JPS5812216B2 - handmade glass - Google Patents

handmade glass

Info

Publication number
JPS5812216B2
JPS5812216B2 JP5994675A JP5994675A JPS5812216B2 JP S5812216 B2 JPS5812216 B2 JP S5812216B2 JP 5994675 A JP5994675 A JP 5994675A JP 5994675 A JP5994675 A JP 5994675A JP S5812216 B2 JPS5812216 B2 JP S5812216B2
Authority
JP
Japan
Prior art keywords
glass
semiconductor
weight
semiconductor device
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5994675A
Other languages
Japanese (ja)
Other versions
JPS51134709A (en
Inventor
渋谷武宏
波多野和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP5994675A priority Critical patent/JPS5812216B2/en
Publication of JPS51134709A publication Critical patent/JPS51134709A/en
Publication of JPS5812216B2 publication Critical patent/JPS5812216B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、モリブデン、タングステンなどの電極を有す
るダブルスタツド型シリコン整流器などの半導体装置の
被覆用ガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass for coating semiconductor devices such as double-studded silicon rectifiers having electrodes of molybdenum, tungsten, or the like.

一般に半導体素子の電気的特性は該表面の特性によって
大きく左右されるため、その表面を雰囲気から保護する
必要がある。
Generally, the electrical characteristics of a semiconductor element are greatly influenced by the characteristics of its surface, so it is necessary to protect the surface from the atmosphere.

表面の保護方法として、従来、半導体素子の表面を絶縁
膜で保護する方法、例えばシリコン半導体では表面に酸
化膜を形成させる方法、気相分解により酸化珪素や窒化
珪素を該半導体表面に付着させる方法、或は有機高分子
材料で半導体素子全体をカプセル化する方法等が知られ
ている。
Conventional surface protection methods include protecting the surface of a semiconductor element with an insulating film, such as forming an oxide film on the surface of a silicon semiconductor, and attaching silicon oxide or silicon nitride to the semiconductor surface by vapor phase decomposition. , or methods of encapsulating the entire semiconductor element with an organic polymer material are known.

しかしながら、上記の各方法は防湿性、信頼性の点で不
充分であり、充分な防湿性、信頼性を得るために更に金
属製のキャップ内に密閉する方法がとられているが、結
果的には製造工程が複雑になって非常に高価につき実際
的ではない。
However, each of the above methods is insufficient in terms of moisture resistance and reliability, and in order to obtain sufficient moisture resistance and reliability, a method of sealing the product in a metal cap has been adopted, but as a result, However, the manufacturing process is complicated and very expensive, making it impractical.

その点、ガラスで直接半導体素子のP−N接合部を被覆
する方法、ガラスで素子全体をカプセル化する方法等は
上記特性を充分満足すると同時に製造、コスト面に於で
有利であり、又、最近の半導体装置に要求される小型化
、薄膜化、不燃性、高信頼性等をも充分満足し得るもの
である。
In this respect, methods such as directly covering the P-N junction of a semiconductor element with glass or encapsulating the entire element with glass fully satisfy the above characteristics and are advantageous in terms of manufacturing and cost. It can fully satisfy the requirements of recent semiconductor devices, such as miniaturization, thinning, nonflammability, and high reliability.

ガラスで半導体装置を被覆する場合は以下に示すような
条件がガラスに要求される。
When covering a semiconductor device with glass, the following conditions are required for the glass.

