JPH0314713B2 - - Google Patents
Info
- Publication number
- JPH0314713B2 JPH0314713B2 JP56037144A JP3714481A JPH0314713B2 JP H0314713 B2 JPH0314713 B2 JP H0314713B2 JP 56037144 A JP56037144 A JP 56037144A JP 3714481 A JP3714481 A JP 3714481A JP H0314713 B2 JPH0314713 B2 JP H0314713B2
- Authority
- JP
- Japan
- Prior art keywords
- floating roof
- subsidence
- liquid level
- amount
- float
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 18
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 description 8
- 239000010779 crude oil Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/40—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using bands or wires as transmission elements
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Level Indicators Using A Float (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】
本発明は浮屋根式タンクにおける浮屋根の沈下
検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting subsidence of a floating roof in a floating roof tank.
原油や揮発性可燃液体等の貯蔵タンクには、貯
蔵液体の蒸発並びに空気との混合による危険雰囲
気の形成を極力抑えるために、貯蔵液体表面に屋
根を浮かせた型式のいわゆる浮屋根式貯蔵タンク
が採用されている。この種の貯蔵タンクは非常に
大型で、浮屋根の直径が70〜80mもしくはそれ以
上にも達することから、浮屋根自体の撓みを構造
的に避け難い。 For storage tanks such as crude oil and volatile flammable liquids, so-called floating roof storage tanks with roofs floating above the surface of the stored liquid are used to minimize the formation of dangerous atmospheres due to evaporation of the stored liquid and mixing with air. It has been adopted. This type of storage tank is very large, with a floating roof diameter of 70 to 80 meters or more, making it structurally difficult to avoid deflection of the floating roof itself.
このような貯蔵タンクでは、浮屋根上に積雪等
の荷重特に偏荷重が掛ると、浮屋根に撓みや全体
的な傾斜を生じて一部分が貯蔵液体内に沈下する
ことがある。このような沈下により貯蔵液体が浮
屋根上に滲出すると極めて危険な事態を招くの
で、この検出・対策が重要である。 In such a storage tank, when a load such as snow accumulation, particularly an uneven load, is applied to the floating roof, the floating roof may flex or tilt as a whole, causing a portion to sink into the stored liquid. If the stored liquid leaks onto the floating roof due to such subsidence, it will lead to an extremely dangerous situation, so detection and countermeasures are important.
従来はこの検出のために次のような方法が採用
されていた。 Conventionally, the following method has been adopted for this detection.
(1) 監視員が巡回点検に際して浮屋根上の積雪状
況等を目視確認する。(1) During patrol inspections, lifeguards will visually check snow conditions on the floating roof.
(2) 浮屋根上に液面検出スイツチ等の検出手段を
適当に設け、貯蔵液体の溢出を検出する。(2) Appropriately install detection means such as a liquid level detection switch on the floating roof to detect overflow of stored liquid.
(3) 第1図に示す如くフロート式液面計等に一般
に使用されている型式のゲージヘツド1をタン
ク側壁2の上部もしくは下部(点線で示す)に
設け、浮屋根3と連結せるワイヤー4の繰出し
量をもとに浮屋根3の高さ位置を円周方向の適
当な複数位置にて検出し、別途設けた貯蔵液体
の液面計により計測した液面レベルとの比較に
よつて沈下を検出する。(3) As shown in Figure 1, a gauge head 1 of the type generally used for float-type liquid level gauges, etc. is installed at the top or bottom (indicated by dotted lines) of the tank side wall 2, and a wire 4 connected to the floating roof 3 is installed. The height position of the floating roof 3 is detected at multiple appropriate positions in the circumferential direction based on the amount of feeding, and the sinking is determined by comparing it with the liquid level measured by a separately installed liquid level gauge. To detect.
(4) 第2図に示す如く浮屋根3にその円周方向の
適当な複数位置にウエル5を設け、該ウエル5
に静電容量式液面検知プローブ6を有するいわ
ゆる静電容量式液面計7を備え、浮屋根3に対
する液面レベルを直接に検出して沈下を検知す
る。(4) As shown in FIG.
A so-called capacitive liquid level gauge 7 having a capacitive liquid level detection probe 6 is provided to directly detect the liquid level with respect to the floating roof 3 and detect subsidence.
