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、放射線断層撮影装置の技術分野に属し、放
射線断層撮影装置に装備される放射線検出器に関する〇 〔発明の技術的背景およびその問題点〕放射線断層撮影
装置たとえばX@CT装置は、被検体の体軸を中心にし
て被検体の周囲を回動するX線管と、被検体が配置され
た空間を挾んでX線管と対向配置されると共に、X線管
より曝射されて被検体を透過するX線を検出する検出器
とを少なくとも具備し、被検体の体軸管中心としてたと
えば0.6°ずつX、g管を回動しつつX*を被検体に
曝射し、被検体を透過するXIIIを検出した検出器か
ら出力される0、6°ごとの多数のプロジェクションデ
ータを基に画像再構成処理を行ない、表示装置に再構成
し九断層像を表示することのできるように構成されてい
る。そして、たとえば医師等はX1lICT装置により
得られた断層像を基に、被検体たとえば患者の健康状態
、病変部の確g勢の医学的判断を下すのである。したが
って、正確な医学的判断を可能にするために、X線CT
装置によシ得られる断層像にはきわめて高い品質を有す
ることが要求される。断層像の品質を左右する要因の−
として、検出器の性能が挙げられる〇従来、X縁CT装
置における検出器は、たとえば次のようにして構成され
ている。すなわち、検出器は、第1図に示すように、長
さtが20〜25−5幅Wが約2鱈、扁さtが約4■で
ある直方体をなすと共にたとえばメリウム添加のヨウ化
セシウム(Cs i ; Tt) 、ケルマニウム酸ビ
スマスCBi4GmsOn> 、fi ン/ステン酸カ
ドミ’Z ム(CjWDJ、タングステン酸亜鉛(2%
WO4) 、タングステン酸マグネシウム(Mg WO
a )等の物質で作られたシンチレータ素子1と、シン
チレータ素子1の下面に光透過性の良好な接着剤2を介
して接着され九光電変換単子6たとえばフォトダイオー
ドあるいはフォトトランジスタとからなる検出ブロック
の多数を、第2図に示すように、検出ブロックの短手方
向に支持部材8上に配列すると共に、検出ブロック間に
たとえばタングステンやタンタル等の原子番号の大きな
物質で形成されたコリメータ板6を、コリメータ板6の
一部を検出ブロック上面よ〕突出させるように挿入して
構成されている。そして、第2図に示すように、図示し
ないXII管より曝射されたX線束がシンチレータ素子
1の上面に入射するとシンチレータ素子1はX線を光に
変換し、シンチレータ素子1による発光はフォトダイオ
ード6で検知、光電変換して、入射Xi量に比例する電
流を出力するようになっている。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention belongs to the technical field of radiation tomography apparatuses, and relates to a radiation detector equipped in a radiation tomography apparatus. ] Radiation tomography equipment For example, an X@CT device has an X-ray tube that rotates around the subject around the subject's body axis, and an X-ray tube that is placed opposite the X-ray tube across the space in which the subject is placed. and a detector for detecting the X-rays emitted from the X-ray tube and transmitted through the subject, and rotates the X and g tubes by, for example, 0.6 degrees around the center of the body axis of the subject. X* is emitted onto the subject while moving, and image reconstruction processing is performed based on a large number of projection data at 0 and 6° intervals output from the detector that detects XIII passing through the subject. It is configured so that it can be reconstructed into nine tomographic images and displayed. For example, a doctor or the like makes a medical judgment regarding the health condition of a subject, such as a patient, and the probability of a lesion, based on the tomographic image obtained by the X11ICT device. Therefore, to enable accurate medical judgment, X-ray CT
The tomographic images obtained by the apparatus are required to have extremely high quality. Factors that affect the quality of tomographic images
The performance of the detector can be mentioned as follows. Conventionally, a detector in an X-edge CT apparatus is configured as follows, for example. That is, as shown in FIG. 1, the detector is a rectangular parallelepiped with a length t of 20 to 25-5, a width W of about 2 cm, and a flatness t of about 4 cm. (Cs i ; Tt), bismuth kermanate CBi4GmsOn>, fin/cadmium stenate (CjWDJ, zinc tungstate (2%
WO4), magnesium tungstate (Mg WO
Detection consisting of a scintillator element 1 made of a substance such as a), and nine photoelectric conversion single elements 6, such as photodiodes or phototransistors, bonded to the bottom surface of the scintillator element 1 via an adhesive 2 with good optical transparency. As shown in FIG. 2, a large number of blocks are arranged on a support member 8 in the transverse direction of the detection blocks, and collimator plates made of a substance with a large atomic number, such as tungsten or tantalum, are arranged between the detection blocks. 6 is inserted so that a part of the collimator plate 6 protrudes from the upper surface of the detection block. As shown in FIG. 2, when the X-ray flux emitted from the XII tube (not shown) is incident on the upper surface of the scintillator element 1, the scintillator element 1 converts the X-rays into light, and the light emitted by the scintillator element 1 is converted into light by a photodiode. 6, it is detected and photoelectrically converted, and a current proportional to the amount of incident Xi is output.