(イ)半導体材料及びMo,W、コバール等の電極材料
と密着するよう40〜50X10−7/℃(30〜30
0℃)の熱膨張係数をもつこと(口)半導体装置の性能
を損なわない温度、すなわち750℃以下の温度で十分
流動し、半導体装置の電極やシリコンによくなじむこと (−)ガラス被覆することにより半導体装置の電気的特
性を損なわないこと (ニ)半導体装置に電極付けやメッキ処理等を行なう際
、ガラスが薬品におかされて半導体装置の電気的特性が
損なわれないよう充分な化学的耐久性をもつこと 従来、この種のガラスとして、硼珪酸塩ガラス、亜鉛一
硼酸塩ガラス、鉛一硼珪酸塩ガラス等が知られているが
、以下に示すようにいずれも上記要求を充分満足す為も
のではなかった。
(a) 40-50X10-7/℃ (30-30
It must have a coefficient of thermal expansion of 0°C). It must flow sufficiently at temperatures that do not impair the performance of semiconductor devices, i.e., at temperatures below 750°C, and it must fit well with the electrodes and silicon of semiconductor devices. (-) It must be coated with glass. (d) When attaching electrodes or plating the semiconductor device, the glass must have sufficient chemical durability so that it will not be damaged by chemicals and the electrical characteristics of the semiconductor device will not be impaired. Hitherto, as this type of glass, borosilicate glass, zinc monoborate glass, lead monoborosilicate glass, etc. have been known, but as shown below, all of them fully satisfy the above requirements. It wasn't for nothing.

即ち、硼珪酸塩ガラスは上記の(イ)及び(ニ)の要求
κは沿うものの、封着温度が750℃以上と高く、又半
導体に直接被覆した場合には半導体装置の電気的特性を
損なうため、上記(口)、(ハ)の要求を満たすことが
できない。
In other words, although borosilicate glass satisfies the requirements (a) and (d) above, it has a high sealing temperature of 750°C or higher, and if it is directly coated on a semiconductor, it may impair the electrical characteristics of the semiconductor device. Therefore, the above requirements (1) and (3) cannot be met.

亜鉛一硼酸堪ガラスは(イ)、(呻)、(ハ)の要求に
は酷うものの、耐薬中性が悪いため(ニ)の要求を満た
すことができない。
Although zinc monoborate resistant glass meets requirements (a), (c), and (c), it cannot meet requirement (d) because of its poor chemical resistance.

妬一硼珪酸塩ガラスは上記(ニ)の要求には沿うものの
、熱膨張係数が高く、又半導体の導電部品とのなじみが
悪いため、完全な気密封着物が得られない。
Although borosilicate glass meets the above requirement (d), it has a high coefficient of thermal expansion and is poorly compatible with semiconductor conductive parts, making it impossible to obtain a completely hermetic seal.

本発明の目的は、上記の如き従来の封着用ガラスに於け
る欠点を解決し、前記(イ)〜(ニ)の要求を全?満足
する半導体被覆用ガラスを提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of conventional sealing glasses and to meet all of the above requirements (a) to (d). It is an object of the present invention to provide a satisfactory glass for semiconductor coating.

本発明の半導体被覆用ガラスの組成範囲及び好ましい組
成範囲は以下に示す通りである(重量%)冑、好ましい
組成範囲とは、電気的特性、特に逆耐電圧特性の優れた
半導体装置が得易い組成範囲をいう。
The composition range and preferred composition range of the glass for semiconductor coating of the present invention are as shown below (wt%).The preferred composition range means that a semiconductor device with excellent electrical properties, particularly reverse withstand voltage properties, can be easily obtained. Refers to the composition range.

(組成範囲)(好ましい組成範囲 Zn0 18% 〜40% 28%〜38%B
20315幅〜35% 18幅〜29%Al2033
%〜15チ 5係〜13%SiO 5%〜13
・係 8係〜11チPb0 10%〜30%
20%〜26係Mg0 0%〜 7係 CeO2 O幅〜 5チ Sb2030係〜 1チ 本発明の特徴は、ZnO−B203−Si02系ガラス
のもつ化学的安定性、半導体装置を構成する金属および
シリコンに対する密着性を維持し、しかも該ガラス系に
適当量のAI203,PbOを加えることによって化学
的耐久性を向上せしめる点にある。
(Composition range) (Preferred composition range Zn0 18% to 40% 28% to 38%B
20315 width ~ 35% 18 width ~ 29% Al2033
%~15chi 5%~13%SiO 5%~13
・Part 8 to 11 Pb0 10% to 30%
20% to 26 Mg0 0% to 7 CeO2 O Width to 5 to Sb2030 to 1 The aim is to maintain adhesion to the glass and improve chemical durability by adding appropriate amounts of AI203 and PbO to the glass system.