しかし、(1)の方法は溢出の未然防止ができる点
で有利であるが、積雪、風雪の強いい時は危険を
伴い、除雪してタンク頂上へ登ることが実際上不
可能となる場合が多い欠点がある。 However, although method (1) is advantageous in that it can prevent overflow, it can be dangerous when there is heavy snowfall or strong winds, and it may be practically impossible to remove snow and climb to the top of the tank. There are many drawbacks.
(2)の方法では溢出の有無が検知されるだけであ
り、最大沈下位置およびその沈下量等を正確に推
測できない欠点がある。 Method (2) only detects the presence or absence of overflow, and has the disadvantage that the maximum subsidence position and the amount of subsidence cannot be accurately estimated.
(3)の方法はゲージヘツド1を多数備えることで
最大沈下位置およびその沈下量等をも遠隔にて検
出できるが、検出装置の構造が非常に水掛りとな
つてコスト上昇をもたらし、また別途液面計を備
えねば沈下を検知することができない。またワイ
ヤー4に雪等が氷結し、ゲージヘツド1によるワ
イヤー4の巻き取りに支障を生じたり、ワイヤー
4が曲つた状態のままで測定されて誤差が大きく
なる等の欠点がある。 In method (3), the maximum sinking position and the amount of sinking can be detected remotely by providing a large number of gauge heads 1, but the structure of the detection device is very complicated, leading to increased costs, and a separate Subsidence cannot be detected unless a surface gauge is provided. Furthermore, snow or the like may freeze on the wire 4, causing trouble in winding the wire 4 by the gauge head 1, and the wire 4 may be measured in a bent state, resulting in a large error.
(4)の方法は可動部分がなく、測定スパンや精度
の点で有利とされるが、貯蔵液体によつては(例
えば原油)プローブ6に付着して固まりを形成
し、これが為に測定精度が極端に悪化する欠点が
ある。 Method (4) has no moving parts and is said to be advantageous in terms of measurement span and accuracy; however, some stored liquids (such as crude oil) may adhere to the probe 6 and form a lump, which may affect the measurement accuracy. It has the disadvantage that it gets extremely worse.
本発明はこのような現状に鑑み、簡単な構造で
あらゆる種類の貯蔵液体に適用でき、遠隔位置に
て直接に沈下状況を把握でき、最大沈下位置およ
び沈下量を容易且つ正確に推測できる沈下検出装
置を提供することを目的とする。 In view of the current situation, the present invention has a simple structure that can be applied to all kinds of stored liquids, allows the situation of subsidence to be directly grasped from a remote location, and allows for easy and accurate estimation of the maximum subsidence position and amount of subsidence. The purpose is to provide equipment.
このために本発明は、浮屋根上にフロートもし
くはデイスプレーサ式の液面計を円周方向に適当
に配置して設けて浮屋根に対する液面位置を直接
に計測できるようになし、計測値を電気信号もし
くは空気信号に変換して遠隔場所の監視室へ伝送
させ、各々の液面計からの計測値をもとに最大沈
下位置および最大沈下量を算出可能ととしたこと
を特徴とする。 To this end, the present invention provides float or displacer type liquid level gauges arranged appropriately in the circumferential direction on the floating roof so that the liquid level position relative to the floating roof can be directly measured. is converted into an electrical signal or a pneumatic signal and transmitted to a monitoring room at a remote location, making it possible to calculate the maximum sinking position and maximum sinking amount based on the measured values from each liquid level gauge. .
以下に本発明の実施例につき第3図および第4
図を参照して説明する。 Embodiments of the present invention are shown below in FIGS. 3 and 4.
This will be explained with reference to the figures.
第3図において、符号2,3および5は第図お
よび第2図と同様にそれぞれタンク側壁,浮屋根
およびウエルを示す。このウエル5は浮屋根3の
円周方向に沿つて適当な角度間隔にて複数備えら
れ、各々のウエル5に全体を符号10で示す液面
計が備えられる。 In FIG. 3, numerals 2, 3, and 5 indicate the tank side wall, floating roof, and well, respectively, as in FIGS. 3 and 2. A plurality of these wells 5 are provided along the circumferential direction of the floating roof 3 at appropriate angular intervals, and each well 5 is provided with a liquid level gauge generally indicated by the reference numeral 10.
