JPS58121541A - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JPS58121541A
JPS58121541A JP337882A JP337882A JPS58121541A JP S58121541 A JPS58121541 A JP S58121541A JP 337882 A JP337882 A JP 337882A JP 337882 A JP337882 A JP 337882A JP S58121541 A JPS58121541 A JP S58121541A
Authority
JP
Japan
Prior art keywords
phosphor
wavelength range
activated
manganese
fluorescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP337882A
Other languages
Japanese (ja)
Other versions
JPH0330262B2 (en
Inventor
Nobuyoshi Akiyama
秋山 順悦
Akira Taya
田屋 明
Hisami Shinra
新羅 久美
Masao Asada
浅田 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP337882A priority Critical patent/JPS58121541A/en
Publication of JPS58121541A publication Critical patent/JPS58121541A/en
Publication of JPH0330262B2 publication Critical patent/JPH0330262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material

Landscapes

  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To decrease a quantity of use of an expensive fluorescent material further present a high efficient fluorescent lamp with a high color rendition. CONSTITUTION:The first fluorscent material of alkaline earth metal halophosphoric acid salt activated by dieuropium having a luminous peak in 480-500nm wavelength range, the second fluorescent material having a luminous peak in 480/570-575nm wavelength range, the third fluorescent material having a luminous peak in 610-640nm wavelength range and the fourth fluorscent material having a luminous peak in 650-660nm wavelength range, as shown by a general formula M5-xX (PO4)3:Eu<2+>(x) (where M is composed of three kinds of Ba, Ca, Mg and provided with Ba of 3.0-4.5 gram atom, Ca of 0.5-2.0 gram atom and Mg of 0.01-1.0 gram atom, respectively: X is a simple substance of F, Cl, Br or mixture of at least two kinds, further x is 0.01<x<=0.2), are mixed and coated on the internal surface of a glass tube to form an expensive fluorescent material of magnesium phlorogermanate activated with manganese, and a quantity of its use becomes 20% the total quantity of the fluorescent material or less to improve a color redition to 7 or more and efficiency to 10% or more.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、発光の色温度が2800〜3500K (ケ
ルビン)の値を有し、JISZ9301に定められたD
L形と呼ばれる螢光ランプの発光効率と演色性を改善し
た螢光ランプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention has a color temperature of 2,800 to 3,500K (Kelvin), and has a color temperature of D as defined in JIS Z9301.
This invention relates to a fluorescent lamp called an L-type fluorescent lamp with improved luminous efficiency and color rendering properties.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、発色の色温度が2800〜3500にの値に有
する螢光ランプを得るには、発光のピーク波長範囲が6
10〜f36Q nmに有シ半値巾10〜80nmの発
光スペクトルを有するような螢光体を必要不可欠とされ
ている。
Generally, in order to obtain a fluorescent lamp having a color temperature of 2,800 to 3,500, the peak wavelength range of emission must be 6.
A phosphor having an emission spectrum of 10 to f36Q nm and a half-width of 10 to 80 nm is essential.

従来、上述の発光スペクトルで発光する螢光体としては
、マンガン付活マグネシウムフロロジャーマネイト螢光
体が多用されている。この螢光体■ ラング製造時の工
程劣化が大きいこと■ 点灯時の働程特性が悪いこと ■ Ge(ゲルマニウム)が極めて高価なこと等理由で
その使用量を極力少なくすることが望まれているにもか
かわらず、螢光体全使用量の約5割を占めているのが実
情である。
Conventionally, a manganese-activated magnesium fluorogermanite phosphor has been frequently used as a phosphor that emits light in the above-mentioned emission spectrum. This phosphor ■ Significant process deterioration during rung manufacturing ■ Poor working characteristics during lighting ■ Ge (germanium) is extremely expensive, so it is desired to reduce its usage as much as possible. Despite this, the reality is that it accounts for about 50% of the total amount of phosphor used.

また従来のこの種の螢光ランプは演色性も73程であり
、発光効率も10〔W〕クランプ330[:1m)程で
更に高効率、高演色性が望まれる。
Furthermore, the color rendering property of conventional fluorescent lamps of this type is about 73, and the luminous efficiency is about 10 [W] clamp 330 [:1 m], so even higher efficiency and color rendering are desired.