従って、本発明のガラスで被覆ざれた半導体は、直接メ
ッキ、その他の化学処理を施しても、ガラスが劣化しな
いため半導体装置の電気的特性も永久に保持される。
Therefore, even if a semiconductor coated with the glass of the present invention is subjected to direct plating or other chemical treatments, the glass does not deteriorate, and the electrical characteristics of the semiconductor device are permanently maintained.

第1図は表−1に示した本発明のガラス(ガラスA)、
亜鉛一硼酸塩ガラス(ガラスB)、及び鉛一硼珪酸塩ガ
ラス(ガラスC)をメッキ液(硫酸スズ)で処理したと
きのエッチング速度を示したものであるが、本発明のガ
ラスは鉛一硼珪酸塩ガラス(ガラスC)と比較してもほ
とんど遜色のない化学的耐久性を有する。
Figure 1 shows the glass of the present invention shown in Table 1 (Glass A),
This figure shows the etching rate when zinc monoborate glass (glass B) and lead monoborosilicate glass (glass C) were treated with a plating solution (tin sulfate). It has chemical durability comparable to that of borosilicate glass (Glass C).

又、表−1には、逆耐電圧1500Vのシリコン半導体
素子を前記ガラスA,B,Cで被覆し、核半導体装置の
逆洩れ電流が1μAのときの逆耐電圧をメッキ(硫酸ス
ズ)処理前後で測定した結果を示したが ガラスB及び
Cで被覆しだ半導体装置については、その逆耐電圧はメ
ッキ処御後に於で暑しく劣化しだが、本発明に係るガラ
スAで被覆した半導体装置については、その逆耐電圧は
メッキ処理後に於でも全く変化せず、半導体素子の表面
及びP−N接合部を完全に保護できた。
Table 1 also shows that a silicon semiconductor element with a reverse withstand voltage of 1500V is coated with the glasses A, B, and C, and the reverse withstand voltage when the reverse leakage current of the nuclear semiconductor device is 1 μA is determined by plating (tin sulfate). The results of measurements taken before and after were shown. Regarding the semiconductor devices coated with glasses B and C, the reverse withstand voltage deteriorated in the heat after plating, but the semiconductor devices coated with glass A according to the present invention deteriorated in reverse withstand voltage. The reverse withstand voltage did not change at all even after plating, and the surface of the semiconductor element and the PN junction were completely protected.

本発明に於で前記の如く組成を限定した理由は以下に示
す通りである。
The reason for limiting the composition as described above in the present invention is as follows.

ZnOが18重量係以下のときは熱膨張係数が増大する
と同時に失透し易くなって流動性が損なわれ、40重量
%以上のときは化学的耐久性が悪くなる。
When the ZnO content is less than 18% by weight, the coefficient of thermal expansion increases and at the same time it becomes easy to devitrify, impairing fluidity, and when it is more than 40% by weight, chemical durability deteriorates.

B203が15重量係以下のときはガラスが急速に失透
するためガラス化が困難となり、35重量係以上のとき
は均質なガラスが得難くなると同時に耐久性が悪くなる
When B203 is less than 15% by weight, the glass rapidly devitrifies, making it difficult to vitrify, and when it is more than 35% by weight, it becomes difficult to obtain homogeneous glass and at the same time the durability deteriorates.

Al203が3重量係以下のときは化学的耐久性が極め
て悪くなり、15重量係以上のときはガラス化が困難と
なる。
When Al203 is less than 3% by weight, the chemical durability becomes extremely poor, and when it is more than 15% by weight, it becomes difficult to vitrify.

Si02が5重量%μ下のときは化学的耐久性が悪くな
り、13重量係以上のときはガラスの粘性が大きくなる
だめ封着が困難となる。
When the Si02 content is less than 5% by weight, the chemical durability deteriorates, and when it is more than 13% by weight, the viscosity of the glass increases and sealing becomes difficult.