液面計10はゲージヘツド11、ワイヤー1
2、フロート13、および伝送器14を含む。ゲ
ージヘツド11はワイヤー12の巻上機構を有
し、ウエル5内で液面に追述するフロート13の
位置をワイヤー12の繰出し量すなわちワイヤー
12の巻取の回転量で計測するようになつてい
る。伝送器14はゲーージヘツド11で計測した
液面位置を電気的もしくは空気的な信号に変換し
て遠隔場所の監視室へ伝送するもので、電気的の
場合は本質安全防爆構造とされることが好まし
い。ここで空気的とは、例ええば複数本の空気通
路を設け、何れかの空気通路の遮断およびその組
合せで予め定めたコードに応じた導通状態を形成
し、この導通常態を遠隔地にて空気圧変化等をも
とに検出するようになす方法を含む。このような
ゲージヘツド11、伝送器14は周知技術により
容易に構成できるので詳述しない。 The liquid level gauge 10 has a gauge head 11 and a wire 1.
2, a float 13, and a transmitter 14. The gauge head 11 has a winding mechanism for the wire 12, and is adapted to measure the position of the float 13 added to the liquid level in the well 5 by the amount of feeding out of the wire 12, that is, the amount of rotation of the winding of the wire 12. The transmitter 14 converts the liquid level position measured by the gauge head 11 into an electrical or pneumatic signal and transmits it to a monitoring room at a remote location. In the case of an electrical signal, it is preferably of an intrinsically safe explosion-proof structure. . Here, pneumatic means, for example, to create a conductive state according to a predetermined code by providing multiple air passages, blocking any of the air passages, and forming a conductive state according to a predetermined code, and then transmitting this conductive state to a remote location using air pressure. It includes a method of detecting based on changes, etc. Such gauge head 11 and transmitter 14 can be easily constructed using well-known techniques, and therefore will not be described in detail.
以上の如き沈下装置によれば、液面計10は浮
屋根3上にて液面を計測するので、浮屋根3に対
する液面位置を直接検出できる。従つて第3図に
示す状態の時の適正なワイヤー繰出し量を例えば
「0」とすると、沈下を生じた場合はワイヤー繰
出し量が「−」側に減じ、逆に持上りを生じた場
合は「+」側に増える。この減増量が直接に浮屋
根3のそれぞれ沈下量および持上り量を直接に指
示することになる。 According to the sinking device as described above, since the liquid level meter 10 measures the liquid level on the floating roof 3, the liquid level position with respect to the floating roof 3 can be directly detected. Therefore, if the appropriate amount of wire to be fed out in the state shown in Figure 3 is, for example, 0, then if subsidence occurs, the amount of wire to be fed out will be reduced to the ``-'' side, and conversely, if lifting occurs, Increases to the “+” side. This decrease/increase amount directly indicates the amount of sinking and lifting amount of the floating roof 3, respectively.
このようにしてゲージヘツド11が計測した値
は伝送器により電気的もしくは空気的な信号に変
換されて監視室に送られる。従つて監視室におい
ては随時に各沈下検出装置からの信号をもとに各
部の沈下量を直接に検出できる。 The values measured by the gauge head 11 in this manner are converted into electrical or pneumatic signals by a transmitter and sent to the monitoring room. Therefore, in the monitoring room, the amount of subsidence of each part can be directly detected at any time based on the signals from each subsidence detection device.
ここで、ウエル5の位置が予め判つており複数
個の検出装置が備えられて各位置での沈下量もし
くは持上り量が計測できるので、この計測値を用
いて円周方向何れの位置が最も沈下を生じている
かおよびその沈下量はどの程度かを容易に算出す
ることが可能となる。従つてこの結果をもとに処
置をより適正に且つ迅速に行えるようになる。こ
のために特に図示していないが、沈下が生じた時
に単にその警報を発するだけでなく、各位置の沈
下量等をもとに浮屋根3の状態をデイスプレー装
置等で表示させ、実際の状態を視覚的に把握でき
るようにするのが有利である。また沈下防止処置
において、最大沈下位置につき行うのが有利とな
る。 Here, since the position of the well 5 is known in advance and a plurality of detection devices are provided to measure the amount of sinking or lifting at each position, using this measurement value, which position in the circumferential direction is the most It becomes possible to easily calculate whether subsidence is occurring and the amount of subsidence. Therefore, based on this result, treatment can be performed more appropriately and quickly. For this reason, although not specifically shown, when subsidence occurs, it not only issues an alarm, but also displays the status of the floating roof 3 on a display device based on the amount of subsidence at each location, etc. It is advantageous to have a visual representation of the condition. In addition, it is advantageous to carry out subsidence prevention measures at the maximum subsidence position.
