JPS58123416A - Device for detecting slant and deformation of floating roof - Google Patents

Device for detecting slant and deformation of floating roof

Info

Publication number
JPS58123416A
JPS58123416A JP590882A JP590882A JPS58123416A JP S58123416 A JPS58123416 A JP S58123416A JP 590882 A JP590882 A JP 590882A JP 590882 A JP590882 A JP 590882A JP S58123416 A JPS58123416 A JP S58123416A
Authority
JP
Japan
Prior art keywords
floating roof
liquid level
float
wire
gage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP590882A
Other languages
Japanese (ja)
Inventor
Kuniharu Aoki
青木 訓治
Masayasu Suzuki
正康 鈴木
Takuya Nagahisa
永久 拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIREKO KK
Toyo Kanetsu KK
Original Assignee
NIREKO KK
Toyo Kanetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIREKO KK, Toyo Kanetsu KK filed Critical NIREKO KK
Priority to JP590882A priority Critical patent/JPS58123416A/en
Publication of JPS58123416A publication Critical patent/JPS58123416A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

PURPOSE:To compute the maximum sinking position, the maximum sinking amount, and the slant and deformed state of the floating roof based on the measured value from each liquid level gage, by arranging appropriate number of the liquid level gages on the central part of the floating roof and the circumferential direction thereof, and directly measuring the liquid level position with respect to the floating roof and the slant and the deflected deformed state of the floating roof. CONSTITUTION:A pluraity of wells 5 are provided along the circumferential direction of the floating roof 3 at an appropriate angle interval and at the central part of the floating roof 3. The liquid level gage 10 is provided in each well 5. The liquid level gage 10 includes a gage head 11, a wire 12, a float 13, and a transmitting device 14. The gage head 11 has a winding up mechanism of the wire 12. The position of the float 13, which follows the liquid level in the well 5, is measured by the extending amount of the wire 12, i.e., the rotating amount of the winding piece for the wire 12. The transmitting device 14 converts the liquid level position measured by the gage head 11 into an electric or pneumatic signal, and sends it to a remote monitoring room.

Description

【発明の詳細な説明】 不発明は浮屋根式タンクにおける浮屋根の沈下、傾斜お
よび変形検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a device for detecting subsidence, inclination and deformation of a floating roof in a floating roof tank.

原油や揮発性可燃液体勢の貯蔵タンクには、貯蔵液体の
蒸発並びに空気との混合による危険雰囲気の形成を極力
抑える丸めに、貯蔵液体表面に屋根を浮かせた型式のい
わゆる浮屋根式貯蔵タンクが採用されている。この種の
貯蔵タンクは非常に大型で、浮屋根の直径が70〜80
mもしくはそれ以上にも達することから、浮屋根自体の
撓みを構造的に避は難い。
For storage tanks of crude oil and volatile flammable liquids, so-called floating roof storage tanks are used, which have a roof floating above the surface of the stored liquid, in order to minimize the formation of a dangerous atmosphere due to evaporation of the stored liquid and mixing with air. It has been adopted. This type of storage tank is very large, with a floating roof diameter of 70 to 80 mm.
m or more, it is structurally difficult to avoid deflection of the floating roof itself.

このような貯蔵タンクでは、浮m機上に積雷叫の荷重特
に4m衝東が掛ると、浮!根に撓みや全体的な傾斜を生
じて一部分が貯蔵液体内に沈下することがある。このよ
うな撓みや傾斜および沈下により貯蔵液体が浮屋根上に
湿田すると極めて危険な事態を招くので、この検出舎対
策が重要である。
In such a storage tank, if the load of a thunderbolt, especially a 4m strike, is applied to the floating machine, it will float! Roots may become deflected or generally tilted, causing portions to sink into the storage liquid. It is important to take countermeasures against the detection building, as such deflection, inclination, and subsidence can cause an extremely dangerous situation if the stored liquid becomes wet on the floating roof.

従来はこの検出のために次のような方法が採用されてい
た。
Conventionally, the following method has been adopted for this detection.

(1)WM視員が巡回点検に際して浮屋根上の積雪状況
婢を目視確認する。
(1) WM inspectors visually check the snow accumulation on the floating roof during patrol inspections.

(21浮屋根上に液面検出スイッチ等の検出手段を適当
に設置、貯蔵液体の湿田を検出する。
(21) Appropriately install detection means such as a liquid level detection switch on the floating roof to detect wet fields of stored liquid.