〔発明の目的〕[Purpose of the invention]

本発明は、上記要望に鑑み、高価な螢光体の使用量を少
なくしかつ高効率、高演色の螢光体ランプを提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned needs, it is an object of the present invention to provide a phosphor lamp that uses less expensive phosphor and has high efficiency and high color rendering.

〔発明の概要〕 上記目的を達成するために、本発明によれば新〆 現な螢光体である2価のユ−ロウム付活ハq IJン酸
バリウム・カルシウム・マグネシウム青緑色螢光体を開
発し、この螢光体と、アンチモン及びマンガン付活ハロ
リン酸カルシウム螢光体、スズ付活正すン酸ストロンナ
ウム・マグネシウム螢光体それにマンガン付活マグネシ
ウム70ロジヤーマネイト螢光体とを混合することによ
り、この螢光体をランプのガラス管の内面に塗布するこ
とにより達成するものである。
[Summary of the Invention] In order to achieve the above object, the present invention provides a new phosphor, a divalent euroum-activated haq IJ barium-calcium-magnesium phosphate blue-green phosphor. By developing this phosphor and mixing it with an antimony and manganese activated calcium halophosphate phosphor, a tin activated stronnium/magnesium orthosulfate phosphor, and a manganese activated magnesium 70 rhodiamanite phosphor, This is achieved by applying this phosphor to the inner surface of the glass tube of the lamp.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高価な螢光体のマンガン付活マグネシ
ウムフロロジャーマネイト螢光体の使用量が全螢光体使
用量の2割以下となり、演色性は7以上、効率は10%
以上向−卜した。更にガラス管の内側が一層塗布である
ため量産性がよく、ランプ特性も極めて改善される等の
効果がある。
According to the present invention, the amount of expensive manganese-activated magnesium fluorogermanite phosphor used is less than 20% of the total amount of phosphor used, the color rendering property is 7 or more, and the efficiency is 10%.
More than that. Furthermore, since the inside of the glass tube is coated with a single layer, it is easy to mass-produce and has the advantage of greatly improving lamp characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。実施例の駅間
に入る前に本発明によれば新規螢光体を使用するので、
この螢光体の構造と製造方法およびその特性を説明して
おく。
Examples of the present invention will be described in detail below. According to the present invention, a new phosphor is used before entering the station between the embodiments, so
The structure and manufacturing method of this phosphor and its characteristics will be explained below.

すなわち、一般式Ms−xX(P 04)3 : Eu
  (X) (式中、MはBa、Ca、Mgの3梗よシ
なり、X17i:F、Cd。
That is, the general formula Ms-xX(P 04) 3 : Eu
(X) (wherein M is the combination of Ba, Ca, and Mg, X17i: F, Cd.

Brの単体もしくは2種以上の混合物であり、Xは5未
満の正数である。)において、MのMgの値を001〜
1.0グラム原子の値に選定することによって優れた特
性を有する螢光体を得ることに成功した。
It is a single substance of Br or a mixture of two or more types, and X is a positive number less than 5. ), the Mg value of M is 001~
By selecting a value of 1.0 gram atom, a phosphor with excellent properties was successfully obtained.

一ヒ記一般式において、指数Xは2価のユーロピウムの
グラム原子数を表わす指数でO<X<5.  好ましく
は、0.01<X≦0.2の関係を満たすように設定さ
れる。指数Xが0.01未満の場合には、得られる螢光
体の輝度が著しく低FL、また0、 2を超えても得ら
れる螢光体の輝度の顕著な向上は見られない。さらに好
ましくは、003≦X≦0.15に設定することが望ま
しい。
In the above general formula, the index X represents the number of gram atoms of divalent europium, and O<X<5. Preferably, it is set to satisfy the relationship 0.01<X≦0.2. When the index X is less than 0.01, the luminance of the obtained phosphor is extremely low FL, and even when it exceeds 0.2, no significant improvement in the luminance of the obtained phosphor is observed. More preferably, it is desirable to set 003≦X≦0.15.