第4図は他の実施例を示し、これはフロート2
0をリンク部材21,22により吊持し、液面に
追従するフロート20によつてリンク部材22が
支点Pを中心に枢動するようになし、この枢動量
θをもとに浮屋根に対する液面位置を計測するよ
うになすことができる。またフロート20に代え
てデイスプレーサを使用し、デイスプレーサの喫
水変化にもとづ浮力変化を検出することも可能で
ある。さらに、フロート20をリンク部材21に
代わる固定スクリユーに螺装させ、フロート20
の昇降に際して回転させてその回転角を測定する
ことで相対的位置を計測するようにもなし得る。 FIG. 4 shows another embodiment, in which float 2
0 is suspended by link members 21 and 22, and the link member 22 is pivoted about the fulcrum P by the float 20 that follows the liquid level, and based on this pivot amount θ, the liquid relative to the floating roof is It can be configured to measure the surface position. It is also possible to use a displacer instead of the float 20 and detect changes in buoyancy based on changes in the draft of the displacer. Furthermore, the float 20 is screwed onto a fixed screw instead of the link member 21, and the float 20
It is also possible to measure the relative position by rotating the robot and measuring the rotation angle when it goes up and down.
上述のウエルおよびフロート又はデイスプレー
サをよ使用して浮屋根の沈下、傾斜および撓み変
形状態を測定算出する例を以下に示す。 An example of measuring and calculating the settlement, inclination, and deflection deformation state of a floating roof using the above-mentioned well and float or displacer will be shown below.
半径roのの浮屋根の半径rの円周上にn≧3と
してn個のウエルを等間隔に設けてW1,W2…
Wi,Wi+1,W+2…Wnとする。 On the circumference of a floating roof with radius ro and radius r, n wells are provided at equal intervals with n≧3, and W 1 , W 2 . . .
Let W i , W i+1 , W +2 ...Wn.
この場合静電容量式でなくウエルおよびフロー
トを設けて浮屋根に対するフロートの相対的移動
を測定する方が、タンク内の原油が検出部に固着
して誤差を生ずるのを防止できて有利である。 In this case, it is advantageous to install a well and a float instead of using a capacitance method and measure the relative movement of the float to the floating roof because it can prevent crude oil in the tank from sticking to the detection unit and causing errors. .
W1〜Wnを用いて浮屋根の最大傾斜角αまたは
最大沈下(又は浮上がり)量Znaxを求めるには、
rを浮屋根中心と各ウエルWまでの距離、roを浮
屋根の半径とすると、
ro tanα+Zo=max ……(1)
但し、Zoは浮屋根の中心部の沈下(又は浮上
がり)量αと仮定して計算の補助数として導入す
る。 To find the maximum inclination angle α or maximum sinking (or rising) amount Z nax of the floating roof using W 1 ~ Wn,
If r is the distance between the center of the floating roof and each well W, and ro is the radius of the floating roof, then ro tanα + Zo = max... (1) However, Zo is the amount of sinking (or rising) at the center of the floating roof α and It is assumed and introduced as an auxiliary number in the calculation.