L3J第1図に示す如くフロート式液曲針等に一般に使
用されている型式のゲージヘッド1をタンクIII壁2
の上部もしくは下部(点線で示す)に設け、#屋根3と
連結せるワイヤー4の−出し量をもとに仔1!413の
尚さ位tt円鵬方向の適当な複数位置にて恢出し、別途
設けた貯蔵液体゛の液面針により計測した液面レベルと
の比較によって沈下を検出する。
As shown in Figure 1 of L3J, a gauge head 1 of a type commonly used for float type liquid bending needles etc. is attached to the tank III wall 2.
It is provided at the upper or lower part (shown by the dotted line) of the roof 3, and based on the amount of protrusion of the wire 4 to be connected to the roof 3, it is cut out at multiple appropriate positions in the direction of the 413 tt circle. Subsidence is detected by comparison with the liquid level measured by a separately provided liquid level needle of the stored liquid.

(4)第2図に示す如く浮屋根3にその円周方向の適当
な複数位置にウェル5を設置、該ウェル5に静電容量式
液面検知グローブ6を有するいわゆる靜電谷量式液面計
7を備え、浮屋根3に対する液面レベルを直接に検出し
て沈下を検知する。
(4) As shown in FIG. 2, wells 5 are installed on the floating roof 3 at a plurality of suitable positions in the circumferential direction thereof, and the wells 5 have capacitance type liquid level detection globes 6, so-called static valley level liquid level. 7 in total, and directly detects the liquid level with respect to the floating roof 3 to detect subsidence.

しかし、(1)の方法は湿田の未然防止ができる点で有
利であるが、積雪、風雪の強い時は危険を伴い、除雪し
てタンク頂上へ登ることが実際上不可能となる場合が多
い欠点がある。
However, although method (1) is advantageous in that it can prevent wet rice fields from occurring, it is dangerous when there is heavy snowfall or strong winds, and it is often practically impossible to remove snow and climb to the top of the tank. There are drawbacks.

(2)の方法では湿田の有無が検知されるだけであ1゜ シ、最大沈下位置およびその沈下量4!を正確に推測で
きない欠点がある。
With method (2), only the presence or absence of a wet field is detected by 1 degree, and the maximum subsidence position and amount of subsidence are 4! The disadvantage is that it cannot be estimated accurately.

(3)の方法はゲージヘッドlを多数備えることで最大
沈下位置およびその沈下童尋をも遠隔にて検出できるが
、検出装置の構造が非常に大船シとなってコスト上昇を
もたらし、また別途液面針を備えねば沈Vt−検知する
ことができない。またワイヤー4に富等が氷結し、ゲー
ジヘッド、lによるワイヤー4の巻取りに支障を生じた
り、ワイヤー4が曲った状態のままで測定されて娯差が
大きくなる等の欠点がめる。
Method (3) is equipped with a large number of gauge heads and can remotely detect the maximum sinking position and its sinking dojin, but the structure of the detection device is very large and increases the cost. Unless a liquid level needle is provided, sinking Vt cannot be detected. In addition, there are disadvantages such as the accumulation of ice on the wire 4, which causes trouble in winding the wire 4 by the gauge head 1, and the fact that the wire 4 is measured in a bent state, resulting in a large error.

(4)の方法は可動部分がなく、測定スパ/や精度の点
で有利とされるが、貯蔵液体によっては(例えば原油)
グローブ6に付着して固まシを形成し、これが為に測定
#IIKが極端に悪化する欠点がある。
Method (4) has no moving parts and is said to be advantageous in terms of measurement spa/accuracy, but depending on the storage liquid (for example, crude oil)
It adheres to the glove 6 and forms a hardened stain, which has the disadvantage that the measurement #IIK is extremely deteriorated.

本発明tまこのような塊状に鑑み、簡単な構造であらゆ
る一類の貯蔵液体に適用でき、遠隔位置にて直接に最大
沈下位置、沈下量および浮屋根の傾斜状態のみならず浮
屋根の撓み、変形状態を把握でき、最大沈下位置、沈下
量、#ifRおよび撓み変形状態を各易且つ正確に推測
できる傾斜、製形検出装置を提供することを目的とする
The present invention has a simple structure and can be applied to all kinds of stored liquids in view of the block shape, and can directly measure not only the maximum sinking position, sinking amount, and slope state of the floating roof, but also the deflection of the floating roof, It is an object of the present invention to provide an inclination/forming detection device that can grasp the deformation state and easily and accurately estimate the maximum sinking position, sinking amount, #ifR, and bending deformation state.