さらにMのB2 、 Ca 、Mgは各々Ba = 3
.0〜4.5  グラム原子*  Ca”’0.5〜2
.0グラム原子、  Iv1g=0.01〜10グラム
原子の関係を満たすように設定するのが好ましい。上記
Ba=3.0〜4.5. Ca=0.5〜2.0におい
て、Mgの置換量が0.01未満ではBaおよびCaだ
けの場合に比べて著しい輝度の向上は見られない。また
1、 0を超えると逆に輝度の低下が生じ好ましくない
。好ましくはMg=0.1〜05に設定することである
Furthermore, B2, Ca, and Mg of M are each Ba = 3
.. 0~4.5 Gram atom* Ca"'0.5~2
.. It is preferable to set so as to satisfy the relationship of 0 gram atom and Iv1g=0.01 to 10 gram atom. Above Ba=3.0-4.5. When Ca=0.5 to 2.0, if the Mg substitution amount is less than 0.01, no significant improvement in brightness is observed compared to the case of only Ba and Ca. On the other hand, if it exceeds 1.0, the brightness will decrease, which is undesirable. Preferably, Mg is set to 0.1 to 0.5.

この螢光体は、次のようにして調製される。This phosphor is prepared as follows.

すなわち、焼成処理の後、Ba、Ca、Mg、P、F、
Cl。
That is, after the firing process, Ba, Ca, Mg, P, F,
Cl.

BrおよびEu源となp得る各々の酸化物、燐酸塩。Each oxide and phosphate can serve as a source of Br and Eu.

炭酸塩、アンモニウム塩などの化合物の所定量を秤量し
た後、例えば、ボール・ミルでこれらの原料混合物を充
分に粉砕混合する。しかる後に得られた混合物をアルミ
ナ製および石英製のルツボに収容し、大気中においてs
oo’o〜1200“Cの温度下にて1〜5時間焼成す
る。得られた焼成物を冷却、粉砕、篩別し、例えば、水
素と窒素の混合ガスによる弱還元性雰囲気中においてs
oo’″0〜1200°Cの温度で二次焼成する。
After weighing a predetermined amount of compounds such as carbonate and ammonium salt, the raw material mixture is sufficiently ground and mixed using, for example, a ball mill. Thereafter, the resulting mixture was placed in a crucible made of alumina and quartz, and exposed to s in the atmosphere.
Calcinate for 1 to 5 hours at a temperature of oo'o to 1200"C. The resulting fired product is cooled, pulverized, and sieved, and then heated in a weakly reducing atmosphere with a mixed gas of hydrogen and nitrogen, for example.
Secondary firing is performed at a temperature of 0 to 1200°C.

得られた焼成物を冷却、粉砕、篩別、洗浄、濾過、乾燥
、篩別して、本発明の螢光体を得ることができる。
The phosphor of the present invention can be obtained by cooling, crushing, sieving, washing, filtering, drying, and sieving the obtained fired product.

具体例1 後掲の表1に示した組成式Ms−x X (P 04 
)! :Eu  (x)で表わされる螢光体において、
x=ce。
Specific example 1 Compositional formula Ms-x X (P 04
)! : In the phosphor represented by Eu (x),
x=ce.

X=0.05に設定してMの異なった各種の螢光体試料
(表1の番号1〜10)の調製を行なった。なお、比較
用としてMgを含有していない従来の螢光体(番号21
)についても同様にして調製した。これらの原料混合物
を、ボール・ミルにて2時間粉砕混合した。次いで、篩
別して混合物を石英製ルツボに収容し、大気中で950
℃の温度下にて3時間の焼成を行なった。
Various phosphor samples (numbers 1 to 10 in Table 1) with different M were prepared by setting X=0.05. For comparison, a conventional phosphor containing no Mg (number 21) was used for comparison.
) was prepared in the same manner. These raw material mixtures were pulverized and mixed in a ball mill for 2 hours. Next, the mixture was sieved and placed in a quartz crucible, and heated at 950 °C in the atmosphere.
Firing was carried out for 3 hours at a temperature of .degree.

得られた焼成物を冷却、粉砕、篩別し、水素2チ、窒素
98%の混合ガス中で、950℃の温度で1時間の二次
焼成を行なった。
The obtained fired product was cooled, pulverized, and sieved, and subjected to secondary firing at a temperature of 950° C. for 1 hour in a mixed gas of 2 g of hydrogen and 98% nitrogen.