いま半径rの同心円上の或る位置A沈下量Z
と、最大沈下点Znaxをx軸とした平面座標x,y
との関係は、θを中心から基準となるウエル
Wi+1への線と中心からAへの線のなす角とし、
φを中心から基準となるウエルWi+1とX軸のな
す角とすると、
x=rcos(θ−φ)
y=rsin(θ−φ)
Z=xtanα+Zo ……(2)
∴Z=rtanα・cos(θ−φ)+Zo ……(3)
隣接する2つのウエルのなす中心角βは
β=360゜/n
各ウエルの沈下量をZi,Zi+1,Zi+2として、
Wi+1を円筒座標の基準として極座標表示をする
と、
Wi……(r1,−θ)
Wi+1……(r,o)
Wi+2……(r1+θ)
式(3)より、ウエルWi,Wi+1,Wi+2における
沈下量るZi,Zi+1,Zi+2は
Zi=rtanα・cos(−β−φ)+Zo
∴Zi=rtanα(cosβcosφ
−sinβsinφ)+Zo ……(4)
Zi+1=rtanαcos(o−φ)+Zo
∴Zi+1=rtanαcosφ+Zo ……(5)
Zi+2=rtanαcos(β−φ)+Zo
∴Zi+2=rtanα(cosβcosφ
−sinβsinφ)+Zo ……(6)
式(6)−式(4)/2sinβを計算すると、
rtanαsinφ=Zi+2−Zi/2sinβ ……(7)
式(6)+式(4)/2cosβを計算すると、
rtanαcosα=Zo/cosβ=Zi+2−Zi/2cosβ ……(8)
式(8)−式(5)
(1/cosβ−1)Zo=Zi+2+Zi/2cosβ−Zi+1
∴Zo=Zi+2+Zi/2−Zi+1cosβ/1−cosβ ……(9)
式(5)に式(9)を代入すれば、
rtanαcosφ=Zi+1−Zi+2+Zi/2−Zi+1cosβ/1−
cosβ
∴rtanαcosφ=2Zi+1−Zi+2−Zi/2(1−cosβ)
……(10)
(式(7))2+(式(10))2
r2tan2α=(Zi+2−Zi/2sinβ)2
+{2Zi+1−Zi+2−Zi/2(1−cosβ)}2……(11
)
式(1),式(9)および式(11)より
Znax=ro/2r{(Zi+2−Zi/sinβ)2
+(2Zi+1−Zi+2−Zi/1−cosβ)2}1/2
+Zi+2+Zi/2−Zi+1cosβ/1−cosβ ……(12)
傾斜角αは(11)式より求めることができる。最大
沈下
位置はWi+1との角φを(7)式より求めることが
できる
n=3としてβ=120゜の場合
n=4としてβ=90゜の場合
sinβ=1,cosβ=0
Znax=ro/2r{(Zi+2−Zi)2+(2Zi+1−Zi+2−Zi)
1/2+Zi+2+Zi/2……(14)
1=1.2.3.4について4通りのZnaxを求めてその
内の最大のものに基づいて例えば警報を出すよう
にする。 A certain position A on the concentric circle of radius r now sinking amount Z
and the plane coordinates x, y with the maximum settlement point Z nax as the x axis
The relationship between θ is from the center to the reference well.
Let the angle formed by the line to W i+1 and the line from the center to A,
If φ is the angle between the reference well W i+1 from the center and the X axis, then x=rcos(θ−φ) y=rsin(θ−φ) Z=xtanα+Zo ……(2) ∴Z=rtanα・cos(θ−φ)+Zo...(3) The central angle β between two adjacent wells is β=360°/n, and the amount of subsidence of each well is Z i , Z i+1 , Z i+2 ,
When expressed in polar coordinates using W i+1 as the standard of cylindrical coordinates, W i ... (r 1 , -θ) W i+1 ... (r, o) W i+2 ... (r 1 + θ) Equation ( 3), the amount of settlement Z i , Z i+1 , Z i+2 in wells W i , W i+1 , W i+2 is Z i = rtanα・cos(−β−φ)+Zo ∴Z i =rtanα(cosβcosφ −sinβsinφ)+Zo ……(4) Z i+1 =rtanαcos(o−φ)+Zo ∴Z i+1 =rtanαcosφ+Zo ……(5) Z i+2 =rtanαcos(β−φ)+Zo ∴ Z i+2 = rtanα (cosβcosφ − sinβsinφ) + Zo ...(6) Calculating equation (6) - equation (4)/2sinβ, rtanαsinφ=Z i+2 −Z i /2sinβ ...(7) Equation ( 6) + Equation (4)/2cosβ is calculated as rtanαcosα=Zo/cosβ=Z i+2 −Z i /2cosβ ……(8) Equation (8)−Equation (5) (1/cosβ−1)Zo =Z i+2 +Z i /2cosβ−Z i+1 ∴Zo=Z i+2 +Z i /2−Z i+1 cosβ/1−cosβ ……(9) Substitute formula (9) into formula (5) By substituting, rtanαcosφ=Z i+1 −Z i+2 +Z i /2−Z i+1 cosβ/1−
cosβ ∴rtanαcosφ=2Z i+1 −Z i+2 −Z i /2(1−cosβ)
...(10) (Formula (7)) 2 + (Formula (10)) 2 r 2 tan 2 α= (Z i+2 −Z i /2sinβ) 2 + {2Z i+1 −Z i+2 − Z i /2(1−cosβ)} 2 ……(11
) From formulas (1), (9), and (11), Z nax = ro/2r {(Z i+2 −Z i /sinβ) 2 + (2Z i+1 −Z i+2 −Z i / 1−cosβ) 2 } 1/2 +Z i+2 +Z i /2−Z i+1 cosβ/1−cosβ ...(12) The inclination angle α can be obtained from equation (11). The maximum settlement position can be determined by the angle φ with W i+1 from equation (7). When n = 3 and β = 120° When n=4 and β=90°, sinβ=1, cosβ=0 Z nax = ro/2r {(Z i+2 −Z i ) 2 + (2Z i+1 −Z i+2 −Z i )
1/2 +Z i+2 +Z i /2...(14) For 1=1.2.3.4, four different Z nax values are obtained and, for example, a warning is issued based on the largest one of them.