このために不発明は、浮m根上に70−J−%しくはデ
ィスプレーサ式の液面計を円周方向に適当数配置して設
けるとともに浮屋根の中央部にも設けて浮屋根に対する
液面位置および浮屋根の頃斜、撓み変形状態を直接に計
測で龜るようKなし、計測値を電気信号もしくは空気信
号に変換して遠隔場所の監視室へ伝送させ、各々の液面
計からの計測値をもとに最大沈下位置、最大沈下量およ
び浮屋根の傾斜、変形状態を算出可能としたことを%像
とする。
For this reason, the invention is to provide an appropriate number of 70-J-% or displacer-type liquid level gauges arranged circumferentially on the floating roof, and also to install them in the center of the floating roof so that the liquid level relative to the floating roof is measured. In order to directly measure the position, slope and deflection deformation of the floating roof, the measured values are converted into electrical or air signals and transmitted to a monitoring room at a remote location. The percentage image indicates that the maximum settlement position, maximum settlement amount, slope of the floating roof, and deformation state can be calculated based on the measured values.

以下に本発明の実施例につき第3図および第4図を参照
して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4.

@3図において、符号2.3および5鉱第1図および第
2図と同様にそれぞれタンク側壁、浮屋根およびウェル
を示す。このウェル5は浮屋根3の円周方向に沿って適
当な角度間隔にて複数備えられるとともに浮屋根3の中
央部にも備えられ、各々のウェル5に全体を符号10で
示す液面針が備えられる。
In Figure @3, symbols 2.3 and 5 indicate the tank side wall, floating roof, and well, respectively, as in Figures 1 and 2. A plurality of wells 5 are provided at appropriate angular intervals along the circumferential direction of the floating roof 3, and are also provided in the center of the floating roof 3, and each well 5 has a liquid level needle generally designated by the reference numeral 10. Be prepared.

液面針10はゲージヘッド11.ワイヤー12、フロー
ト13、および伝送器14を含む。ゲージヘッド11は
ワイヤー12t)巻上機構を有し、ウェル5内で液ji
liK追従するフロー)13の位置をワイヤー12の繰
出し量すなわちワイヤー12の巻取の回転型で計#jす
るようになっている。伝送a14#′iゲージヘッド1
1で計測し次ii画位置を電気的もしくは空気的な信号
に変換して遠隔場所の監視室へ伝送するものて、電気的
の場合は本質安全防爆構造とされることが好ましい。こ
とで空気的とは、例えば複数本の空気通路を設け、何れ
かの空気通路の鐘断およびその組合せで予め定めえコー
ドに応じ良導通状態を形威し、この導通状態を遠隔地に
て空気圧変化等をもとに検出するようになす方法を含む
。このようなゲージヘッド11、伝送器14は周知技術
によ〉容易に構成できるので詳述しない。
The liquid level needle 10 is connected to the gauge head 11. It includes a wire 12, a float 13, and a transmitter 14. The gauge head 11 has a wire 12t) winding mechanism, and the liquid ji is
The position of the flow (following liK) 13 is determined by the amount of feed of the wire 12, that is, the rotation type of winding of the wire 12. Transmission a14#'i gauge head 1
If the device is electrical, it is preferable that it has an intrinsically safe explosion-proof structure. In other words, pneumatic means, for example, that a plurality of air passages are provided, one of the air passages is turned off, and a combination of the two is used to create a good conduction state according to a predetermined code, and this conduction state can be transmitted at a remote location. This includes a method of detecting based on changes in air pressure, etc. Such a gauge head 11 and transmitter 14 can be easily constructed using well-known techniques, and therefore will not be described in detail.

以上の如き沈下検出装置によれd11内計10は浮屋根
3上にて液面を計測するので、浮腫4I3に対する液面
位置を直接検出できる。従って第3111 図に示す状態の時O適正なワイヤー繰出し量を例えば「
0」とすると、沈下を生Cえ場合はワイヤー繰出し量が
「−」側に滅じ、逆に持上りを生じ九場合社「+」稠に
増える。この滅増量が直!IK浮腫根3のそれぞれ沈下
量および持上)量を直接に指示することKなる。
With the above-described subsidence detection device, the d11 internal meter 10 measures the liquid level on the floating roof 3, so the position of the liquid level relative to the edema 4I3 can be directly detected. Therefore, in the state shown in FIG.
If it is set to 0, the wire payout amount decreases to the ``-'' side in the case of subsidence, and increases to the ``+'' side in the 9 cases. This decrease in quantity is fixed! It is possible to directly instruct the amount of sinking and lifting of the IK edema root 3.