得られた焼成物を冷却、粉砕、篩別、洗浄、濾過、乾燥
、篩別を行なって各種の螢光体試料を得た0 これらの各種試料について化学分析を行なったところ化
学量論的組成に一致した。また、結晶型をX線回折法で
調べたところ、完全なりロロアバタイト構造になってい
ることがわかった。なお、Ba、Ca、Mgの配合比に
よる格子定数も変化していることがわかった。
The obtained fired product was cooled, crushed, sieved, washed, filtered, dried, and sieved to obtain various phosphor samples. Chemical analysis of these various samples revealed stoichiometric compositions. matched. Furthermore, when the crystal type was examined by X-ray diffraction, it was found that it had a completely roloabatite structure. It was also found that the lattice constant changed depending on the blending ratio of Ba, Ca, and Mg.

次いで、これらの各試料について、(■)相対輝度。Then, for each of these samples, (■) relative brightness.

(2)維持率■、(3)維持率■を測定し、その結果を
配合されたMgのグラム原子数と対応させて第1図に示
した。なお、上記測定項目は、以下の仕様に基づいてい
る。
(2) Maintenance rate ■ and (3) Maintenance rate ■ were measured, and the results are shown in FIG. 1 in correspondence with the number of gram atoms of Mg blended. Note that the above measurement items are based on the following specifications.

(1)相対輝度:各試料に254nmの紫外線を照射し
た時の輝度の比較試料(表1甲、番 号11)の同波長の紫外線照射時にお ける輝度を1000とした場合の相対 値でこれは輝度の大小を表わし、ま た、螢光ランプに用いた場合の初期 光束と相関がある。
(1) Relative brightness: Comparison of brightness when each sample is irradiated with 254 nm ultraviolet rays. This is a relative value when the brightness of the sample (Table 1A, No. 11) when irradiated with ultraviolet rays of the same wavelength is taken as 1000. It also indicates the magnitude of the luminous flux, and is correlated with the initial luminous flux when used in a fluorescent lamp.

(2)維持率■:各試料を大気中で600°C910分
間ベーキング処理した後の輝度とベーキ ング処理する前の輝度との比 であり、これは螢光ランプの製造工 程中のベーキング工程における輝度 の劣化と相関がある。
(2) Maintenance rate ■: This is the ratio of the brightness after baking each sample in the atmosphere at 600°C for 910 minutes to the brightness before baking. This is the brightness during the baking process during the manufacturing process of fluorescent lamps. There is a correlation with the deterioration of

(3)維持率■:各試料に石英製低圧水銀灯からの紫外
線(強い185nm輝線を含む)を 4時間照射した後の輝度と未照射の 場合の輝度との比 を表わし、これは螢光ランプに用い た場合の光束の維持率と相関がある。
(3) Maintenance rate ■: represents the ratio of the brightness after irradiating each sample with ultraviolet rays (including strong 185 nm bright line) from a quartz low-pressure mercury lamp for 4 hours to the brightness when not irradiated; There is a correlation with the luminous flux maintenance rate when used in

具体例2 後掲の表1に示した組成式M5−X X (P 04 
)3 :B 、2 + (x )で表わされる螢光体に
おいて、X=C6゜X=0.05およびMg = 0.
2に設定して、MのBa′:f3−よびCaの配合比の
異なった各種の螢光体試料(表1中、番号11〜14)
を実施例1と同様な手順で調製した。
Specific example 2 Compositional formula M5-XX (P 04
)3 :B , 2 + (x ), in which X=C6°X=0.05 and Mg=0.
2, and various phosphor samples with different blending ratios of Ba':f3- and Ca (numbers 11 to 14 in Table 1) were prepared.
was prepared in the same manner as in Example 1.

これらの試料について、上記の方法を同様にして254
 nmの紫外線照射による輝度の測定を行なった。
For these samples, 254
The brightness was measured by irradiation with nanometer ultraviolet rays.

なお、この場合の相対輝度は表1中の番号21の試料の
輝度を100.0とした場合の相対輝度である。この結
果を配合されたCaのグラム原子数と対応させて第2図
に示した。
Note that the relative brightness in this case is the relative brightness when the brightness of the sample No. 21 in Table 1 is set to 100.0. The results are shown in FIG. 2 in correspondence with the number of grams of Ca added.