i=1Znax=ro/r(Z2 2+(Z8 2+Z1 2/2−Z2Z8−Z2
BZ1)1/2+Z8+Z1/2
i=2Znax=ro/r(Z8 2+Z4 2+Z2 2/2−Z8Z4−Z8Z2
)1/2+Z4+Z2/2
i=3Znax=ro/r(Z4 2+Z1 2+Z8 2/2−Z4Z1−Z4Z8
)1/2+Z1+Z8/2
i=4Znax=ro/r(Z1 2+Z2 2+Z4 2/2−Z1Z2−Z1Z4
)1/2+Z2+Z4/2
n=6としてβ=60゜の場合
以上の如き本発明の沈下検出装置によれば、次
のような効果を得れる。 i = 1Z nax =ro/r( Z22 +( Z82 + Z12 / 2 - Z2Z8 - Z2
BZ 1 ) 1/2 +Z 8 +Z 1 /2 i=2Z nax =ro/r (Z 8 2 +Z 4 2 +Z 2 2 /2-Z 8 Z 4 -Z 8 Z 2
) 1/2 +Z 4 +Z 2 /2 i=3Z nax =ro/r (Z 4 2 +Z 1 2 +Z 8 2 /2-Z 4 Z 1 -Z 4 Z 8
) 1/2 +Z 1 +Z 8 /2 i=4Z nax =ro/r (Z 1 2 +Z 2 2 +Z 4 2 /2-Z 1 Z 2 -Z 1 Z 4
) 1/2 +Z 2 +Z 4 /2 When n=6 and β=60° According to the subsidence detection device of the present invention as described above, the following effects can be obtained.
(1) 浮屋根上に検出装置を設置することで測定す
る液面変化が小さな範囲となり、検出装置を小
型化でき安価にできる。(1) By installing the detection device on the floating roof, changes in the liquid level can be measured over a small range, making the detection device smaller and cheaper.
(2) 浮屋根に多少の改修を加えることで既存タン
クに容易に適用できる。(2) It can be easily applied to existing tanks by making some modifications to the floating roof.
(3) 数十基ものタンクの監視が容易に行える。(3) Dozens of tanks can be easily monitored.
(4) 円周方向に複数設置することで任意位置の沈
下量等の算出が可能となり、沈下防止処置を望
ましい位置に対して行えるようになる。従つて
処置を迅速且つ簡単で的確になし得る。(4) By installing multiple units in the circumferential direction, it becomes possible to calculate the amount of subsidence at any position, and it becomes possible to take subsidence prevention measures at desired positions. Therefore, treatment can be performed quickly, easily, and accurately.
(5) 検出装置がフロート式であるので液体の付
着,固着の問題がない。(5) Since the detection device is a float type, there are no problems with liquid adhesion or sticking.