このようにしてゲージヘッド11が針掬し良値は伝送器
により電気的もしくは空気的な信号に変侠されて監視室
に送られる。従って監視室においては一時に各沈下検出
装置からの信号をもとに各部の沈下量を!L接に検出で
きる。
In this way, the gauge head 11 picks up the needle, and the good value is converted into an electrical or pneumatic signal by the transmitter and sent to the monitoring room. Therefore, in the monitoring room, the amount of subsidence in each part is measured at the same time based on the signals from each subsidence detection device! Can be detected as an L contact.

ココで、ウェル5の位置が予め判っておシ複数協の検出
装置が備えられて6位置での沈下量もしくは持上)貢が
計測できるので、この計測値を用いて円周方向倒れの位
置が最を沈下を生じているかおよびその沈下量はどの程
度か、を死中央部の沈下量または浮上り量と円周方向の
位置の沈下量または浮上シ量との比較によって浮屋根3
が何れの方向に傾斜しているか、まえは浮jl職3が上
方又は下方に凸状に撓み変形を生じているか、を容易に
算出することが可能となる。従ってこの結果をもとに処
置をよ多適正に且つ迅速に行えるようkなる。この丸め
に特に図示していないが、沈下が生じ九時に単にその警
報を発するだけてなく、各位置の沈下量をもとに浮!!
3の状態をディスプレー装置等で表示させ、実際の状態
を視覚的に把握できるようにするのが有利である。ま九
沈下防止処置において、最大沈下位置につき行うのが有
利となる。また薄い浮!根が部分的に傾斜した如、中央
部が沈下または浮上ったシして変形した場合に適切な対
策を迅速に採ることができるのである。
Here, since the position of well 5 is known in advance and multiple detection devices are installed, the amount of subsidence or uplift at position 6 can be measured, so using this measurement value, the position of collapse in the circumferential direction is Floating roof 3
It becomes possible to easily calculate in which direction the is inclined and whether the previously floating jl position 3 is bent upward or downward in a convex shape. Therefore, based on this result, treatment can be performed more appropriately and quickly. Although it is not particularly shown in this round, the alarm is not only issued at 9 o'clock when subsidence occurs, but also floats based on the amount of subsidence at each position! !
It is advantageous to display the state of No. 3 on a display device or the like so that the actual state can be visually grasped. When performing subsidence prevention measures, it is advantageous to carry out the measures at the maximum subsidence position. Another thin float! Appropriate measures can be taken quickly if the roots are deformed, such as by partially tilting, or by sinking or floating in the center.

第4図は他の実施例を示し、これはフロート20をリン
ク部材21.22により吊持し、液面に追従するフロー
) 20によってリンク部材22が支点Pを中心に枢動
するようKなし、この枢動量θをもとに浮屋根に対する
液面位置を計測するようになしたものである またフロ
ート20に代えてディスプレーサを使用し、ディスプレ
ーサの喫水貧化にもとづく浮力変化を検出することも可
能である。さらに、フロート20をリンク部材21に代
わる固定スクリューに螺装さ\、フロート20の昇降に
綜して回転させてその回転角を測定することで相対的位
置を計測するようにもなし得る。
FIG. 4 shows another embodiment, in which a float 20 is suspended by link members 21 and 22, and the link member 22 is pivoted about the fulcrum P by the flow following the liquid level. The liquid level position relative to the floating roof is measured based on this pivot amount θ.Also, a displacer can be used in place of the float 20 to detect changes in buoyancy due to a decrease in the draft of the displacer. It is possible. Furthermore, the float 20 may be screwed onto a fixed screw in place of the link member 21, and the relative position may be measured by rotating the float 20 along with the rise and fall of the float 20 and measuring the rotation angle.

上述のウェルおよびフロート又はディスプレーサを使用
して浮屋根の沈下、傾斜および撓み変形状態を一1定算
出する例を以下に示す。
An example of constant calculation of the settlement, inclination, and deflection deformation state of a floating roof using the above-mentioned well and float or displacer will be shown below.

第5図および第6図において半径r6の浮屋根の半径r
の円周上にn≧3としてn個のウェルを等間隔に設けて
Wl、W=−・・・・Wl 、 W4+、 、 wi+
、・・・Wnとするとともに中心部にウェルW・を設け
る。
5 and 6, the radius r of the floating roof with radius r6
n wells are provided at equal intervals on the circumference of Wl, W=-...Wl, W4+, , wi+ with n≧3.
, . . . Wn and a well W. is provided in the center.