しかしながら、断層像の画質を左右する要因の−が、シ
ンチレータ素子1の寸法精度および検出ブロックを配列
する際の組み立て精度にある07ンチレータ素子1の一
つ一つを切刃用して前記寸法の直方体に形成するのは極
めて難しく、たとえ厳密に前記寸法を有する直方体にシ
ンチレータ素子1を形成したとしても、シンチレータ素
子1に光電変換素子2を接着し、次いでコリメータ板6
を挿入するようにして検出ブロックを精密に配列してい
くのは困難であル、検出器における組み立て精度の狂い
は不可避である。シンチレータ素子1の配列に狂いが生
ずれば応答変動が起り、断層像の画質に悪影響が生ずる
のである。しかも、前記のような組み立て方法は煩雑で
ある。さらに、切り出し加工によるシンチレータ素子1
0幅WKは@度が69、シンチレータ素子10幅Wをい
くらでも小さくできないことによル、空間分解能が制限
されている。
However, one of the factors that affects the image quality of tomographic images is the dimensional accuracy of the scintillator element 1 and the assembly accuracy when arranging the detection blocks. It is extremely difficult to form a rectangular parallelepiped, and even if the scintillator element 1 is formed into a rectangular parallelepiped having exactly the above dimensions, the photoelectric conversion element 2 is glued to the scintillator element 1, and then the collimator plate 6
It is difficult to precisely arrange the detection blocks by inserting them, and errors in the assembly accuracy of the detector are inevitable. If the arrangement of the scintillator elements 1 is out of alignment, response fluctuations will occur, which will adversely affect the quality of the tomographic image. Moreover, the above assembly method is complicated. Furthermore, scintillator element 1 by cutting process
The zero width WK is 69 degrees, and the spatial resolution is limited because the width W of the scintillator element 10 cannot be made as small as desired.

〔発明の目的〕[Purpose of the invention]