PbOが10重量係以下のときは封着温度が高くなりす
ぎ、30重量チ以上のときはガラス中のPbOが還元さ
れ易くなると同時に燈膨張係数が高くなりすぎる。
When PbO is less than 10% by weight, the sealing temperature becomes too high, and when it is more than 30% by weight, PbO in the glass is easily reduced and at the same time the luminous expansion coefficient becomes too high.

MgO,CeO2,Sb203を加えると均質なガラス
が得易くなると同時に被覆時金属部やシリコンに対する
ガラスの密着性が向上し、高信頼度の半導体装置が得ら
れる。
Adding MgO, CeO2, and Sb203 makes it easier to obtain homogeneous glass, and at the same time improves the adhesion of the glass to metal parts and silicon during coating, resulting in a highly reliable semiconductor device.

しかしながら、MgOが7重量幅以上のときは熱膨張係
数が高くなりすぎ、Ce02が5重量係以上のときは均
質なガラスが得難くなり、Rb203が1−重量係以上
のときは封着時泡が発生し易くなる。
However, when MgO has a weight range of 7 or more, the coefficient of thermal expansion becomes too high, when Ce02 has a weight range of 5 or more, it is difficult to obtain a homogeneous glass, and when Rb203 has a weight range of 1-weight or more, foaming occurs during sealing. is more likely to occur.

本発明の被覆用ガラスを製造する場合は、通常のガラス
溶融法と同じく各元素の酸化物又はそれらを含む出発原
料を所望の組成になるように調合し、混合した後、白金
一ロジウム合金ルツボに入れ、1300〜1400℃の
温度で1〜2時間溶融スる。
When producing the coating glass of the present invention, as in the usual glass melting method, oxides of each element or starting materials containing them are prepared to a desired composition, mixed, and then placed in a platinum-rhodium alloy crucible. and melted at a temperature of 1300 to 1400°C for 1 to 2 hours.

溶融ガラスは水冷式ステン7ス製ローラの間に注いで薄
いリボン状にするか、若しくは純水中に注いで水砕し、
乾燥した後、アルミナ製ボールミルで350メッシュN
下に船募寸A−次にこのガラスで半導体装置を被覆する
場合は、ヒ記のガラス粉末を純水又はイソプロビルアル
コール、アSルアセテート等の有機物と混合し、それを
半導体素子の表面又はP−N接合部に塗布するか、或は
上記ガラス粉末をアセトン、イソプロビルアルコール等
の有機物中に分散させ、遠心分離による沈降法又は電気
泳動法等により半導体素子の表面又はP−N接合部に付
着させる。
The molten glass is poured between water-cooled stainless steel rollers to form a thin ribbon, or poured into pure water to be pulverized.
After drying, 350 mesh N was applied using an alumina ball mill.
Size A - Next, if you want to coat a semiconductor device with this glass, mix the glass powder described in (h) with pure water or an organic substance such as isopropyl alcohol or arsenic acetate, and apply it to the surface of the semiconductor device. Alternatively, the above-mentioned glass powder is dispersed in an organic substance such as acetone or isopropyl alcohol, and applied to the surface of a semiconductor element or a P-N junction by a sedimentation method using centrifugation or an electrophoresis method. Attach it to the area.

更にこのガラスで被覆された半導体装置を所望の温度に
制御された電気炉内で適当な時間加熱した水又は有機物
の媒介物を揮発除去し、その後ガラスを軟化流動させて
ガラス被膜を形成する。
Furthermore, the semiconductor device coated with this glass is heated in an electric furnace controlled at a desired temperature for an appropriate period of time to volatilize and remove water or organic media, and then the glass is softened and fluidized to form a glass coating.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

表−2は本発明の実施例のガラス組成及びその特性を示
したものである。
Table 2 shows the glass compositions and properties of Examples of the present invention.

伺、表−2のエッチング速度は、50℃の10係H2S
04又は10チHF溶液に10X10X5mmのガラス
試料を1分間浸したときのガラス表面の厚み減少を示し
だものである。
The etching rate in Table 2 is 10% H2S at 50°C.
This figure shows the decrease in the thickness of the glass surface when a glass sample of 10 x 10 x 5 mm was immersed in 04 or 10 HF solution for 1 minute.