この場合静電容量式でなくウェルおよびフロートを設け
て浮屋根に対するフロートの相対的移動を測定する方が
、タンク内の原油が検出部に固着して娯差を生ずるのを
防止できて有利である。
In this case, it is more advantageous to install a well and a float instead of using a capacitance method and measure the relative movement of the float to the floating roof because it can prevent the crude oil in the tank from sticking to the detection part and causing errors. be.

Wl−Wnを用いて浮!1ilD最大傾斜角”m&Xま
たは最大沈下(又は浮上多)量241xを求めるには、
r6 tan a +Z* = Z max     
  (’)但し、zoは浮W&根の中心部の沈下(又は
浮上シ)量。       ・:・ いま半径rの同心円上の成る位置ムの沈下量2と、第5
図における最大沈下点−a工を!軸としした平面座41
j x * yとの関係社x=r co8(1−ψ) y= r aln(#−ψ) Z== x tan a +7.6         
(2)、’、 Z= r t、an a * coo 
(#−ψ) + Zl    (3)i3N4接する2
つのウェルのなす中心角βは360’ 一二□ 谷ウェルの沈下量をZi * Z1+1. Z1+zと
して、Wi+1  を円筒座標の基準とすると、Wo・
・・・・・・・・・・・・・・ (r、−〇)Wi+1
 ・・・・・・・・・・・ (r、II)W1+意・・
・・・・・・・・・・ (r、+θ)式(3)よシ Zl = r tanα・cog(−β−ψ)+Z。
Float using Wl-Wn! To find the 1ilD maximum inclination angle "m&X" or the maximum sinkage (or uplift) amount 241x,
r6 tan a +Z* = Z max
(') However, zo is the amount of sinking (or floating) of the center of the floating W & root.・:・ The amount of subsidence 2 of the position M on the concentric circle of radius r, and the fifth
The maximum settlement point in the figure - a construction! Plane seat 41 as axis
j x * Affiliated company with y
(2),', Z= r t, an a * coo
(#-ψ) + Zl (3) i3N4 touching 2
The central angle β of the two wells is 360' 12□ The amount of subsidence of the valley well is Zi * Z1 + 1. As Z1+z and Wi+1 as the standard of cylindrical coordinates, Wo・
・・・・・・・・・・・・・・・ (r, -〇)Wi+1
・・・・・・・・・・・・ (r, II) W1+ meaning・・
...... (r, +θ) According to equation (3), Zl = r tanα・cog(−β−ψ)+Z.

、’、 Zi = r tan a(cosβcosψ
−5in II sinψ)+Zo (4)Z1+1=
rtanacos(#−p)+Ze、”、Zl4−t=
=rtanacoap+Zo        (5)Z
144=rtan a cos(β−?>+Z。
,', Zi = r tan a(cosβcosψ
-5in II sinψ)+Zo (4)Z1+1=
rtanacos(#-p)+Ze,", Zl4-t=
=rtanacoap+Zo (5)Z
144=rtan a cos(β-?>+Z.

、’、 Zl−1−2= r tan σ(co!1β
co@y+@1n7I@inψ) 十Z@ (6)式(
6)一式(4) 式(6)十式(4) 式(8)一式(5) 1−COθβ 式(5)に式(9)を代入すれば 2Zx+x−Z1+2− Zt 八r tan a c osψ=          
   002(1−cooβ) (式(7) )!+(式1.[I)2 住υ を 式(1)、式(9)および式Uυよ如 ’lr    ainβ       1− cosβ
=3としてβ=120°の場合 3 2  2□: r  3    3     3  r Z 1 +Z r+Z l 十−(13 n=4としてβ;90°の場合 sinβ=1  、  cooβ;0 r Zi−H+21 +−Tri4 i=t、2.a、4について4通シのZffla Xを
求めてその内の最大のものに基づいて例えば警報を出す
ようにする。
,', Zl-1-2= r tan σ(co!1β
co@y+@1n7I@inψ) 10Z@Equation (6) (
6) Set (4) Equation (6) Equation 10 (4) Equation (8) Set (5) 1-COθβ Substituting equation (9) into equation (5), 2Zx+x-Z1+2- Zt 8r tan a c osψ =
002(1-cooβ) (Formula (7))! + (Equation 1. [I) 2 υ as shown in Equation (1), Equation (9) and Equation Uυ'lr ainβ 1- cosβ
=3 and β=120° 3 2 2□: r 3 3 3 r Z 1 +Z r+Z l 10-(13 n=4 and β; for 90° sin β=1, coo β; 0 r Zi-H+21 + -Tri4 For i=t, 2.a, 4, find four sets of Zffla