この発明は、簡単な組み立て作業であシながら組み立て
精度良く製造することができ、しかも空間分解能の高い
多素子型放射線検出器を提供することを目的とするもの
でおる〇 〔発明の概要〕 前記目的を達成するためのこの発明の概要は、入射する
放射線を螢光に変換する複数のシンチレータ素子とシン
チレータ素子よ)発光する螢光を光−変換する光電変換
素子とを少なくとも^値する放射線検出器において、各
シンチレータ素子が放射線の入射範囲外で一体に結合し
てなることを特徴とするものである。
The object of the present invention is to provide a multi-element radiation detector that can be manufactured with high assembly accuracy through simple assembly work and has high spatial resolution. [Summary of the Invention] The above. To achieve the object, the present invention provides a radiation detector which includes at least a plurality of scintillator elements for converting incident radiation into fluorescent light, and a photoelectric conversion element for photoconverting the emitted fluorescent light from the scintillator elements. The scintillator element is characterized in that each scintillator element is integrally coupled outside the radiation incident range.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示す概略斜視図であり、
第4図はこの発明の一実施例における多分割シンチレー
タ素子を示す概略上面図である085図に示すように、
この発明に係る検出器10は、シンチレータ素子をXI
Iの入射範囲外で一体に結合する多分割シンチレータ素
子11と光電変換素子12とコリメータ板13と支持基
板14とを少なくとも具備する。多分割シンチレータ素
子11は、従来のシンチレータ素子1と同様の物質で形
成され、第4図に示すように、多分割シンチレータ素子
11の上面から下面に挿通する多数の溝118を多分割
7ンチレータ素子11の短辺tに平行となるように刻設
してなると共に、全体として略直方体をなしている0第
4図において溝11gの長さtlは、X線管から曝射さ
れるX線ファ/ビームのビーム幅に相当する。し九がっ
て多分割シンチレータ素子11において、溝11@と溝
11・とにはさまれた部分が従来装置にいうシンチレー
タ素子に相当することKなる。また、溝11番の幅ムは
コリメータ板16を挿入可能となるように決定される。
FIG. 3 is a schematic perspective view showing an embodiment of the present invention,
FIG. 4 is a schematic top view showing a multi-segment scintillator element according to an embodiment of the present invention. As shown in FIG. 085,
The detector 10 according to the present invention includes a scintillator element of XI
It includes at least a multi-segment scintillator element 11, a photoelectric conversion element 12, a collimator plate 13, and a support substrate 14 which are coupled together outside the incident range of I. The multi-segment scintillator element 11 is formed of the same material as the conventional scintillator element 1, and as shown in FIG. In FIG. 4, the length tl of the groove 11g corresponds to the width of the X-ray beam emitted from the X-ray tube. / Corresponds to the beam width of the beam. Therefore, in the multi-divided scintillator element 11, the portion sandwiched between the grooves 11@ and grooves 11.corresponds to the scintillator element in the conventional device. Further, the width of groove No. 11 is determined so that the collimator plate 16 can be inserted therein.

溝111!は、たとえばダイヤモンドカッタ鼠るいはワ
イヤーソーで形成することができる〇また、溝11αと
隣接の溝11aとの間隔は適宜に決定することができ、
高い分解能を得る友めにはできるだけ間隔を狭くするの
が好ましい。多分割シンチレータ素子11の長さWは、
適宜に決定される0元電変換素子12は、従来のと同じ
物質を用いて、長さが多分割シンチレータ素子11の短
辺tに等しく、また、幅が多分割シンチレータ素子11
の#11畠と隣接する溝11sとの間隔に等しい平面板
に形成され、接着剤を介して、多分割シンチレータ素子
11の下面に、溝11aと隣接する溝116との間に介
装されるように接着されている。そして、コリメート板
13は、光電変換索子12を有する多分割シンチレータ
素子11の谷溝11Gに挿入配置され、その上辺部は多
分割シンチレータ素子11の上面に突出すると共に、そ
の下辺部は各光電変換素子12を相互に分離している。
Groove 111! can be formed, for example, with a diamond cutter or a wire saw.Also, the distance between the groove 11α and the adjacent groove 11a can be determined as appropriate,
In order to obtain high resolution, it is preferable to make the spacing as narrow as possible. The length W of the multi-division scintillator element 11 is
The appropriately determined 0-element electric conversion element 12 is made of the same material as the conventional one, has a length equal to the short side t of the multi-division scintillator element 11, and has a width equal to the width of the multi-division scintillator element 11.
It is formed into a flat plate equal to the distance between the #11 field and the adjacent groove 11s, and is interposed on the lower surface of the multi-segment scintillator element 11 between the groove 11a and the adjacent groove 116 via an adhesive. It is glued like this. The collimating plate 13 is inserted into the valley groove 11G of the multi-segment scintillator element 11 having the photoelectric conversion cords 12, and its upper side protrudes from the upper surface of the multi-segment scintillator element 11, and its lower side extends to each photoelectric converter element 11. The conversion elements 12 are separated from each other.