具体例3 後掲の表1に示した組成式M6−xX (P 04 )
3 :B u2+ (x )で表わされる螢光体におい
て、X=C1゜Ca=1.0. Mg=0.2に設定し
、MのBaおよびBu(x)の配合比の異なる各種の螢
光体試料(表1中、番号15〜20)を実施例1と同様
な手順で調製した。
Specific example 3 Compositional formula M6-xX (P 04 ) shown in Table 1 below
3: In the phosphor represented by B u2+ (x), X=C1°Ca=1.0. Various phosphor samples (Nos. 15 to 20 in Table 1) were prepared in the same manner as in Example 1, with Mg=0.2 and different blending ratios of Ba and Bu(x) in M.

これらの各抛の試料について2541mの紫外線照射に
よる輝度の測定を行なった。なお、この場合の相対輝度
は表1中の番号21の試料(公知例)の輝匿を1000
とした場合の相対輝度である。これらの結果を、配合さ
れたEuのグラム原子数と対応させて第3図に示した。
The brightness of each of these samples was measured by irradiating ultraviolet light at 2541 m. Note that the relative brightness in this case is calculated by multiplying the brightness of the sample number 21 (known example) in Table 1 by 1000.
This is the relative brightness when These results are shown in FIG. 3 in correspondence with the number of grams of Eu added.

また、第4図には、本発明の螢光体(代表として実施例
2の表1中の番号12.13)に254 nmの紫外線
を照射した時の発光スペクトルを示した。
Further, FIG. 4 shows the emission spectrum when the phosphor of the present invention (representatively numbered 12.13 in Table 1 of Example 2) was irradiated with 254 nm ultraviolet light.

その結果48Qnmから5 Q Q nmの波長範囲に
発光ピークを有する青緑色発光した。
As a result, blue-green light was emitted with an emission peak in the wavelength range of 48 Q nm to 5 Q Q nm.

これらの結果から明らかなように、この螢光体は従来公
知の2価のユーロピウム付活ハロリン酸塩螢光体に比較
して、254nm紫外線照射時の輝度が高く、また、ベ
ーキングによる輝度の低下および1851mの紫外線照
射時の輝度の低下も小さく450nm以下の可視部短波
長側発光領域のエネルギーが非常に少ない螢光体でおる
ことが判明した。  以下輩D 上述した特性の2価のユーロピウム付活ハロリン酸バリ
ウム・カルシウム・マグネシウム螢光体を使用して、5
70〜5750mの波長範囲に発光ピークを有するアン
チモン及びマンガン付活ハロリン酸カルシウム螢光体と
610〜6401mの波長範囲に発光ピークを有するス
ズ付活圧ハロリン酸ストンチウム・マグネシウム螢光体
、それに650〜660 nmの波長範囲に発光ピーク
を有し、半値中が20nmのマンガン付活マグネシウム
クロロジャーマネイト螢光体とを混合した螢光体をガラ
ス管内側に一層塗布すると好適であることが判った。
As is clear from these results, this phosphor has higher brightness when irradiated with 254 nm ultraviolet rays than the conventionally known divalent europium-activated halophosphate phosphor, and also shows less reduction in brightness due to baking. It was also found that the luminance decreases little when irradiated with ultraviolet light at 1851 m, and that the phosphor has very low energy in the short wavelength emission region of the visible region below 450 nm. Below D: Using a divalent europium-activated barium/calcium/magnesium halophosphate phosphor with the above-mentioned characteristics, 5
An antimony- and manganese-activated calcium halophosphate phosphor having an emission peak in the wavelength range of 70 to 5,750 m, a tin-activated pressure stontium/magnesium halophosphate phosphor having an emission peak in the wavelength range of 610 to 6,401 m, and 650 to 660 m. It has been found that it is suitable to coat the inside of the glass tube in a layer with a phosphor mixed with a manganese-activated magnesium chlorogermanite phosphor having an emission peak in the wavelength range of 20 nm and a half-value of 20 nm.