n = 5としてβ=60’の場合 2 r  3 Z1+意+ZI   Zips + 2 (−−−’) 2     2 re I                   L=
 @+21+g Zt )”+(2Z1−H41Z1+
t )”) ”3 +(Zt+z+Zi Zips) r 3Zt+xZi+t)”+(Zi+g+Zi Zips
)中央のW@2よびW1〜%を用いて浮屋根の中央の沈
下iiをも含めて測定した場合も同様にして、ro t
an tl+Zo =Zmax         (1
5x=rcos(#−ψ) y=rsin(θ−ψ) z=ztanα十zo              四
Z= r tan a @ C08(#−ψ)+Z  
     (1?)Z1=r tanαcoa(−β−
ψ)+ZZ1=r tan α(cosβcamp→s
inβsinψ)+Z@       01z1+1=
r tan cos(#−デ)+Z*Z14−1=r 
tan coo ? +Ze            
   C17,14g=r tan a cos(β−
P)+Z@Z1−H=r tan a (c os 1
IIcosp−)−sinJ sinψ)+Zo   
  cllj式aうよシ Zi−HZg C08ψ=                    
シυtang ’、II。
When n = 5 and β = 60', 2 r 3 Z1 + meaning + ZI Zips + 2 (----') 2 2 re I L =
@+21+g Zt )”+(2Z1-H41Z1+
t )”) “3 + (Zt+z+Zi Zips) r 3Zt+xZi+t)”+(Zi+g+Zi Zips
) Similarly, when measuring including the center settlement ii of the floating roof using the center W@2 and W1~%, rot
an tl+Zo =Zmax (1
5x=rcos(#-ψ) y=rsin(θ-ψ) z=ztanα×zo 4Z= r tan a @ C08(#-ψ)+Z
(1?) Z1=r tanαcoa(-β-
ψ)+ZZ1=r tan α(cosβcamp→s
inβsinψ)+Z@01z1+1=
r tan cos(#-de)+Z*Z14-1=r
Tan coo? +Ze
C17,14g=r tan a cos(β-
P)+Z@Z1-H=r tan a (cos 1
IIcosp-)-sinJ sinψ)+Zo
cllj expression a Uyoshi Zi-HZg C08ψ=
しυtang', II.

式シ〃、@を式(至)K代入し、 (Zt十r’26)=cosβ(Zips−’Ze)+
5in(r”taq”e−(Z1+x  &)”)”g
inβ 一2coa#(Zips−2oXZt+*−Zg)) 
 G1式tI場と式(至)とから g zm、、:=’z、十−((zi+1−z・)”+(Z
t+!−2・)2r 5inp           
  1−2cosji(Zips Zg XZi+t4
o))雪 (至)相隣るz1+、とzi+gをZtとz
2として表示するとn =  3 )の場合 β=120゜ 1’3       1 sinβ=−c o−β=−− 2 rO Zrmxfaa+    (Z I Zo)”+(Zg
−2*)”6・r             1 +(zlづ・)(Zt−Z・))意 (至)tan a
=−[(Zl−Ze ) ”+(Zg Ze )”n 
; 4 )の場合 5in71eal  cos陶β=90@ Zmax=zo+   ((Zl−Z・)”+(Zr−
Z・)”)i         @rO Zmax4 *+−((Z 1−Zl ) ”+(Z 
意−Zg ) ”i′3榔r            
  1(Zrf・)(Zr−Z・月! 勿 2r・ −(zl−JZ、e)(zrりe)>意(28’)なお
浮mIl自体の凹形又は凸形の変形状態は為に対して直
径方向に対するZI  ZHの内の1対又はその近辺の
もの21およびzlが直線的であるか否かを検討すれば
よく Zi −Z・〉2・−21ならば凹形 zi−z・=2・−Ztならば変形なしまたはzi −
z・(Zo  Zlならば凸形であることが検出される
Substitute the expressions 〃 and @ into the expression (to) K, (Zt + r'26) = cos β (Zips - 'Ze) +
5in(r"taq"e-(Z1+x &)")"g
inβ-2coa# (Zips-2oXZt+*-Zg))
From the G1 formula tI field and the formula (to), g zm, , :='z, 10-((zi+1-z・)"+(Z
T+! -2・)2r 5inp
1-2cosji(Zips Zg XZi+t4
o)) Snow (To) The adjacent z1+, and zi+g are Zt and z
If expressed as 2, n = 3) then β = 120°1'3 1 sin β = -c o - β = - - 2 rO Zrmxfaa+ (Z I Zo)" + (Zg
-2*)"6・r 1 + (zlzu・) (Zt-Z・)) い (to) tan a
=-[(Zl-Ze) ”+(Zg Ze)”n
; 4) case 5in71eal cos β=90@Zmax=zo+ ((Zl-Z・)"+(Zr-
Z・)")i @rO Zmax4 *+-((Z 1-Zl) "+(Z
meaning-Zg) ”i′3榔r
1(Zrf・)(Zr−Z・月! 2r・−(zl−JZ, e)(zrrie)>I(28') Furthermore, the concave or convex deformation state of the floating mIl itself is due to On the other hand, it is only necessary to consider whether one pair of ZI ZH in the diametrical direction or the pair 21 and zl in the vicinity are linear or not. If =2・−Zt, no deformation or zi −
If z·(Zo Zl, a convex shape is detected.