そして、谷溝11・にコリメート板15を挿入し、下面
に多数の光電変換索子12を接着する多分割シンチレー
タ素子11を支持基板14上に複数個配列し、多数の多
分割シンチレータ素子11の上面により円弧状のX!l
I!入射面が形成されるようにして、この発明に係る検
出器10が構成されるのであるO前記検出器10におい
ては、曝射されたXI!は、多分割シンチレータ素子1
1の上面におけるコリメート板16同志で挾まれた面に
入射し、入射X線はコリメート板16で分割されている
シンチレータ素子毎に入射XIs量に比例する量の党に
変換され、変換され次元はコリメート板16の下辺部で
分離されている光電変換素子12により入射X線量に比
例する電流値に変換されるO 前記のように検出1110を構成すると、たとえばダイ
ヤモンドカッターやワイヤーソーで溝11@を形成する
のは容易であるので、多分割シンチレータ素子11の溝
11暴と隣接する溝11−との間隔を2■よプももつと
狭くすることができ、検出器100分解能を高めること
ができる。また、この検出器10における多分割シンチ
レータ素子11の寸法精度は、溝116を形成する加工
精度に依存t6゜う工あ9.1工s’晶ヵ、61あい。
Then, a collimating plate 15 is inserted into the valley groove 11, and a plurality of multi-segment scintillator elements 11 to which a large number of photoelectric conversion cables 12 are adhered to the lower surface are arranged on a support substrate 14, An arc-shaped X on the top surface! l
I! The detector 10 according to the present invention is constructed such that an incident surface is formed. is the multi-division scintillator element 1
The incident X-rays are incident on a surface sandwiched by collimating plates 16 on the upper surface of 1, and the incident X-rays are converted into particles of an amount proportional to the amount of incident XIs for each scintillator element divided by the collimating plates 16, and the converted dimension is It is converted into a current value proportional to the incident X-ray dose by the photoelectric conversion element 12 separated at the lower side of the collimating plate 16. When the detection 1110 is configured as described above, the groove 11@ is cut with a diamond cutter or wire saw, for example. Since it is easy to form, the distance between the grooves 11- and the adjacent grooves 11- of the multi-division scintillator element 11 can be narrowed by more than 2cm, and the resolution of the detector 100 can be increased. . Further, the dimensional accuracy of the multi-segment scintillator element 11 in this detector 10 depends on the machining accuracy of forming the groove 116.

ア、。a,.

分割シンチレータ素子110寸法に狂いが生じない。し
かも、従来のように個々のシンチレータ素子を配置、組
み立てる際に生じていた組み立て精度の狂いを防止する
ことができるばか夛か、従来の個々のシンチレータ素子
を一体に結合したのに相当する多分割シンチレータ素子
11の溝116にコリメート板16を挿入して検出器1
0を製造するので、その製造は極めて簡単である。
No deviation occurs in the dimensions of the divided scintillator elements 110. In addition, it is possible to prevent errors in assembly accuracy that occur when arranging and assembling individual scintillator elements as in the past, and it is also multi-divided, which is equivalent to combining conventional individual scintillator elements into one. The collimating plate 16 is inserted into the groove 116 of the scintillator element 11, and the detector 1
0, its manufacture is extremely simple.

以上この発明の一実施例について詳述し九が、この発明
社前記実施例に限定されるものではなく、この発明の要
旨を変更しない範囲において様々に変形して実施するこ
とができる。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-mentioned embodiment, and various modifications can be made without changing the gist of the present invention.