アンチモン及ヒマンガン付活ハロリン酸カルシウム螢光
体は特公昭33−4324号にみられるようにアンチモ
ンとマンガンの混合比及びフッ素と塩素の混合比を変化
させることによりアンチモン帝とマンガン帝の発光エネ
ルギー比、さらにマンガン帝のピーク波長も変化する事
はすでに知られている。
Antimony and manganese-activated calcium halophosphate phosphors can be produced by changing the mixing ratio of antimony and manganese and the mixing ratio of fluorine and chlorine, as shown in Japanese Patent Publication No. 33-4324. Furthermore, it is already known that the peak wavelength of Emperor Manganese also changes.

本発明の螢光ランプに用いた螢光体の組成式。The compositional formula of the phosphor used in the fluorescent lamp of the present invention.

色度9発光ピーク波長、半値巾を第2表に示す。Chromaticity 9 emission peak wavelength and half width are shown in Table 2.

またこれらの螢光体の分光分布を第5図に示す。Moreover, the spectral distribution of these phosphors is shown in FIG.

図中の記号は第2宍の記号と対応している。The symbols in the figure correspond to the symbols of the second Shishi.

実施例1 第7図に示す螢光ランプにおいて、第2表の記号A、R
,C,Dを第6図(a)に示す色温度3200に偏差−
o、oo5cz1.z+]になるような比率で混合し、
その混合物71を第7図に示す管径251nTnのガラ
ス管72の内面に被着し、通常の製造方法に従って放電
々極73.74を有する1 0 [W]の螢光ランプを
試し、測色及び測光を行った。これらの測定結果を従来
例と比較してまとめて第3表に示す。
Example 1 In the fluorescent lamp shown in FIG. 7, symbols A and R in Table 2 are used.
, C, D to a color temperature of 3200 shown in Fig. 6(a) -
o, oo5cz1. Mix in a ratio such that
The mixture 71 was applied to the inner surface of a glass tube 72 having a tube diameter of 251nTn shown in FIG. and photometry was performed. These measurement results are summarized in Table 3 in comparison with the conventional example.

第2表 第3表 尚従来品の螢光ランプは二層塗布でガラス管側をマンガ
ン付活フロロジャーマネイト螢光体、二層目アンチモン
及びマンガン付活カルシウム螢光体を塗布したものであ
る。
Table 2 Table 3 The conventional fluorescent lamp has a two-layer coating, with the glass tube side coated with manganese-activated fluorogermanite phosphor, and the second layer coated with antimony and manganese-activated calcium phosphor. .

本発明に係る螢光ランプは初期光束360〜365C6
m〕が得られ、点灯時の光束低下が極めて少ない事を確
認した。第8図に、分光エネルギー分布図を示す。
The fluorescent lamp according to the present invention has an initial luminous flux of 360 to 365C6.
m] was obtained, and it was confirmed that the decrease in luminous flux during lighting was extremely small. FIG. 8 shows a spectral energy distribution diagram.

実施例2 第2表の記号A’、B、C,Dの螢光体を第6図(b)
に示す色温度3000に、偏差−〇、005ctzv’
llになるような比率で混合し、その混合物を用いて、
実施例1と同様な手順で螢光ランプを試作し、測色及び
測光を行なった。これらの測定結果をまとめて第3表に
併記する。第8図に分光エネルギー分布図を示す。
Example 2 Fluorescent materials with symbols A', B, C, and D in Table 2 were used as shown in Figure 6(b).
When the color temperature is 3000, the deviation is -〇, 005ctzv'
Mix in a ratio such that ll, and use that mixture,
A fluorescent lamp was produced as a prototype in the same manner as in Example 1, and colorimetry and photometry were performed. These measurement results are summarized and listed in Table 3. Figure 8 shows a spectral energy distribution diagram.