以上の如き本発明の傾斜、変形検出装置Kよれば、次の
ような効果を得られる。・。
According to the inclination and deformation detection device K of the present invention as described above, the following effects can be obtained.・.

(υ洋綴機上に検出装置を設置することで測定するf面
変化が小さな範囲とな)、検出装置を小型化でき安価に
できる。
(By installing the detection device on the υ binding machine, the f-plane change to be measured can be measured in a small range), and the detection device can be made smaller and cheaper.

(2)浮m根に多少の改修會加えることて既存タンクに
容易に適用できる。
(2) It can be easily applied to existing tanks by making some modifications to the floating roots.

(3)数十基ものタンクO監視が容易に行える。(3) Easily monitor dozens of tanks.

(4)浮屋根の中央部および円周方向に複数設置するこ
とで任意位置の沈下量O1浮屋根の傾斜、変形撓み量等
の算出が可能とな)、沈下防止処置を望ましい位置に対
して行えるようになる。従って処置を迅速且つ簡単で的
確になし得る。
(4) By installing multiple units in the center and circumferential direction of the floating roof, it is possible to calculate the amount of settlement O1 of the floating roof, the amount of deformation, etc. at any position), and apply settlement prevention measures to the desired location. Be able to do it. Therefore, treatment can be performed quickly, easily, and accurately.

(5)検出装置がフロート式で島ゐので液体の付着、固
着の問題がない。
(5) Since the detection device is a float type, there are no problems with liquid adhesion or sticking.

【図面の簡単な説明】[Brief explanation of drawings]

、l:。 11111i1および第2図紘従来O沈下検出装置の概
略図。 第3図は本発明による浮amの傾斜、変形検出装置の一
実施例の概略図。 第4図は本発明の他の実施例の概略図。 @S図および第6図は測定値計算方法を示す医員。 2・・・・・・−・・・・・・タンクlllll13・
・・・・・・・・・・・・・・浮ms5・・・・・・・
・・・・・・−・ウェル10・・・・・・・・・・−・
・・検出装置11・・・・・・・・・・・・・・・ゲー
ジヘッド12・・・・・・・・・・−・・・ワイヤー1
3−・・・・・・・・・・・・・フロートi4・・・・
・・・・・−・・・・伝送器20・・・・・・−・・・
・・・・フロート21.22・・・・・・リンタ部材
,l:. 11111i1 and Figure 2. Schematic diagram of the conventional O subsidence detection device. FIG. 3 is a schematic diagram of an embodiment of a device for detecting inclination and deformation of a floating am according to the present invention. FIG. 4 is a schematic diagram of another embodiment of the invention. @S Figure and Figure 6 are medical personnel showing the method of calculating measured values. 2・・・・・・-・・・・・・tanklllll13・
・・・・・・・・・・・・・・・Floating ms5・・・・・・
・・・・・・−・Well 10・・・・・・・・・・−・
・・Detection device 11・・・・・・・・・・・・・Gauge head 12・・・・・・・・・・・・・Wire 1
3-・・・・・・・・・・・・Float i4・・・・
......-... Transmitter 20...
...Float 21.22 ...Linter member

Claims (1)