たとえば、第4図に示すような長辺替および短辺tの平
向を有する略直方体のシンチレータ素子体と長辺讐およ
び短辺tlの平面を有する光電変換素子板とを用意し、
シンチレータ素子体の長辺の−と充電変換素子板の長辺
の−とを揃えて(シンチレータ素子体の長手方向側面と
光電変換素子板の長手方向側面とが同一平面上にあるこ
とにな扼)7ンチV−夕素子体の下面に接着剤を介して
光電変換素子板を接着し、次いで、シンチレータ素子体
と光電変換素子板との揃つ九長手方同側面からたとえば
ダイヤモンドカッターで長さtlの溝を多数形成し九後
、形成し丸缶溝にコリメート板を挿入し、最後に支持基
板上にこれらを配置してなる検出器が挙げられる0この
ようにして検出器を構成すると、さらに寸法精度および
加工精度の向上を図ることができる0 ま九、前記実施例および変形例におけるコリメート板な
用いるかわ)に、多分割シンチレータ素子に形成する溝
中に、光反射剤たとえば二酸化チタン(TjO)、硫酸
バリウム(BaSO4)等を充填してもよい0光反射剤
を用いて検出器を構成すると、製造がさらに簡単になり
、製造原価を低下させることができる。
For example, as shown in FIG. 4, a substantially rectangular parallelepiped scintillator element body having a flat long side and a short side t, and a photoelectric conversion element plate having a flat long side and a short side tl are prepared,
Align the - of the long side of the scintillator element body with the - of the long side of the charge conversion element plate (make sure that the longitudinal side surface of the scintillator element body and the longitudinal side surface of the photoelectric conversion element plate are on the same plane). ) Glue the photoelectric conversion element plate to the bottom surface of the 7-inch V-scintillator element body via adhesive, and then cut the scintillator element body and photoelectric conversion element plate to the same length using a diamond cutter, for example, from the same longitudinal side. One example is a detector in which a large number of tl grooves are formed, a collimating plate is inserted into the round can groove, and finally these are placed on a support substrate.If the detector is constructed in this way, Furthermore, the dimensional accuracy and processing accuracy can be improved. Constructing the detector using a zero light reflector, which may be filled with barium sulfate (BaSO4), etc., further simplifies manufacturing and reduces manufacturing costs.

〔発明の効果〕〔Effect of the invention〕

以上詳述したこの発明によると次のような効果を奏する
ことができる。すなわち、従来におけるように個々のシ
ンチレータ素子を一つ一つ並べて配置することによシ構
成した検出器に比べて、この発明においてはシンチレー
タ素子体に複数の溝を形成することによυ簡単に検出器
を構成する仁とができる。したがって、従来において生
じていたシンチレータ素子の不適正な配置という問題を
解消することができる。すなわち、多分割シンチレータ
素子における個々のシンチレータ素子の形状の精度は溝
を形成する加工精度に依存するのみであって、この発明
により極めて精度の高い検出器′に製造する仁とができ
る。しかも、溝と溝との間隔をより狭く加工することが
できるので分解能の高い検出器を製造することができる
。t′#:、、この発明によると、検出器の構成方法が
簡単であるから、検出器の製造原価を著しく低減するこ
とができる。この発明によると画質のすぐれ九断層像の
丹構成可能な放射線断層撮影装置を提供することができ
る。
According to the invention described in detail above, the following effects can be achieved. In other words, compared to conventional detectors constructed by arranging individual scintillator elements one by one, the present invention can be easily configured by forming a plurality of grooves in the scintillator element body. The components that make up the detector are formed. Therefore, the problem of improper placement of scintillator elements that has occurred in the past can be solved. That is, the accuracy of the shape of each scintillator element in a multi-division scintillator element only depends on the processing accuracy of forming the grooves, and the present invention makes it possible to manufacture a highly accurate detector. Furthermore, since the distance between the grooves can be made narrower, a detector with high resolution can be manufactured. t'#:...According to the present invention, since the method of constructing the detector is simple, the manufacturing cost of the detector can be significantly reduced. According to the present invention, it is possible to provide a radiation tomography apparatus capable of configuring nine tomographic images with excellent image quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単位検出ブロックを示す斜視図、第2図
は従来の検出器を示す概略斜視図、第6図゛ 契 はこの発明の一実施例を示す概略斜視図および第4図は
この発明の一実施例における多分割シンチレータ素子を
示す概略上面図である。
FIG. 1 is a perspective view showing a conventional unit detection block, FIG. 2 is a schematic perspective view showing a conventional detector, FIG. 6 is a schematic perspective view showing an embodiment of the present invention, and FIG. FIG. 1 is a schematic top view showing a multi-segment scintillator element in an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)  入射する放射線を螢光に変換する複数のシン
チレータ素子とシンチレータ素子よシ発光する螢光を光
電変換する光電変換素子と、を少なくとも具備する放射
線検出器において、各シンチレータ素子が放射IiO入
射範囲外で一体に結合してなることを特徴とする放射線
検出器〇
(1) In a radiation detector comprising at least a plurality of scintillator elements that convert incident radiation into fluorescent light and a photoelectric conversion element that photoelectrically converts the fluorescent light emitted by the scintillator elements, each scintillator element receives radiation IiO incident on the radiation detector. Radiation detector characterized by being integrally combined outside the range〇
(2)  シンチレータ素子が、タングステン酸カドミ
ウム、タングステン酸マグネシウム、タングステン酸亜
鉛およびゲルマニウム酸ビスマスのいずれかであること
を特徴とする特許請求の範囲第1項に記載の放射線検出
器。
(2) The radiation detector according to claim 1, wherein the scintillator element is any one of cadmium tungstate, magnesium tungstate, zinc tungstate, and bismuth germanate.
JP57006333A 1982-01-19 1982-01-19 Radiation detector Pending JPS58123488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006333A JPS58123488A (en) 1982-01-19 1982-01-19 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006333A JPS58123488A (en) 1982-01-19 1982-01-19 Radiation detector