以上の実施例から明らかなように本発明の螢光ランプは
、2価のユーロピウム付活ハロリン酸バリウム・カルシ
ウム・マグネシウム螢光体、スズ付活圧リン酸ストロン
チ・ラム・マグネシウム螢光体、マンガン付活マグネシ
ウム・フロロジャーマネイト螢光体、570〜575 
nmのアンチモン及びマンガン付活ハロリン酸カルシウ
ム螢光体の4種類混合螢光体を用いることにより、一層
塗布の螢光層で全光束も10C%〕向上するという優れ
た効果を有する。しかも2価のユーロピウム付活ハロリ
ン酸バリウム・カルシウムやマグネシウム螢光体は演色
性の阻害要因である4 50 nm以下の可視部短波長
側発光領域のエネルギーが非常に少ないので演色性も7
〜9向上し、更に非常に安価なこの螢光体を使用するこ
とにより、非常に高価なマンガン付活マグネシウム・フ
ロロジャーマネイト螢光体使用量を全螢光体使用量の2
割に押さえることができる効果がある。またランプ製造
面に2いても一層塗布になったので生産効率が大幅に向
上し、ランプ光色、演色性のバラツキも合せて改善され
て品質管理の面でも容易になった。
As is clear from the above examples, the fluorescent lamp of the present invention comprises a divalent europium-activated barium-calcium-magnesium halophosphate phosphor, a tin-activated pressurized strontium-lambum-magnesium phosphate phosphor, and a manganese phosphor. Activated magnesium fluorogermanite phosphor, 570-575
By using a mixed phosphor of four types of antimony- and manganese-activated calcium halophosphate phosphors, the present invention has the excellent effect of increasing the total luminous flux by 10 C% with a single coated phosphor layer. Moreover, divalent europium-activated barium/calcium halophosphate and magnesium phosphors have very little energy in the short wavelength emission region of the visible region below 450 nm, which is a factor that inhibits color rendering, so the color rendering is also 7.
By using this phosphor, which is improved by ~9 and is also very inexpensive, the amount of extremely expensive manganese-activated magnesium fluorogermanite phosphor used can be reduced to 2 of the total amount of phosphor used.
It has an effect that can be suppressed relatively. Furthermore, since a single layer of coating was applied to the lamp manufacturing surface, production efficiency was greatly improved, and variations in lamp light color and color rendering properties were also improved, making quality control easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る螢光ランプに使用する螢光体ノ
マグネシウムのグラム原子数と相対輝度(1)、維持率
■(2)および維持率■(3)との関係を示す線図、第
2図は、同じくカルシウムのグ、ラム原子と相対輝度と
の関係を示す線図、第3図はユーロピウムのグラム原子
数と相対輝度との関係を示す線図、第4図は、上述の代
衣的な螢光体の254 nm紫外線照射に於ける発光ス
ペクトルを示す線図、第5図は、本発明の螢光ランプに
使用している各は、本発明の実施例1,2に示したラン
プの分光エネルギ分布と従来(2層墜布)のものと比較
を・17 示す特性図、第3図は、本発明の螢光ランプの断面図で
ある。 71・・螢光体     72・・・ガラス管73.7
4・・・放電々極 (7317)代理人弁理士  則 近 惹 佑(ほか1
名)第1図 Mg(ゲラ、J、子) 第2図 Cα(グラ4イ)
FIG. 1 is a line showing the relationship between the number of gram atoms of the phosphor magnesium used in the fluorescent lamp according to the present invention, relative brightness (1), maintenance rate (2), and maintenance rate (3). Similarly, Figure 2 is a diagram showing the relationship between the gram and gram atoms of calcium and relative brightness, Figure 3 is a diagram showing the relationship between the number of grams atoms of europium and relative brightness, and Figure 4 is a diagram showing the relationship between the number of grams atoms and relative brightness of europium. FIG. 5 is a diagram showing the emission spectrum of the above-mentioned fluorescent material under 254 nm ultraviolet irradiation. A comparison of the spectral energy distribution of the lamp shown in No. 2 with that of the conventional (two-layered cloth) lamp is shown in the characteristic diagram. FIG. 3 is a cross-sectional view of the fluorescent lamp of the present invention. 71... Fluorescent material 72... Glass tube 73.7
4...Discharge Goku (7317) Representative Patent Attorney Nori Chika Atsuke (and 1 others)
Name) Fig. 1 Mg (Gela, J, child) Fig. 2 Cα (Gra 4 I)

Claims (1)