上記表の如き組成を持つ本発明の半導体被覆用ガラスは
、約40〜50X10−7/℃の熱膨張係数及び約65
0〜740℃の封着温度を有し、従来から問題とされて
いたガラスの化学的耐久性、流動性、ガラスと半導体素
子との密着性、半導体装置の電気的特性の維持等を全て
解決したものである。
The glass for semiconductor coating of the present invention having a composition as shown in the above table has a thermal expansion coefficient of about 40 to 50
It has a sealing temperature of 0 to 740°C, and solves all the conventional problems of glass chemical durability, fluidity, adhesion between glass and semiconductor elements, and maintaining the electrical characteristics of semiconductor devices. This is what I did.

特にガラス被膜形成後半導体i置にメッキ処理等の薬品
処理を施す半導体装置の被覆には好適である。
It is particularly suitable for coating semiconductor devices in which a chemical treatment such as plating is applied to the semiconductor after the glass coating is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガラス(ガラスA)、亜鉛一硼酸塩ガ
ラス(ガラスB)、及び鉛一硼珪酸塩ガラス(ガラスC
)を硫酸スズメッキ液に浸したときのエッチング速度を
比較したものである。
Figure 1 shows the glass of the present invention (Glass A), the zinc monoborate glass (Glass B), and the lead monoborosilicate glass (Glass C).
) is compared with the etching speed when immersed in tin sulfate plating solution.

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率で、18係〜40%のZnO,15%〜
35%のB203t3チ〜15条のAl2035チ〜1
3%のSiO,10チ〜30%のpbo,θ%〜7%の
MgO,O%〜5%のCe02,O%〜1チのSb20
3からなる半導体被覆用ガラス。
1 Weight percentage: 18~40% ZnO, 15%~
35% B203t3-15 articles Al2035-1
3% SiO, 10% to 30% pbo, θ% to 7% MgO, O% to 5% Ce02, O% to 1% Sb20
Glass for semiconductor coating consisting of 3.
JP5994675A 1975-05-19 1975-05-19 handmade glass Expired JPS5812216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5994675A JPS5812216B2 (en) 1975-05-19 1975-05-19 handmade glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5994675A JPS5812216B2 (en) 1975-05-19 1975-05-19 handmade glass

Publications (2)

Publication Number Publication Date
JPS51134709A JPS51134709A (en) 1976-11-22
JPS5812216B2 true JPS5812216B2 (en) 1983-03-07

Family

ID=13127810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5994675A Expired JPS5812216B2 (en) 1975-05-19 1975-05-19 handmade glass

Country Status (1)

Country Link
JP (1) JPS5812216B2 (en)

Also Published As

Publication number Publication date
JPS51134709A (en) 1976-11-22

Similar Documents

Publication Publication Date Title
JP5086790B2 (en) Method for producing electronic components passivated by lead-free glass
TWI388528B (en) Method for producing an electronic component passivated by lead free glass
US4746578A (en) Glaze compositions for ceramic substrates
US4542105A (en) Glass composition for covering semiconductor element
US3752701A (en) Glass for coating semiconductors, and semiconductor coated therewith
US3493405A (en) Semiconductor encapsulation glass
JPS5812216B2 (en) handmade glass
JPH0149653B2 (en)
US3674520A (en) Solder glass for adhering sealing or coating
US3806362A (en) Coating for thermoelectric materials
JPS6146419B2 (en)
JPS6160583B2 (en)
JPH0426541B2 (en)
JP2764880B2 (en) Glass for semiconductor coating
JPS6238302B2 (en)
JPS6341861B2 (en)
JPS5932138A (en) Glass for covering semiconductor
JPS6146420B2 (en)
JPS58204837A (en) Crystalline glass composition for sealing
CN117923802A (en) Leadless glass powder for passivation of semiconductor device and application thereof
JPS6011467B2 (en) Glass-coated semiconductor device and its manufacturing method
JPS6124343B2 (en)
JPS63297239A (en) Glass for covering semiconductor
JPH0224373B2 (en)
JPS6051264B2 (en) Glass for semiconductor coating