Publications (1)

Publication Number Publication Date
JPS58123488A true JPS58123488A (en) 1983-07-22

Family

ID=11635429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006333A Pending JPS58123488A (en) 1982-01-19 1982-01-19 Radiation detector

Country Status (1)

Country Link
JP (1) JPS58123488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU685652B2 (en) * 1994-08-02 1998-01-22 Diamond Optical Technologies Limited Ionizing radiation detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334510A (en) * 1976-09-13 1978-03-31 Matsushita Electric Ind Co Ltd Running and final end indicating device of magnetic tape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334510A (en) * 1976-09-13 1978-03-31 Matsushita Electric Ind Co Ltd Running and final end indicating device of magnetic tape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU685652B2 (en) * 1994-08-02 1998-01-22 Diamond Optical Technologies Limited Ionizing radiation detector
US6072181A (en) * 1994-08-02 2000-06-06 Imperial College Of Science Ionizing radiation detector

Similar Documents

Publication Publication Date Title
US7968853B2 (en) Double decker detector for spectral CT
RU2505840C2 (en) Spectral imaging detector
EP1877832B1 (en) Detector array for spectral ct
JP2018537658A (en) Radiation detector for combined detection of low energy radiation quanta and high energy radiation quanta
JP4525123B2 (en) Radiation detector and manufacturing method thereof
US7479638B2 (en) Arrangement of a scintillator and an anti-scatter-grid
JPS6211313B2 (en)
GB2066016A (en) Radiography apparatus
JPS61110079A (en) Radiation detector
WO2009104573A1 (en) Detector array substrate and nuclear medicine diagnosis device using same
JP2002257939A (en) Two-dimensional radiation detector, method of manufacturing it, and method of correcting it
US20090022279A1 (en) Detector for nuclear medicine
US4731534A (en) X-ray detector system
JPS5988676A (en) Manufacture of multi-channel radiation detector block
US20050105691A1 (en) Segmented collimator assembly
JP2004337609A (en) Collimator assembly for computer tomography system
JPS6126632B2 (en)
JP2720159B2 (en) Multi-element radiation detector and manufacturing method thereof
JPH0425513B2 (en)
JPS58123488A (en) Radiation detector
JPH1184013A (en) Radiation detector
JP2840941B2 (en) Multi-element radiation detector and manufacturing method thereof
JP4239878B2 (en) Two-dimensional radiation detector and manufacturing method thereof
JPS58118977A (en) Detector of radiant ray
JPS58216974A (en) Preparation of radiation detector block