【特許請求の範囲】[Claims] 浮屋根式タンクにおける浮屋根の沈下、部分的傾斜、全
体の傾斜及び撓み涙形を検出する装置であって、浮屋根
の円周方向に複数のフロートウェルを設けるとともに浮
屋根の中央に70−トクエルt−設け、該ウェルにそれ
ぞれフロートもしくはディスプレーサを有する液面検出
装置を組付けて浮屋根に対する液面位置をそれぞれの位
置にて計測し、該計#I甑を伝送器によシ監視室または
監視盤へ伝送して浮屋根の最大沈F位瀘および沈下量な
らびに部分的lたは全体の傾斜および撓み変形を算出し
て監視j」能に構成したことt−特徴とする浮屋根の傾
斜、変形検出装置。
This is a device for detecting subsidence, partial inclination, total inclination, and deflection teardrop shape of a floating roof in a floating roof type tank, in which a plurality of float wells are provided in the circumferential direction of the floating roof, and a 70 - A liquid level detection device having a float or a displacer is installed in each well to measure the liquid level position relative to the floating roof at each position, and the meter #I is sent to the monitoring room using a transmitter. Or transmit it to the monitoring panel to calculate the maximum settlement and settlement amount of the floating roof, as well as the partial or total inclination and deflection deformation, and monitor it. Tilt and deformation detection device.
JP590882A 1982-01-20 1982-01-20 Device for detecting slant and deformation of floating roof Pending JPS58123416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP590882A JPS58123416A (en) 1982-01-20 1982-01-20 Device for detecting slant and deformation of floating roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP590882A JPS58123416A (en) 1982-01-20 1982-01-20 Device for detecting slant and deformation of floating roof

Publications (1)

Publication Number Publication Date
JPS58123416A true JPS58123416A (en) 1983-07-22

Family

ID=11623992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP590882A Pending JPS58123416A (en) 1982-01-20 1982-01-20 Device for detecting slant and deformation of floating roof

Country Status (1)

Country Link
JP (1) JPS58123416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439516A (en) * 1987-08-06 1989-02-09 Tokyo Keiki Kk Inclination detection system for pile member
JPH0237315U (en) * 1988-09-02 1990-03-12
JP5534278B1 (en) * 2013-11-11 2014-06-25 Jfeエンジニアリング株式会社 Tilt monitoring system and method for liquid storage tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439516A (en) * 1987-08-06 1989-02-09 Tokyo Keiki Kk Inclination detection system for pile member
JPH0237315U (en) * 1988-09-02 1990-03-12
JP5534278B1 (en) * 2013-11-11 2014-06-25 Jfeエンジニアリング株式会社 Tilt monitoring system and method for liquid storage tank

Similar Documents

Publication Publication Date Title
US11846537B2 (en) Non-linear ultrasound method and apparatus for quantitative detection of materials
US10627282B2 (en) Monitoring system for floating roof storage tank
US4472883A (en) Structural movement measuring device
US20080074679A1 (en) Method, apparatus, and system for non-contact manual measurement of a wheel profile
US20230219746A1 (en) Storage tank monitoring apparatus and methods
JP4523904B2 (en) Water level measuring device and water level measuring system using this water level measuring device
US8776596B2 (en) Apparatus for the monitoring of floating roof position for storage tank roofs
US6311547B1 (en) Sensor for detecting leaks in a liquid hydrocarbon dispenser
JPS58123416A (en) Device for detecting slant and deformation of floating roof
CN101660898A (en) Fiber grating pavement strain transducer
CN111456659A (en) Monitoring method for monitoring overflow leakage in drilling process
CN112262299A (en) Method and system for detecting a fault condition in a measurement of a level of a medium in a tank
US5045691A (en) Opto-electronic system for measuring and displaying rotary movement
CN206930276U (en) A kind of range unit
JPS5847219A (en) Storage measuring device of silo for storing powder and particle
JPH0314713B2 (en)
CN204101134U (en) Pendulum-type of inclining floating ball lever meter
RU2344381C1 (en) Device for measuring amount of fuel in vehicle tank
CN207179183U (en) A kind of liquid level automatic detection alarm device of liquid gas storage tank
CN112683368B (en) Transformer oil level measuring device
CN216449003U (en) Float and laser water level gauge
US5432752A (en) System for acoustically measuring the length of a pipe
CN214333948U (en) Novel ultrasonic liquid level meter
CN208887741U (en) Guided wave radar measuring device with cable pipe supporting mechanism for location
KR200293471Y1 (en) Propeller type current meter