【特許請求の範囲】 ■ 一般式、M5−xX(’PO<)s:Bu (xX
式中MはBa 、 Ca 、Mgの3種より成9、各々
3.0〜4.5グラム原子のBa、0.5〜20グラム
の原子のCaおよび0.01〜1.0グラム原子のMg
を有し;XはF 、 C1。 Brの単体もしくは2棟以上の混合物であり、且つ、0
.01<x≦0,2である。)で示され、480〜50
01mの波長範囲に発光ピークを有する2価のユーロピ
ウムで付活されたアルカリ土類金薦ハロリン酸塩の第1
螢光体と、4801570〜575nmの波長範囲に発
光ピークを有する第2螢光体と、610〜640 nm
の波長範囲に発光ピークを有する第3螢光体と、650
〜55Qnmの波長範囲に発光ピークを有する第4螢光
体とを混合口、ガラス管内面に被着させてなることを特
徴とする螢光ランプ。 ■ 第2螢光体がアンチモン及びマンガン付活ハロリン
酸カルシウム螢光体であり、第3螢光体がスズ付活圧リ
ン酸ヌトロンテウム、マグネシウム螢光体であり、第4
螢光体がマンガン付活マグネシウムフロロジャーマネイ
ト螢光体であることを特徴とする特許請求の範囲第1項
記載の螢光ランプ。
[Claims] ■ General formula, M5-xX('PO<)s:Bu (xX
In the formula, M is composed of three types of Ba, Ca, and Mg, each consisting of 3.0 to 4.5 gram atoms of Ba, 0.5 to 20 gram atoms of Ca, and 0.01 to 1.0 gram atoms of Mg
X is F, C1. Br alone or a mixture of two or more, and 0
.. 01<x≦0,2. ), 480-50
The first alkaline earth metal halophosphate activated with divalent europium has an emission peak in the wavelength range of 0.01 m.
a second phosphor having an emission peak in the wavelength range of 4801570 to 575 nm;
a third phosphor having an emission peak in a wavelength range of 650
A fluorescent lamp characterized in that a fourth phosphor having an emission peak in a wavelength range of ~55 Qnm is adhered to a mixing port and an inner surface of a glass tube. ■ The second phosphor is an antimony- and manganese-activated calcium halophosphate phosphor, the third phosphor is a tin-activated pressurized nutrontheum, magnesium phosphate phosphor, and the fourth
2. A fluorescent lamp according to claim 1, wherein the phosphor is a manganese-activated magnesium fluorogermanite phosphor.
JP337882A 1982-01-14 1982-01-14 Fluorescent lamp Granted JPS58121541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP337882A JPS58121541A (en) 1982-01-14 1982-01-14 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP337882A JPS58121541A (en) 1982-01-14 1982-01-14 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPS58121541A true JPS58121541A (en) 1983-07-19
JPH0330262B2 JPH0330262B2 (en) 1991-04-26

Family

ID=11555687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP337882A Granted JPS58121541A (en) 1982-01-14 1982-01-14 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS58121541A (en)

Also Published As

Publication number Publication date
JPH0330262B2 (en) 1991-04-26

Similar Documents

Publication Publication Date Title
CA1137295A (en) Luminescent bivalent europium-activated barium borophosphate
US4353808A (en) Phosphors and process for producing the same
EP0074585B1 (en) Blue-green emitting halophosphate phosphor, and fluorescent lamp employing the same
JPH0523316B2 (en)
JP3098266B2 (en) Light-emitting composition and fluorescent lamp
JPS5944335B2 (en) fluorescent material
JPS58121541A (en) Fluorescent lamp
US4500443A (en) Blue-green emitting halophosphate phosphor
JP3187933B2 (en) Phosphor and fluorescent lamp using the same
JP3360901B2 (en) Phosphors and fluorescent lamps
JPS61118489A (en) Calcium halophosphate and its production
JPH04270781A (en) Stimulable phosphor and fluorescent lamp
JPS6335686A (en) Halophosphate phosphor and fluorescent lamp
JPH04270782A (en) Stimulable phosphor and fluorescent lamp using the same
JPH02170888A (en) Production of blue light-generating fluorescent material
JPS61292848A (en) Fluorescent lamp
JPH02228390A (en) Highly color rendering fluorescent lamp
JPS628470B2 (en)
JPH05194946A (en) Stimulable phosphor and fluorescent lamp prepared therefrom
JP2856834B2 (en) Phosphor manufacturing method
JPS6244792B2 (en)
JPS60148044A (en) Fluorescent lamp
JP2601348B2 (en) High color rendering fluorescent lamp
JPH03140393A (en) Fluorescent substance and fluorescent lamp
JPH0348239B2 (en)