第1図および第2図は従来の沈下検出装置の概
略図。第3図は本発明による沈下検出装置の一実
施例の概略図。第4図は本発明の他の実施例の概
略図。
2……タンク側壁、3……浮屋根、5……ウエ
ル、10……検出装置、11……ゲージヘツド、
12……ワイヤー、13……フロート、14……
伝送器、20……フロート、21,22……リン
ク部材。
FIG. 1 and FIG. 2 are schematic diagrams of a conventional subsidence detection device. FIG. 3 is a schematic diagram of an embodiment of the subsidence detection device according to the present invention. FIG. 4 is a schematic diagram of another embodiment of the invention. 2... Tank side wall, 3... Floating roof, 5... Well, 10... Detection device, 11... Gauge head,
12...Wire, 13...Float, 14...
Transmitter, 20... float, 21, 22... link member.
Claims (1)
する装置であつて、浮屋根の円周方向に複数のフ
ロートウエルを設け、該ウエルにそれぞれフロー
トもしくはデイスプレーサを有する液面検出装置
を組付けて浮屋根に対する液面位置をそれぞれの
位置にて計測し、該計測値を伝送器により監視室
へ伝送して監視室にて最大沈下位置および沈下量
を算出可能に構成したことを特徴とする浮屋根の
沈下検出装置。1. A device for detecting subsidence of a floating roof in a floating roof tank, in which a plurality of float wells are provided in the circumferential direction of the floating roof, and a liquid level detection device having a float or a displacer is attached to each well. The liquid level position relative to the floating roof is measured at each position, and the measured values are transmitted to a monitoring room by a transmitter, and the maximum sinking position and sinking amount can be calculated in the monitoring room. Floating roof subsidence detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56037144A JPS57151825A (en) | 1981-03-14 | 1981-03-14 | Subsidence detector for floating roof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56037144A JPS57151825A (en) | 1981-03-14 | 1981-03-14 | Subsidence detector for floating roof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57151825A JPS57151825A (en) | 1982-09-20 |
JPH0314713B2 true JPH0314713B2 (en) | 1991-02-27 |
Family
ID=12489413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56037144A Granted JPS57151825A (en) | 1981-03-14 | 1981-03-14 | Subsidence detector for floating roof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57151825A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161984A (en) * | 1980-05-08 | 1981-12-12 | Mitsubishi Heavy Ind Ltd | Measuring device for liquid level of liquid storage tank |
-
1981
- 1981-03-14 JP JP56037144A patent/JPS57151825A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161984A (en) * | 1980-05-08 | 1981-12-12 | Mitsubishi Heavy Ind Ltd | Measuring device for liquid level of liquid storage tank |
Also Published As
Publication number | Publication date |
---|---|
JPS57151825A (en) | 1982-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5132923A (en) | System for monitoring storage tanks | |
EP0315356A2 (en) | Tank inventory and leak detection system | |
US4186591A (en) | Device for and method of detecting leaks in a liquid storage reservoir | |
US9163973B2 (en) | Identifying undesired conditions in the function of a floating roof of a tank | |
JP4523904B2 (en) | Water level measuring device and water level measuring system using this water level measuring device | |
CN106768192A (en) | A kind of accurate measurement absorbing tower liquid-level and absorption tower falseness liquid level alarm device | |
CN108773598B (en) | Online monitoring device and method for leakage of buried oil tank | |
CN105466521A (en) | Method for measuring liquid level of liquid in container | |
CA1145623A (en) | Sensor for measuring leakage | |
KR100941507B1 (en) | Leveling system | |
KR101574975B1 (en) | Meteological measuring tower having loosening notification function of anemoscope | |
JPH0314713B2 (en) | ||
AU2019438101A1 (en) | Structural arrangement for a tipping bucket rain gauge and related microcontrolled electronic system | |
US3482447A (en) | Tank level gauge | |
KR102057989B1 (en) | Apparatus For Measuring Amount Of Railfall | |
CN111606209B (en) | Method for positioning lifting hook by utilizing GNSS | |
JPS58123416A (en) | Device for detecting slant and deformation of floating roof | |
CN108332039B (en) | Three-point laser type gas chamber piston inclination detection method | |
CN112683368B (en) | Transformer oil level measuring device | |
CN214333948U (en) | Novel ultrasonic liquid level meter | |
CN219869689U (en) | Water regime measuring device | |
CN221593730U (en) | Well bolt displacement measuring device | |
CN103267509A (en) | Hanging box digital flow direction deflection angle indicator | |
CN215064479U (en) | Waters tunnel settlement monitoring device | |
CN211741933U (en) | Continuous capacitance type liquid level controller for sewage in narrow space |